Czechoslovak Mathematical Journal

Babak Miraali; Sajjad Mahmood Robati
A solvability criterion for finite groups related to character degrees

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 4, 1205-1209

Persistent URL: http://dml.cz/dmlcz/148424

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A SOLVABILITY CRITERION FOR FINITE GROUPS RELATED TO CHARACTER DEGREES

Babak Miraali, Sajuad Mahmood Robati, Qazvin

Received October 1, 2019. Published online September 18, 2020.

Abstract

Let $m>1$ be a fixed positive integer. In this paper, we consider finite groups each of whose nonlinear character degrees has exactly m prime divisors. We show that such groups are solvable whenever $m>2$. Moreover, we prove that if G is a non-solvable group with this property, then $m=2$ and G is an extension of A_{7} or S_{7} by a solvable group.

Keywords: non-solvable group; solvable group; character degree
MSC 2020: 20C15, 20D10

1. Introduction

Throughout this paper, G will be a finite group. Let $\operatorname{cd}(G)$ be the set of all irreducible character degrees of G and $\pi(n)$ be the set of prime numbers dividing n.

Isaacs and Passman studied finite groups G with $\operatorname{cd}(G) \backslash\{1\}$ consisting of primes (see [6]). Also, Manz in [8] and [9] characterizes finite groups G with the property that $|\pi(\chi(1))|=1$ for every nonlinear irreducible character χ of G. He shows that if G is a non-solvable group whose character degrees are power primes, then $G=A \times S$, where A is an abelian group and S is either $\operatorname{PSL}(2,4)$ or $\operatorname{PSL}(2,8)$.

Let $m>1$ be a fixed positive integer. Suppose that G is a finite group such that $|\pi(\chi(1))|=m$ for each nonlinear irreducible character χ of G. In this paper, we show that either (i) G is solvable, for some normal subgroup K of G we have that G / K is a Frobenius group with Frobenius kernel N / K which is an elementary abelian q-group for some prime q and a cyclic Frobenius complement, or (ii) G is non-solvable, $m=2$ and G is an extension of A_{7} or S_{7} by a solvable group.

Consider that G is the non-split central extension of A_{7} by \mathbb{Z}_{3}. Using GAP, see [4], " $G:=P e r f e c t G r o u p(7560,1) "$, we observe that

$$
\operatorname{cd}(G)=\{1,6,10,14,15,21,24,35\}
$$

Thus, if G is a non-solvable group each of whose nonlinear character degrees has exactly two prime divisors, then it is not required that G is a split extension.

On the other hand, assume that G is a Frobenius group with an abelian kernel K and a cyclic complement H of order $p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$ for some prime number $p_{i}, 1 \leqslant i \leqslant m$. We can check easily that $\operatorname{cd}(G)=\left\{1, p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}\right\}$. Hence, for each positive integer m, there exists a solvable group each of whose nonlinear character degrees has exactly m prime divisors.

2. Main results

In this section we aim to present our main result. We can check that $\operatorname{cd}\left(\mathrm{A}_{7}\right)=$ $\{1,6,10,14,15,21,35\}$ and $|\pi(\chi(1))|=2$ for every nonlinear irreducible character χ of A_{7}.

Lemma 2.1. Let S be a nonabelian simple group such that $S \nsubseteq \mathrm{~A}_{7}$. Then there exist two nonlinear irreducible characters χ and ψ of S which extend to $\operatorname{Aut}(S)$ such that either $|\pi(\chi(1))|=1$ or $|\pi(\chi(1))| \neq|\pi(\psi(1))|$.

Proof. According to the classification of finite simple groups, a nonabelian simple group is either an alternating group A_{n} for $n \geqslant 5$, a simple group of Lie type, or one of the 26 sporadic groups. Thus, we prove the lemma for three cases.

Case 1: Suppose that S is a nonabelian simple group of Lie type. For these group, we know that the Steinberg character χ of S extends to $\operatorname{Aut}(S)$ and $\chi(1)$ is a prime power, by [10].

Case 2: Assume that S is an alternating group A_{n} for $n \geqslant 5$. If $n=5$ or $6, \operatorname{cd}\left(\mathrm{~A}_{n}\right)$ contains a prime number. For $n \geqslant 8$, consider that the irreducible character χ of the symmetric group S_{n} corresponds to the partition $\left(n-4,1^{4}\right)$ and the irreducible character ψ corresponds to the partition $(n-1,1)$. The restrictions of ψ and χ to A_{n} are irreducible, since the Young diagram corresponding to the partitions is not symmetric, by [7]. Observe that

$$
\chi(1)=\frac{(n-1)(n-2)(n-3)(n-4)}{2^{3} .3} \quad \text { and } \quad \psi(1)=n-1
$$

and we can check that $|\pi(\chi(1))| \neq|\pi(\psi(1))|$.
Case 3: Suppose that S is a sporadic simple group. In Table I, using ATLAS, see [3], we provide two nonlinear irreducible characters χ and ψ of S which extend to $\operatorname{Aut}(S)$ such that $|\pi(\chi(1))| \neq|\pi(\psi(1))|$.

J_{1}	$\chi_{2}(1)=23.7$	$\chi_{9}(1)=2^{3} .3 .5$
$\mathrm{~J}_{2}$	$\chi_{10}(1)=2.5 .9$	$\chi_{6}(1)=2^{2} .3^{2}$
$\mathrm{~J}_{3}$	$\chi_{6}(1)=2^{3} .3^{4}$	$\chi_{13}(1)=5.17 .19$
$\mathrm{~J}_{4}$	$\chi_{2}(1)=31.43$	$\chi_{11}(1)=2^{3} .3^{2} .23 .29 .37$
M_{11}	$\chi_{2}(1)=2.5$	$\chi_{5}(1)=11$
M_{12}	$\chi_{11}(1)=2.3 .11$	$\chi_{7}(1)=2.3^{3}$
M_{22}	$\chi_{3}(1)=3^{2} .5$	$\chi_{8}(1)=2.3 .5 .7$
M_{23}	$\chi_{2}(1)=2.11$	$\chi_{5}(1)=2.5 .23$
M_{24}	$\chi_{2}(1)=23$	$\chi_{3}(1)=3^{2} .5$
HS	$\chi_{7}(1)=5^{2} .7$	$\chi_{4}(1)=2.7 .11$
He	$\chi_{13}(1)=2^{4} .3 .5 .17$	$\chi_{6}(1)=2^{3} .5 .17$
Ru	$\chi_{2}(1)=2.3^{3} .7$	$\chi_{5}(1)=3^{3} .29$
HN	$\chi_{4}(1)=2^{3} .5 .19$	$\chi_{8}(1)=2.3^{4} .5 .11$
Suz	$\chi_{3}(1)=2^{2} .7 .13$	$\chi_{20}(1)=2^{3} .5 .7 .11 .13$
M^{cL}	$\chi_{3}(1)=3.7 .11$	$\chi_{2}(1)=2.11$
$\mathrm{O}^{\prime} \mathrm{N}$	$\chi_{2}(1)=2^{6} .3^{2} .19$	$\chi_{11}(1)=2^{2} .3^{2} .7 .11 .19$
Co_{1}	$\chi_{2}(1)=2^{2} .3 .23$	$\chi_{3}(1)=13.23$
Co_{2}	$\chi_{2}(1)=23$	$\chi_{3}(1)=11.23$
Co_{3}	$\chi_{2}(1)=23$	$\chi_{3}(1)=11.23$
Fi_{22}	$\chi_{2}(1)=2.3 .13$	$\chi_{5}(1)=2.5 .11 .13$
Fi_{23}	$\chi_{2}(1)=2.7 .23$	$\chi_{3}(1)=2^{2} .3 .13 .23$
$\mathrm{Fi}_{24}^{\prime}$	$\chi_{2}(1)=23.29 .13$	$\chi_{6}(1)=5^{2} .7^{3} .11 .17$
Ly^{\prime}	$\chi_{7}(1)=2^{8} .7 .67$	$\chi_{50}(1)=3.5^{6} .31 .37$
TH	$\chi_{2}(1)=2^{3} .31$	$\chi_{3}(1)=7.19 .31$
B	$\chi_{2}(1)=3.31 .47$	$\chi_{3}(1)=3^{3} .5 .23 .31$
M	$\chi_{2}(1)=47.59 .71$	$\chi_{11}(1)=2^{2} .31 .41 .59 .71$

Table 1.

Proposition 2.1 ([2], Lemma 5). Let G be a group and $M=S_{1} \times \ldots \times S_{k}$ a minimal normal subgroup of G, where every S_{i} is isomorphic to a nonabelian simple group S. If $\theta \in \operatorname{Irr}(S)$ extends to $\operatorname{Aut}(S)$, then $\theta \times \ldots \times \theta \in \operatorname{Irr}(M)$ extends to G.

Theorem 2.1. Let $m>1$ be a fixed positive integer. Suppose that G is a finite group each of whose nonlinear character degrees has exactly m prime divisors. Then one of the following situations occurs:
(i) G is a solvable group.
(ii) $m=2$ and $G / M \cong \mathrm{~A}_{7}$ or S_{7} in which M is the soluble radical of G.

Proof. Assume that G is non-solvable and M is the soluble radical of G. Thus, every minimal normal subgroup N / M of G / M is nonabelian and $N / M \cong S_{1} \times$
$S_{2} \times \ldots \times S_{t}$, where $S_{i} \cong S$ for a nonabelian simple group S. If $S \nsubseteq \mathrm{~A}_{7}$, by Lemma 2.1, there exist two nonlinear irreducible characters χ and ψ of S which extend to $\operatorname{Aut}(S)$ such that either $|\pi(\chi(1))|=1$ or $|\pi(\chi(1))| \neq|\pi(\psi(1))|$. Furthermore, by Proposition 2.2, $\theta_{1}=\chi \times \ldots \times \chi \in \operatorname{Irr}(N / M)$ and $\theta_{2}=\psi \times \ldots \times \psi \in \operatorname{Irr}(N / M)$ extend to G / M and so $\theta_{1}(1), \theta_{2}(1) \in \operatorname{cd}(G / M)$. Therefore, either $\left|\pi\left(\theta_{1}(1)\right)\right|=1$ or $\left|\pi\left(\theta_{1}(1)\right)\right| \neq\left|\pi\left(\theta_{2}(1)\right)\right|$, which is a contradiction.

We now show that $S \cong \mathrm{~A}_{7}$ implies that $N / M \cong \mathrm{~A}_{7}$. Suppose on the contrary that N / M has more than one simple factor. Choose $\chi, \psi \in \operatorname{Irr}\left(\mathrm{A}_{7}\right)$ such that χ and ψ extend to $\operatorname{Aut}\left(\mathrm{A}_{7}\right)$, where $\chi(1)=6$ and $\psi(1)=14$. We know that $\theta=\chi \times \chi \times \ldots \times \chi$, $\varphi=\chi \times \psi \times 1 \times \ldots \times 1 \in \operatorname{Irr}(N / M)$. Then, by Proposition 2.2, $\theta(1) \in \operatorname{cd}(G / M)$ and by Clifford's Theorem and Corollary 11.29 in [5], $b \varphi(1) \in \operatorname{cd}(G / M)$ for a divisor b of $|G / M: N / M|$. It follows that $|\pi(\theta(1))| \neq|\pi(b \varphi(1))|$, which is a contradiction. Thus, each minimal normal subgroup of G / M is isomorphic to A_{7} and $m=2$.

Similarly, G / M has no normal subgroup isomorphic to $\mathrm{A}_{7} \times \mathrm{A}_{7}$. Therefore $N / M \cong \mathrm{~A}_{7}$ is the unique minimal normal subgroup of G / M. Hence, we can deduce $\mathrm{A}_{7} \leqslant G / M \leqslant \operatorname{Aut}\left(\mathrm{~A}_{7}\right)$ and so $G / M \cong \mathrm{~A}_{7}$ or S_{7}.

Lemma 2.2 ([1], Lemma 3.1). Let G be a finite nonabelian solvable group with $G^{\prime} \leqslant \mathrm{O}^{p}(G)$ for all primes p. Suppose that $K \triangleleft G$ and K is maximal such that G / K is nonabelian. Then G / K is a Frobenius group with Frobenius kernel N / K, an elementary abelian q-group for a prime q, and a cyclic Frobenius complement. Let f denote the order of the Frobenius complement and assume further that K is chosen so that f is minimal. Then for each linear character λ of N, either λ^{G} is irreducible or λ extends to G. In particular, if $\chi \in \operatorname{Irr}(G)$ lies over a linear character of N, then χ must have degree 1 or f.

Theorem 2.2. Suppose that G is a finite solvable group such that $|\pi(\chi(1))|=$ $m>1$ for all nonlinear irreducible characters χ of G. Then G satisfies Lemma 2.4.

Proof. If $G / \mathrm{O}^{p}(G)$ is a nonabelian group for some $p \in \pi(G)$, then $|\pi(\chi(1))|=1$ for a nonlinear irreducible character χ of G, which is a contradiction. Thus, $G / \mathrm{O}^{p}(G)$ is abelian for each $p \in \pi(G)$ and so G satisfies Lemma 2.4.

References

[1] D. Benjamin: Coprimeness among irreducible character degrees of finite solvable groups. Proc. Am. Math. Soc. 125 (1997), 2831-2837.
[2] M. Bianchi, D. Chillag, M. L. Lewis, E. Pacifici: Character degree graphs that are complete graphs. Proc. Am. Math. Soc. 135 (2007), 671-676.

zbl MR doi

zbl MR doi
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford, 1985.
[4] GAP Group: GAP - Groups, Algorithms, and Programming. A System for Computational Discrete Algebra. Version 4.7.4. Available at http://www.gap-system.org (2014).
[5] I. M. Isaacs: Character Theory of Finite Groups. Pure and Applied Mathematics 69. Academic Press, New York, 1976.
[6] I. M. Isaacs, D. S. Passman: A characterization of groups in terms of the degrees of their characters II. Pac. J. Math. 24 (1968), 467-510.
[7] G. James, A. Kerber: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading, 1981.
[8] O. Manz: Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind. J. Algebra 94 (1985), 211-255. (In German.)
[9] O. Manz: Endliche nicht-aufösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind. J. Algebra 96 (1985), 114-119. (In German.)
[10] P. Schmid: Extending the Steinberg representation. J. Algebra 150 (1992), 254-256.
Authors' address: Babak Miraali, Sajjad Mahmood Robati (corresponding author), Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran, e-mail: babak.miraali@gmail.com, mahmoodrobati@sci.ikiu.ac.ir, sajjad.robati@gmail.com.

