## Czechoslovak Mathematical Journal

Somayeh Hadjirezaei; Sina Hedayat
Decomposition of finitely generated modules using Fitting ideals

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 4, 1179-1190

Persistent URL: http://dml.cz/dmlcz/148421

## Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# DECOMPOSITION OF FINITELY GENERATED MODULES USING FITTING IDEALS 

Somayeh Hadjirezaei, Rafsanjan, Sina Hedayat, Kerman

Received August 5, 2019. Published online July 9, 2020.


#### Abstract

Let $R$ be a commutative Noetherian ring and $M$ be a finitely generated $R$ module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of $R$, in some cases.


Keywords: Fitting ideal; torsion submodule; regular element
MSC 2020: 13C05, 13D05

## 1. Introduction

Let $R$ be a commutative Noetherian ring with identity. Given any finitely generated $R$-module $M$, we can associate with $M$ a sequence of ideals of $R$ known as the Fitting invariants or Fitting ideals of $M$. The Fitting ideals are named after Fitting who investigated their properties in [4] in 1936.

Fitting ideal can provide us with useful information about the structure of a module. We will see that in some cases, if we know the Fitting ideals of a module, then we can determine the structure of the $R$-module completely. Even when this is not the case, the Fitting information can still help us to understand some interesting properties of modules.

For a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of generators of $M$ there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow N \longrightarrow R^{\oplus n} \xrightarrow{\varphi} M \longrightarrow 0, \tag{1.1}
\end{equation*}
$$

where $R^{\oplus n}$ is a free $R$-module with the set $\left\{e_{1}, \ldots, e_{n}\right\}$ of basis, the $R$-homomorphism $\varphi$ is defined by $\varphi\left(e_{j}\right)=x_{j}$ and $N$ is the kernel of $\varphi$. Let $N$ be generated by $u_{\lambda}=a_{1 \lambda} e_{1}+\ldots+a_{n \lambda} e_{n}$ with $\lambda$ in some index set $\Lambda$. Assume that $A$ be the
following matrix:

$$
\left(\begin{array}{ccc}
\ldots & a_{1 \lambda} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & a_{n \lambda} & \ldots
\end{array}\right)
$$

We call $A$ the matrix presentation of the sequence (1.1). Let $\operatorname{Fitt}_{i}(M)$ be the ideal of $R$ generated by the minors of size $n-i$ of matrix $A$. For $i \geqslant n$, $\operatorname{Fitt}_{i}(M)$ is defined as $R$ and for $i<0, \operatorname{Fitt}_{i}(M)$ is defined as the zero ideal. It is known that $\operatorname{Fitt}_{i}(M)$ is the invariant ideal determined by $M$, that is, it is determined uniquely by $M$ and it does not depend on the choice of the set of generators of $M$, see [4]. The ideal $\operatorname{Fitt}_{i}(M)$ will be called the $i$ th Fitting ideal of the module $M$. It follows from the definition that $\operatorname{Fitt}_{i}(M) \subseteq \operatorname{Fitt}_{i+1}(M)$ for every $i$. The most important Fitting ideal of $M$ is the first of the $\operatorname{Fitt}_{i}(M)$ that is nonzero. We shall denote this Fitting ideal by $\mathrm{I}(M)$.

Fitting ideals are also used in mathematical physics. Einsiedler and Ward show how the dynamical properties of the system may be deduced from the Fitting ideals and they prove the entropy and expansiveness related with only the first Fitting ideal. This gives an easy computation instead of computing syzygy modules, see [3].

A partial list of important contributors to the theory of Fitting ideals includes the mathematicians Fitting, Buchsbaum, Lipman, Huneke, Katz, Northcott, Eisenbud (for references of each author see [1], [2], [4], [8], [9], [11]). Some recent works on Fitting ideals, due to the authors, are [5], [6] and [7].

In [6], it is shown that when $\mathrm{I}(M)=Q$ is a regular maximal ideal of $R$, then $M \cong R / Q \oplus P$ for some projective $R$-module $P$ of constant rank if and only if $\mathrm{T}(M) \nsubseteq Q M$ and so if $M$ is an Artinian $R$-module and $\mathrm{I}(M)=Q$, then $M \cong R / Q$. In this paper we characterize modules whose first nonzero Fitting ideals are product of maximal ideals.

Throughout this paper, an element of $R$ is called regular if it is a nonzero divisor and an ideal of $R$ is regular if it contains a regular element. Let $M$ be a finitely generated $R$-module. The torsion submodule of $M, \mathrm{~T}(M)$, is the submodule of $M$ consisting of all elements of $M$ that are annihilated by a regular element of $R$. If $\mathrm{T}(M)=0$, then $M$ is called a torsionfree $R$-module.

## 2. Module whose first nonzero Fitting ideal is a product of maximal ideals

Let $(R, P)$ be a local ring. In this section we investigate how useful Fitting ideals are in determining the underlying module. We study the behaviour of a module when the first nonzero Fitting ideal of it is a power of the maximal ideal $P$.

One of the frequent use of Fitting ideals is to say something about the annihilator of a module. See the following proposition.

Proposition 2.1. If $M$ is a finitely generated $R$-module which can be generated by $n$ elements, then

$$
(\operatorname{Ann}(M))^{n} \subseteq \operatorname{Fitt}_{0}(M) \subseteq \operatorname{Ann}(M)
$$

Proof. See [2], Proposition 20.7.
This basic theorem is generalized in [7], Lemma 2.5 as follows:

Lemma 2.2. Let $M$ be a finitely generated $R$-module. Then

$$
\mathrm{I}(M) \subseteq \operatorname{Ann}(\mathrm{T}(M))
$$

In what follows, $S\left(P^{i}\right)$ is the set of all elements of $M$, where $\operatorname{Ann}(x)=P^{i}$ for some positive integer $i$.

Theorem 2.3. Let $(R, P)$ be a Noetherian local ring and $M$ be a finitely generated $R$-module with $\mathrm{T}(M) \neq 0$ and $\mathrm{I}(M)=P^{n}$ for a positive integer $n$. Then the following conditions are equivalent:
(1) $M=N \oplus \mathrm{~T}(M)$ for a submodule $N$ of $M$ and $\mathrm{T}(M) \cong(R / P)^{\oplus m}$ for a positive integer m;
(2) $\mathrm{T}(M) \cap P M=0$;
(3) $S(P) \cap P M=\emptyset$.

Proof. (1) $\Rightarrow(2)$ : Let $M=N \oplus \mathrm{~T}(M) \cong N \oplus(R / P)^{\oplus m}$ for a positive integer $m$. Since $P M=P N, \mathrm{~T}(M) \cap P M \subseteq \mathrm{~T}(M) \cap N=0$.
$(2) \Rightarrow(3)$ : Since $S(P) \subseteq \mathrm{T}(M)$, it is clear that $S(P) \cap P M=\emptyset$.
(3) $\Rightarrow$ (1): Let $\mathrm{I}(M)=P^{n}$ and $S(P) \cap P M=\emptyset$. By Lemma 2.2, $\mathrm{I}(M)=P^{n} \subseteq$ $\operatorname{Ann}(T(M))$. So

$$
P=\sqrt{\operatorname{Ann}(\mathrm{T}(M))}=\bigcap_{\operatorname{Ann}(\mathrm{T}(M)) \subseteq Q} Q,
$$

where $Q \in \operatorname{Ass}(\mathrm{~T}(M))$. Since $P$ is a maximal ideal, $\operatorname{Ass}(\mathrm{T}(M))=\{P\}$. Therefore there exists an element $x_{1} \in \mathrm{~T}(M)$ such that $\operatorname{Ann}\left(x_{1}\right)=P$. Since $S(P) \cap P M=\emptyset$, $\left\{x_{1}\right\}$ can be extended to a minimal generating set for $\mathrm{T}(M)$. So there exists a submodule $N_{1}$ of $M$ such that $\mathrm{T}(M)=\left\langle x_{1}\right\rangle \oplus N_{1} \cong R / P \oplus N_{1}$.

We have $P^{n} \mathrm{~T}(M)=P^{n} N_{1}=0$. Thus, if $N_{1} \neq 0$, by the same argument as above, we have $\operatorname{Ass}\left(N_{1}\right)=\{P\}$. So there exists an element $x_{2} \in N_{1}$ such that $\operatorname{Ann}\left(x_{2}\right)=P$. Since $S(P) \cap P M=\emptyset$, there exists a submodule $N_{2}$ of $M$ such that

$$
N_{1}=\left\langle x_{2}\right\rangle \oplus N_{2} \cong R / P \oplus N_{2}
$$

Continuing this process, we have $\mathrm{T}(M)=\left\langle x_{1}, \ldots, x_{t}\right\rangle \cong(R / P)^{\oplus t}$ for a positive integer $t$.

Let $\left\{x_{1}, \ldots, x_{t}, x_{t+1}, \ldots, x_{t+s}\right\}$ be a generating set for $M$ such that for every $i, 1 \leqslant$ $i \leqslant s, x_{t+i} \notin\left\{x_{1}, \ldots, x_{t}, x_{t+1}, \ldots, x_{t+(i-1)}, x_{t+(i+1)}, \ldots, x_{t+s}\right\}$. Put $N=\left\{x_{t+1}, \ldots\right.$, $\left.x_{t+s}\right\}$. Let

$$
r_{1} x_{1}+\ldots+r_{t} x_{t}+r_{t+1} x_{t+1}+\ldots+r_{t+s} x_{t+s}=0
$$

Since $x_{t+i} \notin\left\{x_{1}, \ldots, x_{t}, x_{t+1}, \ldots, x_{t+(i-1)}, x_{t+(i+1)}, \ldots, x_{t+s}\right\}, r_{t+i} \in P$ for every $i$, $1 \leqslant i \leqslant s$. So $r_{1} x_{1}+\ldots+r_{t} x_{t} \in P M$. Since $S(P) \cap P M=\emptyset$ and

$$
P \subseteq \operatorname{Ann}\left(r_{1} x_{1}+\ldots+r_{t} x_{t}\right), r_{1} x_{1}+\ldots+r_{t} x_{t}=0
$$

Therefore $\left\langle x_{1}, \ldots, x_{t}\right\rangle \cap N=0$. So $M=N \oplus \mathrm{~T}(M)$.
Let $M$ be an $R$-module. A proper submodule $N$ of $M$ is said to be a prime submodule of $M$ if the condition $r a \in N, r \in R$ and $a \in M$ implies that $a \in N$ or $r M \subseteq N$.

Lemma 2.4. Let $M$ be an $R$-module and $Q$ be a maximal ideal of $R$. If $Q M \neq M$, then $Q M$ is a prime submodule of $M$.

Proof. See [10], §1, Proposition 2.
Now we try to generalize Theorem 2.3 to global cases. Note that the formation of Fitting ideal commutes with base change; that is for any map of rings $R \rightarrow S$, $\operatorname{Fitt}_{j}\left(M \otimes_{R} S\right)=\left(\operatorname{Fitt}_{j} M\right) S$. Therefore, for every prime ideal $P$ of $R$ and every $i$ we have $\operatorname{Fitt}_{i}\left(M_{P}\right)=\operatorname{Fitt}_{i}(M)_{P}$. But the construction of $\mathrm{I}(M)=\mathrm{I}_{\text {rank } \varphi}(\varphi)$ does not in general commute with localization because the rank of $\varphi$ may decrease when we localize. However, if $\mathrm{I}(M)$ contains a regular element, then $\operatorname{rank}(\varphi)=\operatorname{rank}\left(\varphi_{P}\right)$ and so $\mathrm{I}\left(M_{P}\right)=\mathrm{I}(M)_{P}$ for every prime ideal $P$ of $R$.

An $R$-module $M$ is said to be regular if $\mathrm{I}(M)$ is a regular ideal.
Theorem 2.5. Let $R$ be a Noetherian ring and $M$ be a finitely generated, regular $R$-module. Assume that $P_{1}, \ldots, P_{m}$ are distinct maximal ideals of $R$ such that $\mathrm{T}\left(M_{P_{i}}\right) \neq 0$ for every $1 \leqslant i \leqslant m$ and $\mathrm{I}(M)=P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}$ for some positive integers $n_{i}, 1 \leqslant i \leqslant m$. Then the following conditions are equivalent:
(1) $M=N \oplus \mathrm{~T}(M)$ for a submodule $N$ of $M$ and

$$
\mathrm{T}(M) \cong\left(R / P_{1}\right)^{\oplus n_{1}} \oplus \ldots \oplus\left(R / P_{m}\right)^{\oplus n_{m}}
$$

(2) $\mathrm{T}(M) \cap P_{1} P_{2} \ldots P_{m} M=0$.
(3) $S\left(P_{i}\right) \cap P_{i} M=\emptyset, i=1, \ldots, m$.

Proof. (1) $\Rightarrow$ (2): Assume that

$$
M=N \oplus \mathrm{~T}(M) \cong N \oplus\left(R / P_{1}\right)^{\oplus n_{1}} \oplus \ldots \oplus\left(R / P_{m}\right)^{\oplus n_{m}}
$$

for an $R$-submodule $N$ and positive integer $n_{i}, 1 \leqslant i \leqslant m$. Then

$$
P_{1} P_{2} \ldots P_{m} M=P_{1} P_{2} \ldots P_{m} N .
$$

Since $N \cap \mathrm{~T}(M)=0, \mathrm{~T}(M) \cap P_{1} P_{2} \ldots P_{m} M=0, i=1, \ldots, m$.
(2) $\Rightarrow(3)$ : By contrapositive, fix $i, i=1, \ldots, m$, and suppose there exists $x \in$ $S\left(P_{i}\right) \cap P_{i} M$. Then $\operatorname{Ann}(x)=P_{i}$. Since $P_{1}, \ldots, P_{m}$ are distinct maximal ideals of $R$, one may choose $r \in P_{1} \ldots P_{i-1} P_{i+1} \ldots P_{m} \backslash P_{i}$. So $\operatorname{Ann}(r x)=P_{i}$ and hence $0 \neq r x \in \mathrm{~T}(M) \cap P_{1} \ldots P_{m} M$.
(3) $\Rightarrow$ (1): Let $\mathrm{S}\left(P_{i}\right) \cap P_{i} M=\emptyset$ for $i=1, \ldots, m$. Since $\mathrm{I}(M)=P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}$ for every $i=1, \ldots, m$, we have $\mathrm{I}\left(M_{P_{i}}\right)=\mathrm{I}(M)_{P_{i}}=P_{i}^{n_{i}} R_{P_{i}}$. We claim that $S\left(P_{i} R_{P_{i}}\right) \cap$ $P_{i} M_{P_{i}}=\emptyset$. Let $x / 1 \in S\left(P_{1} R_{P_{1}}\right) \cap P_{1} M_{P_{1}}$ and $P_{1}=\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

For $i=1, \ldots, k$ we have

$$
\frac{a_{i}}{1} \frac{x}{1}=\frac{0}{1}
$$

So there exist $t_{i} \in R \backslash P_{1}$ such that $t_{i} a_{i} x=0$. Put $t=t_{1} \ldots t_{k}$. Since $(x / 1) \neq(0 / 1)$, $t x \neq 0$ and so $P_{1}=\operatorname{Ann}(t x)$.

On the other hand, $x / 1 \in P_{1} M_{P_{1}}$. Thus there exist $s_{i} \in R \backslash P_{1}$ and $x_{i} \in M$ such that

$$
\frac{x}{1}=\frac{a_{1}}{s_{1}} \frac{x_{1}}{1}+\ldots+\frac{a_{k}}{s_{k}} \frac{x_{k}}{1} .
$$

Therefore there exists $s \in R \backslash P_{1}$ such that $s x \in P_{1} M$. If $M=P_{1} M$, then $M_{P_{1}}=P_{1} M_{P_{1}}$. So by Nakayama's Lemma, $M_{P_{1}}=0$, a contradiction because $\mathrm{I}\left(M_{P_{1}}\right)=P_{1} R_{P_{1}}$. Hence, by Lemma 2.4, $P_{1} M$ is a prime submodule of $M$, so $x \in P_{1} M$ or $s M \subseteq P_{1} M$.

If $s M \subseteq P_{1} M$, then since $s \in R \backslash P_{1}, M_{P_{1}}=P_{1} M_{P_{1}}$, a contradiction. Thus $x \in P_{1} M$. Hence $t x \in S\left(P_{1}\right) \cap P_{1} M$, a contraction. Thus

$$
S\left(P_{1} R_{P_{1}}\right) \cap P_{1} M_{P_{1}}=\emptyset .
$$

Similarly, $S\left(P_{i} R_{P_{i}}\right) \cap P_{i} M_{P_{i}}=\emptyset$ for $i=2, \ldots, m$. By hypothesis, $\mathrm{T}\left(M_{P_{i}}\right) \neq 0$ and therefore by Theorem 2.3, $M_{P_{i}}=\left(N_{i}\right)_{P_{i}} \oplus\left(R_{P_{i}} / P_{i} R_{P_{i}}\right)^{\oplus n_{i}}$ for a submodule $N_{i}$ of $M$.

Now we show that $\mathrm{T}\left(M_{P_{1}}\right)=\mathrm{T}(M)_{P_{1}}$. It is clear that $\mathrm{T}(M)_{P_{1}} \subseteq \mathrm{~T}\left(M_{P_{1}}\right)$. So let

$$
\frac{0}{1} \neq \frac{x}{1} \in \mathrm{~T}\left(M_{P_{1}}\right) .
$$

By Lemma 2.2, $P_{1} R_{P_{1}}=\mathrm{I}\left(M_{P_{1}}\right) \subseteq \operatorname{Ann}\left(\mathrm{T}\left(M_{P_{1}}\right)\right)$. Thus $\operatorname{Ann}(x / 1)=P_{1} R_{P_{1}}$. So there exists an element $t \in R \backslash P_{1}$ such that $\operatorname{Ann}(t x)=P_{1}$. Let $r \in P_{1}$ be a regular element. Hence $r(t x)=0$. So $t x \in \mathrm{~T}(M)$. Therefore

$$
\frac{x}{1}=\frac{t x}{t} \in \mathrm{~T}(M)_{P_{1}} .
$$

This means that $\mathrm{T}\left(M_{P_{1}}\right)=\mathrm{T}(M)_{P_{1}}$.
Let

$$
\mathrm{T}\left(M_{P_{i}}\right)=\left\langle\frac{x_{1 i}}{1}, \ldots, \frac{x_{n_{i} i}}{1}\right\rangle, \quad 1 \leqslant i \leqslant m
$$

where

$$
\operatorname{Ann}\left(\frac{x_{j i}}{1}\right)=P_{i} R_{P_{i}} .
$$

By the same argument as above, there exist $t_{j i} \in R \backslash P_{i}$ such that $\operatorname{Ann}\left(t_{j i} x_{j i}\right)=P_{i}$ for every $1 \leqslant j \leqslant n_{i}, 1 \leqslant i \leqslant m$.

Assume that $Q \neq P_{1}, \ldots, P_{m}$ is a maximal ideal of $R$. We have

$$
\mathrm{I}\left(M_{Q}\right)=\mathrm{I}(M)_{Q}=R_{Q}
$$

So by [1], Lemma $1, M_{Q}$ is a free $R_{Q}$-module.
Thus $\mathrm{T}(M)_{P}=\left\langle t_{j i} x_{j i}: 1 \leqslant j \leqslant n_{i}, 1 \leqslant i \leqslant m\right\rangle_{P}$ for every maximal ideal $P$ of $R$. Since $\operatorname{Ann}\left(t_{j i} x_{j i}\right)=P_{i}$,

$$
\mathrm{T}(M)=\left\langle t_{j i} x_{j i}: 1 \leqslant j \leqslant n_{i}, 1 \leqslant i \leqslant m\right\rangle \cong\left(R / P_{1}\right)^{\oplus n_{1}} \oplus \ldots \oplus\left(R / P_{m}\right)^{\oplus n_{m}}
$$

Put

$$
N=P_{2} P_{3} \ldots P_{m} N_{1}+\ldots+P_{1} P_{2} \ldots P_{m-1} N_{m}+P_{1} \ldots P_{m} M
$$

Since $M_{P_{i}}=\left(N_{i}\right)_{P_{i}} \oplus\left(R_{P_{i}} / P_{i} R_{P_{i}}\right)^{\oplus n_{i}}, P_{i} M_{P_{i}}=P_{i}\left(N_{i}\right)_{P_{i}}$. Therefore for every $i$, $1 \leqslant i \leqslant m$ we have

$$
N_{P_{i}}=P_{i}\left(N_{1}\right)_{P_{i}}+\ldots+\left(N_{i}\right)_{P_{i}}+\ldots+P_{i}\left(N_{m}\right)_{P_{i}}+P_{i} M_{P_{i}}=\left(N_{i}\right)_{P_{i}}
$$

Also for every maximal ideal $Q \neq P_{1}, \ldots, P_{m}$ we have

$$
N_{Q}=\left(N_{1}\right)_{Q}+\ldots+\left(N_{m}\right)_{Q}+M_{Q}=M_{Q} .
$$

Therefore for every maximal ideal $P$ of $R$ we have

$$
M_{P}=N_{P} \oplus \mathrm{~T}(M)_{P}=(N \oplus \mathrm{~T}(M))_{P} .
$$

So

$$
M=N \oplus \mathrm{~T}(M) \cong N \oplus\left(R / P_{1}\right)^{\oplus n_{1}} \oplus \ldots \oplus\left(R / P_{m}\right)^{\oplus n_{m}}
$$

Let $(R, P)$ be a local ring. Now, we study the finitely generated $R$-module $M$ which $R / P^{t}$ is a direct summand of $M$ for some positive integer $t$.

Further, we use the following lemmas.

Lemma 2.6. For an exact sequence of finitely generated $R$-modules

$$
0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0
$$

and integers $r, s \geqslant 0$, we have $\operatorname{Fitt}_{r}(L) \operatorname{Fitt}_{s}(N) \subseteq \operatorname{Fitt}_{r+s}(M)$. Furthermore, if the above sequence splits, i.e. $M=L \oplus N$, then for each integer $t \geqslant 0$ we have $\operatorname{Fitt}_{t}(L \oplus N)=\sum_{r+s=t} \operatorname{Fitt}_{r}(L) \operatorname{Fitt}_{s}(N)$, and consequently $\mathrm{I}(L \oplus N)=\mathrm{I}(L) \mathrm{I}(N)$.

Proof. See [11], pages 90-93.
Lemma 2.7. Let $\mathrm{T}(M)$ be a finitely generated $R$-submodule of $M$. Then $\mathrm{I}(\mathrm{T}(M))=\operatorname{Fitt}_{0}(\mathrm{~T}(M))$.

Proof. Assume that $\mathrm{T}(M)$ is generated by $n$ elements, so there exists a regular element $q$ in $R$ such that $q \in \operatorname{Ann}(\mathrm{~T}(M))$. By Proposition 2.1, $q^{n} \in \operatorname{Fitt}_{0}(\mathrm{~T}(M))$. Since $q$ is a regular element, $q^{n} \neq 0$. Thus $\mathrm{I}(\mathrm{T}(M))=\operatorname{Fitt}_{0}(\mathrm{~T}(M))$.

Theorem 2.8. Let $(R, P)$ be a Noetherian local ring and $M$ be a regular $R$ module which is generated by $n$ elements. Then $M \cong R^{\oplus(n-1)} \oplus R / P^{t}$, for a positive integer $t$, if and only if $\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=P^{t}$ and $S\left(P^{t}\right) \nsubseteq P M$. Furthermore, in the above case, $S\left(P^{t}\right) \cap P M=\emptyset$.

Proof. Let $M \cong R^{\oplus(n-1)} \oplus R / P^{t}$ for a positive integer $t$. By Lemma 2.6 and [1], Lemma 1, it is easily seen that $\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=P^{t}$. We have

$$
P M \cong P^{\oplus(n-1)} \oplus P / P^{t}
$$

Since $M$ is a regular $R$-module, $P$ contains a regular element. Thus $\operatorname{Ann}(b)=0$ for every $b \in P^{\oplus(n-1)}$ and $P^{t-1} \subseteq \operatorname{Ann}\left(a+P^{t}\right)$ for every element $a \in P$. Thus, there exists no element of $S\left(P^{t}\right)$ in $P M$. Therefore $S\left(P^{t}\right) \cap P M=\emptyset$.

Now assume that $\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=P^{t}$ and $S\left(P^{t}\right) \nsubseteq P M$. So there exists an element $x_{1} \in S\left(P^{t}\right) \backslash P M$. Since $x_{1} \notin P M,\left\{x_{1}\right\}$ can be extended to a minimal generating set $\left\{x_{1}, \ldots, x_{n}\right\}$ for $M$. (Note that since $\operatorname{Fitt}_{n-1}(M) \neq R$, by [2], Proposition 20-6, $M$ cannot be generated by less than $n$ elements.) Let

$$
R^{\oplus m} \xrightarrow{\varphi} R^{\oplus n} \xrightarrow{\psi} M \longrightarrow 0
$$

be a free presentation of $M$, where $\psi\left(e_{i}\right)=x_{i}, 1 \leqslant i \leqslant n$. Let $A=\left(a_{i j}\right) \in \mathrm{M}_{n \times m}(R)$ be the matrix presentation of $\varphi$. We have

$$
0 \neq \mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=\mathrm{I}_{n-(n-1)}(\varphi)=\mathrm{I}_{1}(\varphi) .
$$

Thus $\operatorname{rank}(A)=\operatorname{rank}(\varphi)=1$.
Since $M / \mathrm{T}(M)=\left\langle x_{1}+\mathrm{T}(M), \ldots, x_{n}+\mathrm{T}(M)\right\rangle$, we have the free presentation

$$
R^{\oplus k} \xrightarrow{f} R^{\oplus n} \xrightarrow{\bar{\psi}} M / \mathrm{T}(M) \longrightarrow 0
$$

of $M / \mathrm{T}(M)$, where $\bar{\psi}\left(e_{i}\right)=x_{i}+\mathrm{T}(M), 1 \leqslant i \leqslant n$. So let $B \in M_{n \times k}(R)$ be the matrix presentation of $f$. Thus $\operatorname{ker}(\bar{\psi})=\operatorname{Im}(f)=\langle B\rangle$. Let $x \in \operatorname{ker}(\bar{\psi})$ be arbitrary. Then $\bar{\psi}(x)=0$ and so $\psi(x) \in \mathrm{T}(M)$. Thus, there exists a regular element $q \in R$ such that $q \psi(x)=0$. Hence $q x \in \operatorname{ker}(\psi)=\operatorname{Im}(\varphi)$ and so $q x \in\langle A\rangle$. Therefore $\langle q B\rangle \subseteq\langle A\rangle$. Since $q$ is regular, $\operatorname{rank}(B)=\operatorname{rank}(q B) \leqslant \operatorname{rank}(A)=1$. Thus $\mathrm{I}(M / \mathrm{T}(M))=\mathrm{I}_{1}(f)$. Since $x_{1}+\mathrm{T}(M)=\bar{x}_{1}=\overline{0},(1,0, \ldots, 0)^{t} \in\langle B\rangle$. Hence

$$
\mathrm{I}(M / \mathrm{T}(M))=\operatorname{Fitt}_{n-1}(M / \mathrm{T}(M))=R .
$$

So by [1], Lemma 1, $M / \mathrm{T}(M)$ is a free $R$-module of rank $n-1$. Hence $M \cong$ $M / \mathrm{T}(M) \oplus \mathrm{T}(M)$. By Lemma 2.6 and Lemma 2.7, $\operatorname{Fitt}_{n-1}(M)=\operatorname{Fitt}_{0}(\mathrm{~T}(M))=P^{t}$. Since every minimal generating set of $M$ has $n$ elements, $\mathrm{T}(M)$ is a cyclic $R$-module. Therefore

$$
M \cong M / \mathrm{T}(M) \oplus \mathrm{T}(M) \cong R^{\oplus(n-1)} \oplus R / P^{t}
$$

Now we generalize Theorem 2.8 to global case.
Theorem 2.9. Let $R$ be a Noetherian ring and $M$ be a regular $R$-module which is generated by $n$ elements. Assume that $P_{1}, \ldots, P_{m}$ be distinct maximal ideals of $R$. Then $M=N \oplus \mathrm{~T}(M)$ and $\mathrm{T}(M) \cong\left(R / \bigcap_{i=1}^{m} P_{i}^{n_{i}}\right)$ for a projective $R$-module $N$ of constant rank $n-1$ and some positive integers $n_{i}, 1 \leqslant i \leqslant m$, if and only if $\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}$ and $S\left(P_{i}^{n_{i}}\right) \nsubseteq P_{i} M, 1 \leqslant i \leqslant m$.

Proof. Let

$$
M \cong N \oplus\left(R / \bigcap_{i=1}^{m} P_{i}^{n_{i}}\right)
$$

for a projective $R$-module $N$ of constant rank $n-1$. Hence by [1], Lemma $1, \mathrm{I}(N)=$ $\operatorname{Fitt}_{n-1}(N)=R$. So it is easily seen that

$$
\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=\bigcap_{i=1}^{m} P_{i}^{n_{i}}=P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}
$$

and $\mathrm{S}\left(P_{i}^{n_{i}}\right) \nsubseteq P_{i} M, 1 \leqslant i \leqslant m$.
Conversely, let

$$
\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}
$$

and $\mathrm{S}\left(P_{i}^{n_{i}}\right) \nsubseteq P_{i} M, 1 \leqslant i \leqslant m$. Thus $\mathrm{I}\left(M_{P_{i}}\right)=P_{i}^{n_{i}} R_{P_{i}}$ for every $i, 1 \leqslant i \leqslant m$. Assume that $i, 1 \leqslant i \leqslant n$, is fixed. We claim that $\mathrm{S}\left(P_{i}^{n_{i}} R_{P_{i}}\right) \nsubseteq P_{i} M_{P_{i}}$. Let $x \in \mathrm{~S}\left(P_{i}^{n_{i}}\right) \backslash P_{i} M$. So $\operatorname{Ann}(x)=P_{i}^{n_{i}}$. Since $P_{i}^{n_{i}}$ is a $P_{i}$-primary ideal, $\operatorname{Ann}(x / 1)=$ $P_{i}^{n_{i}} R_{P_{i}}$. Now let $x / 1 \in P_{i} M_{P_{i}}$. Similarly to the proof of Theorem $2.5,(3 \Rightarrow 1)$ because $P_{i} M$ is a prime submodule of $M$, hence $x \in P_{i} M$, a contraction.

Therefore by Theorem 2.8,

$$
M_{P_{i}} \cong R_{P_{i}}^{\oplus(n-1)} \oplus R_{P_{i}} / P_{i}^{n_{i}} R_{P_{i}}
$$

Assume that $Q \neq P_{1}, \ldots, P_{m}$ is a maximal ideal of $R$. We have

$$
\mathrm{I}\left(M_{Q}\right)=\mathrm{I}(M)_{Q}=R_{Q}
$$

So $M_{Q}$ is a free $R_{Q}$-module. Now we show that $\mathrm{T}\left(M_{P_{i}}\right)=\mathrm{T}(M)_{P_{i}}$. It is clear that $\mathrm{T}(M)_{P_{i}} \subseteq \mathrm{~T}\left(M_{P_{i}}\right)$. Let

$$
0 \neq \frac{z}{1} \in \mathrm{~T}\left(M_{P_{i}}\right) \cong\left(R_{P_{i}} / P_{i}^{n_{i}} R_{P_{i}}\right)
$$

Thus $P_{i}^{n_{i}} R_{P_{i}} \subseteq \operatorname{Ann}(z / 1)$. Choose a regular element $r_{0}$ in $P_{i}^{n_{i}}$, so we have

$$
\frac{r_{0}}{1} \frac{z}{1}=\frac{0}{1} .
$$

Therefore there exists an element $t \in R \backslash P_{i}$ such that $t r_{0} z=0$ and hence $t z \in \mathrm{~T}(M)$. Thus

$$
\frac{z}{1}=\frac{t z}{t} \in \mathrm{~T}(M)_{P_{i}} .
$$

This means that $\mathrm{T}\left(M_{P_{i}}\right)=\mathrm{T}(M)_{P_{i}}$. Thus

$$
\left(\frac{M}{\mathrm{~T}(M)}\right)_{P}=\frac{M_{P}}{\mathrm{~T}\left(M_{P}\right)}
$$

is free for every maximal ideal $P$ of $R$. Therefore $M / \mathrm{T}(M)$ is a projective $R$-module and so $M \cong \mathrm{~T}(M) \oplus M / \mathrm{T}(M)$. Put

$$
A_{i}=\left\{\operatorname{Ann}(y): \mathrm{T}\left(M_{P_{i}}\right)=\langle y / 1\rangle\right\}
$$

for $i=1, \ldots, m$. Let $\mathrm{T}\left(M_{P_{i}}\right)=\left\langle x_{i} / 1\right\rangle$ such that $\operatorname{Ann}_{R}\left(x_{i}\right)$ is maximal in $A_{i}$. We show that $\operatorname{Ann}\left(x_{i}\right)=P_{i}^{n_{i}}$. For every $i, 1 \leqslant i \leqslant m$, let $r_{i} \in P_{i}^{n_{i}}$. Then

$$
\frac{r_{i}}{1} \frac{x_{i}}{1}=0 .
$$

So there exists $s \in R \backslash P_{i}$ such that $r_{i} s x_{i}=0$. Since $T\left(M_{P_{i}}\right)=\left\langle s x_{i} / 1\right\rangle$ and $\operatorname{Ann}\left(x_{i}\right)$ is maximal in $A_{i}$, then $r_{i} \in \operatorname{Ann}\left(s x_{i}\right)=\operatorname{Ann}\left(x_{i}\right)$.

Now, let $r_{i} \in \operatorname{Ann}\left(x_{i}\right)$. So $r_{i} / 1 \in P_{i}^{n_{i}} R_{P_{i}}$. Since $P_{i}^{n_{i}}$ is $P_{i}$-primary, then $r \in P_{i}^{n_{i}}$. Hence, $\operatorname{Ann}\left(x_{i}\right)=P_{i}^{n_{i}}$. Put $P=\bigcap_{i=1}^{m} P_{i}^{n_{i}}$ and define

$$
f: R / P \rightarrow \mathrm{~T}(M) ; f(r+P)=r\left(x_{1}+\ldots+x_{m}\right)
$$

For every $j \neq i$, if $s_{j} \in P_{j}^{n_{j}} \backslash P_{i}$, then

$$
\frac{x_{j}}{1}=\frac{s_{j} x_{j}}{s_{j}}=0 \quad \text { in } M_{P_{i}}
$$

On the other hand, for every maximal ideal $Q \notin\left\{P_{1}, \ldots, P_{m}\right\}, f_{Q}=0$ is an isomorphism between two zero modules. Thus, $f_{q}$ is an isomorphism for every maximal ideal $q$ of $R$. Hence $\mathrm{T}(M) \cong R / P$. So $M \cong N \oplus\left(R / \bigcap_{i=1}^{m} P_{i}^{n_{i}}\right)$ for a projective $R$-module $N$ of $M$. By Lemmas 2.6 and 2.7,

$$
P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}=\mathrm{I}(M)=\operatorname{Fitt}_{n-1}(M)=\mathrm{I}(N) \operatorname{Fitt}_{0}(\mathrm{~T}(M))=\mathrm{I}(N) P_{1}^{n_{1}} \ldots P_{m}^{n_{m}}
$$

So by Nakayama's Lemma, $\mathrm{I}(N)=R$. Hence, $N$ is projective of constant rank. Since $M_{P_{i}} \cong R_{P_{i}}^{\oplus(n-1)} \oplus R_{P_{i}} / P_{i}^{n_{i}} R_{P_{i}}, 1 \leqslant i \leqslant m, N$ is projective of constant rank $n-1$.

Example 2.10. Let $R=k[x, y]$ be the ring of polynomials over a field $k$. Set

$$
P:=\langle x, y\rangle, \quad A:=\left(\begin{array}{ccccc}
x & x^{2} & x y & y & 0 \\
x^{2} & x & 0 & x & x \\
x y & y & 0 & y & y \\
0 & y & x & 0 & 0
\end{array}\right) \quad \text { and } \quad M:=\frac{R^{\oplus 4}}{\langle A\rangle} .
$$

We have $\mathrm{I}(M)=P^{3}$. Assume that $A_{i}$ is the $i$ th column of the matrix $A, 1 \leqslant$ $i \leqslant 5$. Let $(a, b, c, d)^{t}+\langle A\rangle \in P M$, where $t$ denotes transpose. Thus, there exist $r_{i j}$, $1 \leqslant i, j \leqslant 2$ such that $a=r_{11} x+r_{12} y, b=r_{21} x+r_{22} y, c=r_{31} x+r_{32} y, d=r_{41} x+r_{42} y$. It is easily seen that $(a, 0,0, d)^{t}=\left(r_{11}-r_{42} x\right) A_{1}+r_{42} A_{2}+r_{41} A_{3}+\left(r_{12}-r_{41} x\right) A_{4}+$ $\left(r_{41} x-r_{42}-r_{21}+r_{42} x^{2}-r_{11} x\right) A_{5}$. Thus $(a, b, c, d)^{t}+\langle A\rangle=(0, b, c, 0)^{t}+\langle A\rangle$.

Now let $(a, b, c, d)^{t}+\langle A\rangle=(0, b, c, 0)^{t}+\langle A\rangle \in \mathrm{T}(M)$. Therefore there exists a regular element $q \in R$ such that $q(0, b, c, 0)^{t} \in\langle A\rangle$. So $q(b, c)^{t}=s(x, y)^{t}$ for some $s \in R$. Hence $q b=s x$ and $q c=s y$. If $s=0$, then $b=c=0$. Otherwise $q c b=s y b=$ $c s x$ and so $y b=c x$. We have $x \mid y b$ and $y \mid c x$. Since $\operatorname{GCD}(x, y)=1, x \mid b$ and $y \mid c$. So there exist $t_{1}, t_{2} \in R$ such that $b=t_{1} x$ and $c=t_{2} y$. From $y b=c x$ we imply that $t_{1}=t_{2}$. Hence $(b, c)^{t}=t_{1}(x, y)^{t}$. Thus $(0, b, c, 0)^{t}=t_{1}(0, x, y, 0)^{t} \in\langle A\rangle$. Thus $P M \cap \mathrm{~T}(M)=0$. So by Theorem $2.5, M \cong \mathrm{~T}(M) \oplus M / \mathrm{T}(M)$. In fact,

$$
M \cong\left(\frac{R}{P}\right)^{\oplus 2} \oplus \frac{R^{\oplus 2}}{\left\langle\binom{ x}{y}\right\rangle}
$$

Example 2.11. Let $R=k[x, y]$ be the ring of polynomials over a field $k$. Set $P:=\langle x, y\rangle$ and

$$
M:=\frac{R^{\oplus 2}}{\left\langle\left(\begin{array}{llll}
x & y & x & 0 \\
0 & 0 & y & x
\end{array}\right)\right\rangle}
$$

We have $\mathrm{I}(M)=P^{2}$ and $x(0, y)^{t}=(0, x y)^{t}=y(0, x)^{t}=0$. So $0 \neq(0, y)^{t} \in$ $\mathrm{T}(M) \cap P M$. Therefore by Theorem 2.5, $\mathrm{T}(M)$ does not split off.

## References

[1] D. A. Buchsbaum, D. Eisenbud: What makes a complex exact? J. Algebra 25 (1973), 259-268.
[2] D. Eisenbud: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150, Springer, New York, 1995.
zbl MR doi

B] M. Einsiedler, T. Ward: Fitting ideals for finitely presented algebraic dynamical systems. Aequationes Math. 60 (2000), 57-71.
[4] H. Fitting: Die Determinantenideale eines Moduls. Jahresber. Dtsch. Math.-Ver. 46 (1936), 195-228. (In German.)
[5] S. Hadjirezaei, S. Hedayat: On the first nonzero Fitting ideal of a module over a UFD. Commun. Algebra 41 (2013), 361-366.
zbl MR doi
[6] S. Hadjirezaei, S. Hedayat: On finitely generated module whose first nonzero Fitting ideal is maximal. Commun. Algebra 46 (2018), 610-614.
zbl MR doi
[7] S. Hadjirezaei, S. Karimzadeh: On the first nonzero Fitting ideal of a module over a UFD II. Commun. Algebra 46 (2018), 5427-5432.
zbl MR doi
[8] C. Huneke, D. A. Jorgensen, D. Katz: Fitting ideals and finite projective dimension. Math. Proc. Camb. Philos. Soc. 138 (2005), 41-54.
[9] J. Lipman: On the Jacobian ideal of the module of differentials. Proc. Am. Math. Soc. 21 (1969), 422-426.
zbl MR doi
[10] C.-P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1984), 61-69.
zbl MR
[11] D. G. Northcott: Finite Free Resolutions. Cambridge Tracts in Mathematics 71, Cambridge University Press, Cambridge, 1976.
zbl MR doi

Authors' addresses: Somayeh Hadjirezaei (corresponding author), Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7718897111, Rafsanjan, Iran, e-mail: s.hajirezaei@vru.ac.ir; Sina Hedayat, Department of Pure Mathematics, Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran, e-mail: s-hedayat@ uk.ac.ir.

