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MODULAR OPERADS WITH CONNECTED SUM
AND BARANNIKOV’S THEORY

Lada Peksová

Abstract. We introduce the connected sum for modular operads. This
gives us a graded commutative associative product, and together with
the BV bracket and the BV Laplacian obtained from the operadic com-
position and self-composition, we construct the full Batalin-Vilkovisky
algebra. The BV Laplacian is then used as a perturbation of the special
deformation retract of formal functions to construct a minimal model
and compute an effective action.

1. Introduction

As was already shown, the algebras considered in the context of string field
theory could be understood as algebras over the Feynman transform of some
operad. This allows one to apply the operad homotopy theory to study these
algebras in order to, for example, find the minimal models.

In the case of a commutative operad, the minimal models of quantum L∞
algebras could be found via the Homological Perturbation Lemma, as was
shown in [5]. This was possible due to the existence of the full Batalin-Vilkovisky
algebra structure, including the graded commutative associative product. In
this case, the product was given by the symmetric tensor product. However, in
the general case (for example quantum A∞ algebras induced from a modular
envelope of the associative operad) such a product has always been missing.
This article is an attempt to provide the missing piece.

We “enhance” the modular operads by a connected sum. The elegant
geometrical interpretation in terms of moduli spaces of bordered Riemann
surfaces from [9] will be still preserved, as well as the already constructed
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generalized BV-algebra from [3], where the BV bracket and the BV Laplacian
were constructed as operadic compositions and self-compositions induced by
an odd symplectic form. Thanks to the connected sum, we can make sense of
the exponential and use it to find the quantum master equation.

The paper is organized as follows. In Section 2 we recall modular operads,
introduce the connected sum and present two main examples – Quantum
Closed modular operad and Quantum Open modular operad. Besides them,
also Endomorphism modular operad with connected sum is presented. In
Section 3 we construct the full Batalin-Vilkovisky algebra from operads with
connected sum and define the Master Equation. In Section 4 we recall special
deformation retracts. Finally, in Section 5 we use the BV-Laplacian as a
perturbation in the Homological Perturbation Lemma. We also introduce the
construction of the effective action via the exponential.

The main results are Theorem 16, Lemma 18 and Proposition 28. Unfortu-
nately, even the proofs are straightforward, we restrain from them here because
of their length. Their full version can be found in [4] that is in preparation.

Conventions and notation. For us, the field k is always of characteristic
0. To avoid problems with duals, we assume that all our vector spaces are
Z-graded and, unless stated otherwise, degree-wise finite-dimensional. If we
consider a dual vector space, we always consider only the graded dual, denoted
by V ∗. [n] is the set {1, 2, . . . n}, Σn denotes the symmetric group of [n], and t
is the disjoint union. We denote the degree of an element v of a graded vector
space as |v| and the cardinality of the set A as card(A).

2. Modular operads and the connected sum

Definition 1. Denote Cor the category of stable corollas: the objects are
pairs (C,G) with C a finite set and G a non-negative half-integer such that
the stability condition is satisfied: 2(G − 1) + card(C) > 0. A morphism
(C,G)→ (D,G′) is defined only if G = G′ and it is just a bijection C

∼−→ D.
In the following, the pair (C,G) is always understood as an element of this

category.

Definition 2. A modular operad P consists of a collection {P(C,G)} of
dg vector spaces and three collections

{P(ρ) : P(C,G)→ P(D,G) | ρ a morphism in Cor} ,
{ a◦b : P(C1 t {a}, G1)⊗ P(C2 t {b}, G2)→ P(C1 t C2, G1 +G2)} ,
{ ◦ab : P(C t {a, b}, G)→ P(C,G+ 1)}
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of degree 0 morphisms of dg vector spaces. These data are required to satisfy
axioms for Σ-module, equivariance, and associativity of composition maps.
Remark 3. Similarly as in [3], we consider also a special case of twisted
modular operads, an odd modular operad. The twisting is given from
Feynman transform by cocycle Det(Edge(Γ)), where Edge(Γ) are edges of the
graph Γ. For more details see [1]. The operadic compositions, now denoted as
a• b and • ab, are of degree 1. The corresponding axioms 5.–8. of Definition 2
of [3] are changed accordingly. For example, the Axiom 5 ◦ab ◦cd = ◦cd ◦ab,
is changed in the odd case to • ab • cd = − • cd • ab. See Definition 4 ibid.

Occasionally, we will also need a skeletal version of (odd) modular operad,
P. The definition can be obtained be restriction of the underlying category
Cor to corollas of the form ([n], G) (see Section III.D in [3]). We will also
write just P(n,G) (instead of P([n], G)). The explicit formulation of operadic
compositions and corresponding axioms could be found ibid.
Definition 4. A modular operad with a connected sum is a modular
operad P equipped with a collection of degree 0 chain maps called connected
sum defined on two components as
(1) #2 : P(C,G)⊗ P(C ′, G′)→ P(C t C ′, G+G′ + 1) ,
and on one component as
(2) #1 : P(C,G)→ P(C,G+ 2) ,
such that

(CS1) (σ t σ′)#2 = #2(σ ⊗ σ′) for all bijections σ : C → D, σ′ : C ′ → D′,
(CS2) #2 τ = #2, where τ is monoidal symmetry

(from category of vector spaces),
(CS3) #2(1⊗#2) = #2(#2 ⊗ 1),
(CS4) as maps P(C,G)→ P(C − {i, j}, G+ 3)

◦ij #1 = #1 ◦ij ,
(CS5a) as maps P(C,G)⊗ P(C ′, G′)→ P(C t C ′ − {i, j}, G+G′ + 2)

◦ij #2 =


#2( ◦ij ⊗1) . . . i, j ∈ C ,
#2(1⊗ ◦ij) . . . i, j ∈ C ′ ,
#1 i◦j . . . i ∈ C, j ∈ C ′ ,
#1 j◦i . . . j ∈ C, i ∈ C ′ ,

(CS5b) as maps P(C,G)⊗ P(C ′, G′)→ P(C t C ′ − {i, j}, G+G′ + 2),

i◦j(#1 ⊗ 1) = #1 i◦j . . . i ∈ C, j ∈ C ′ ,
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(CS6) as maps P(C,G)⊗ P(C ′, G′)⊗ P(C ′′, G′′)→ P(C t C ′ t C ′′
−{i, j}, G+G′ +G′′ + 1),

i◦j(1⊗#2) =
{

#2( i◦j ⊗1) . . . j ∈ C ′ ,
#2(1⊗ i◦j)(τ ⊗ 1) . . . j ∈ C ′′ ,

where i ∈ C and the map (τ ⊗ 1) switches the first two tensor factors.

Remark 5. A twisted modular operad with a connected sum is defined
precisely as in the normal, i.e., untwisted case. #2, #1 are again degree 0
operations. To make the distinction between twisted and untwisted case more
explicit, we write the axiom (CS6) evaluated on elements for the odd modular
operad.1 In untwisted case

p a◦b(p′#2 p
′′) =

{
(p a◦b p′) #2 p

′′ . . . b ∈ C ′ ,
p′#2 (p a◦b p′′) . . . b ∈ C ′′ ,

and in the odd case

p • ab(p′#2 p
′′) =

{
(p a• b p′) #2 p

′′ . . . b ∈ C ′ ,
(−1)|p||p′|+|p′|p′#2 (p a• b p′′) . . . b ∈ C ′′ .

The following two examples are taken from [3]. For a fuller treatment, we
refer the reader to Sections IV.A and V.A there. Let us here just recall some
of the basic properties and the geometrical interpretation.

Example 6. The Quantum Closed modular operad QC. The components
are given as one dimensional spaces QC(C,G) ≡ Spank{CG}, where CG is a

symbol of degree 0 and G is such that g ≡ G

2 −
card(C)

4 + 1
2 is an integer.

The connected sum is defined simply as

CG1
1 #2 C

G2
2 = (C1 t C2)G1+G2+1 ,

#1
(
CG
)

= CG+2 .

In geometrical interpretation, each component is a homeomorphism class of
a compact surface of genus g and set C of punctures in the interior. The
connected sum #2 corresponds to gluing together interiors of two surfaces
using a cylinder. Similarly, the connected sum #1 corresponds to gluing a new
handle to the bulk of one surface.

1Similarly, also axiom (CS5a) is changed accordingly.
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Example 7. The Quantum Open modular operad QO. A cycle o in a set
O is a cyclic word made of several distinct elements of O.2 The components
QO(O,G) are then given as

Spank

{
{o1, . . .ob}g | b, g ∈ N0,oi cycle in O,

b⊔
i=1

oi = O,G = 2g + b− 1
}
.

In geometrical interpretation, this is a homeomorphism class of a compact
orientable surfaces of genus g with b boundary components, and the set oi of
punctures on the boundary i. The connected sum is defined in this case as

{o1, . . .ob1}g1 #2 {o′1, . . .o′b2
}g2 = {o1, . . .ob1 ,o′1 . . .o′b2

}g1+g2 ,

#1 ({o1, . . .ob}g) = {o1, . . .ob}g+1 .

Remark 8. Similarly, as operad could be defined more abstractly as an algebra
over monad, we can also define a modular operad with a connected sum as an
algebra over a monad. More details will appear in [4].
Definition 9. For any set C, card(C) = n and the vector space V we define
the unordered tensor product as⊗

C

V ≡
⊕

ψ : C→[n]

V ⊗n
/
∼ .

If we denote as iψ : V ⊗n ↪→
⊕

ψ : C→[n] V
⊗n the canonical inclusion into the

ψ-th summand, then the equivalence is given by iψ(v1⊗ . . .⊗vn) ∼ iσψ(σ(v1⊗
. . .⊗ vn)), where σ ∈ Σn.

Let Iψ : V ⊗n →
⊗

C V denote the inclusion iψ followed by the natural
projection. For F ∈

⊗
C V

∗ ⊆ (
⊗

C V )∗ we denote by (F )ψ = F ◦ Iψ : V ⊗n →
k⊗n ∼= k.
Definition 10. The endomorphism odd modular operad EV is a collec-
tion of dg vector spaces

EV (C,G) ≡
⊗
C

V ∗ ,

where G is again a half-integer such that the stability condition is satisfied, V
is degree-wise finite vector space, and V ∗ is its graded dual.3

The Σ-module structure and the differential are defined as usually. The
operadic composition and self-composition are given by contraction of the
tensors using an odd symplectic form ω : V ⊗ V → k of degree −1 compatible
with the differential. For definition of (self-)composition see Definition 9 of [3].

2We also admit an empty cycle.
3Notice that in general EV (C,G) as vector space is not degree-wise finite.
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Remark 11. In finite dimensional vector spaces the non-degeneracy of ω
gives an isomorphism X : V → V ∗, a 7→ ω(a, ·). From this isomorphism, it is
possible to define ω∗ : V ∗⊗V ∗ → K, ω∗(α, β) = ω(X−1(α), X−1(β)) such that
matrix of ω∗ is the inverse matrix of ω, i.e., ωij · ωjk = δki .

In the infinite-dimensional case, this becomes a bit more complicated since
ω∗ is, in general, an element of (V ⊗V )∗∗ – a space that is much “bigger” than
V ⊗ V . But thanks to our assumption, we still have an inverse of ω.

First, let us fix the basis of V =
⊕

i Vi. Since each Vi is finite-dimensional, we
can order the basis of V as {{ai}0, {ai}1, {ai}−1, . . . {ai}k, {ai}−k, . . .}, where
{ai}k is a basis of Vk and each of these bases can be picked in such a way that
ω has a form 

0 A1 0 0 . . .
−AT1 0 0 0

0 0 0 A2
0 0 −AT2 0
...

. . .


where Ak is the regular matrix corresponding to the (non-degenerate) pairing
of elements from Vk with elements from V−k+1.

Therefore, ωij as the components of the matrix inverse to ωij = ω(ai, aj)
are well-defined. Hence, we can consider instead of ω∗ an element s ∈ V ⊗ V
such that ω(s) = 1.

Theorem 12. Let f ∈ EV (C1, G1) ∼=
⊗

C1
V ∗, g ∈ EV (C2, G2) ∼=

⊗
C2
V ∗,

ψ : C1 t C2 → [n1 + n2] where n1 = card(C1), n2 = card(C2). Define
(3) #1 f ≡ f ,
where f on the right-hand side is understood as an element of EV (C1, G1 +2) ∼=⊗

C1
V ∗. Further, we define

(4) (f#2 g)ψ ≡ ((f)ψ1 · (g)ψ2)ψ ,

where ψ ∈ Sh(n1, n2) is defined as ψ
∣∣
[n1] = ψ|C1

and ψ
∣∣
n1+[n2] = ψ|C2

and ψ1, ψ2 as compositions ψ1 : C1
ψ|C1−−−→ ψ(C1) o.p.−−→ [n1] and ψ2 : C2

ψ|C2−−−→
ψ(C2) o.p.−−→ [n2] where “o.p.” means order-preserving. Then EV with the above
defined operation #2 and #1 which is trivially shifting the G-grading is odd
modular operad with connected sum.

3. Connected sum and master equation

Definition 13. Let W be a vector space with a linear action of a finite group
H. The space of invariants is WH ≡ {w ∈W | ∀h ∈ H : h · w = w}.
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Let P be a dg modular operad and Q an odd dg modular operad. Let us
define the space of invariants under the diagonal action

Fun(P,Q)(n,G) ≡ (P(n,G)⊗Q(n,G))Σn ,

Fun(P,Q) ≡
∏
n≥0

∏
G≥0

Fun(P,Q)(n,G) .

There are operations

d : Fun(P,Q)(n,G)→ Fun(P,Q)(n,G),
∆ : Fun(P,Q)(n+ 2, G)→ Fun(P,Q)(n,G+ 1),

{·, ·} : Fun(P,Q)(n1 + 1, G1)⊗ Fun(P,Q)(n2 + 1, G2)→
Fun(P,Q)(n1 + n2, G1 +G2),

of degrees 1, 1 and 0, respectively, defined by

d ≡ dP ⊗ 1− 1⊗ dQ ,(5)

∆ ≡ ( ◦ij ⊗ • ij)(θ ⊗ θ)(6)

for arbitrary bijection θ : [n] t {i, j} ∼−→ [n+ 2], and

{X,Y } ≡ (−1)|X| · 2
∑
C1,C2

( i◦j ⊗ i• j)(θ1 ⊗ θ2 ⊗ θ1 ⊗ θ2

× (1⊗ τ ⊗ 1)(X ⊗ Y ) ,(7)

where we sum over all disjoint decompositions C1 t C2 = [n1 + n2], such that
card(C1) = n1, card(C2) = n2, the bijections (no summation over those)
θ1 : C1 t {i}

∼−→ [n1 + 1], θ2 : C2 t {j}
∼−→ [n2 + 1] are chosen arbitrarily, and

τ is the monoidal symmetry. These operations extend to Fun(P,Q) in the
usual way.

Remark 14. In this article, we restrict ourselves only to the case when the
differential dP equals 0.

In Theorem 20 of [3] (in a slightly different sign convention) were proven
the following compatibility properties of d,∆ and {·, ·}

d2 = 0, ∆2 = 0, ∆ d+ d∆ = 0,
d{·, ·}+ {·, ·}(d⊗ 1 + 1⊗ d) = 0, ∆{·, ·}+ {·, ·}(∆⊗ 1 + 1⊗∆) = 0,

and the Jacobi identity

{X, {Y,Z}} = {{X,Y }, Z}+ (−1)(|X|+1)(|Y |+1){Y, {X,Z}} .
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We obtain what is referred to as generalized Batalin-Vilkovisky algebra in
[3]. But to have a “standard” BV algebra, the graded commutative associative
product is missing. This missing piece will be filled in the following definition
and theorem.

Definition 15. Let P and Q be dg modular operads defined as above, both
with connected sum. A product ?:

Fun(P,Q)(n1, G1)⊗ Fun(P,Q)(n2, G2)→ Fun(P,Q)(n1 + n2, G1 +G2 + 1)

is defined as

(8) ? ≡
∑
C1,C2

(#2 ⊗#2)(θ1 ⊗ θ2 ⊗ θ1 ⊗ θ2)(1⊗ τ ⊗ 1) ,

where again the sum runs over all disjoint decompositions C1 t C2 = [n1 + n2],
card(C1) = n1, card(C2) = n2, the bijections θ1 : C1

∼−→ [n1], θ2 : C2
∼−→ [n2]

are chosen arbitrarily, and τ is the monoidal symmetry.
An operator ] : Fun(P,Q)(n,G)→ Fun(P,Q)(n,G+ 2) is defined as

(9) ] ≡ #1 ⊗#1 .

Theorem 16. If P is dg modular operad with a connected sum, and Q an
odd dg modular operad with a connected sum, then Fun(P,Q) with operations
d,∆, {·, ·} of degree 1 and ? from definition 15 is a Batalin-Vilkovisky
algebra, i.e.,

(1) ? is a graded commutative associative product, i.e., on elements:
(10) X ? Y = (−1)|X|·|Y |Y ? X , and (X ? Y ) ? Z = X ? (Y ? Z) .

(2) ∆? = ?(∆⊗ 1) + ?(1⊗∆) + ]{·, ·}, i.e., on elements:
(11) ∆(X ? Y ) = (∆X) ? Y + (−1)|X|X ? (∆Y ) + (−1)|X|]{X,Y } .

(3) {·, ·}(1⊗ ?) = ? ({·, ·} ⊗ 1) + ? (1⊗ {·, ·})(τ ⊗ 1), i.e., on elements:
(12) {X,Y ? Z} = {X,Y } ? Z + (−1)|X|·|Y |+|Y |Y ? {X,Z} .

Proof. The calculations are straightforward and given in [4]. �

Definition 17. For #1 is an injective map on both P and Q, we introduce a
space of formal functions

(13) Funκ(P,Q) =
∏

n≥0,G≥0
(k((κ))⊗ Fun(P,Q)(n,G))

/
∼ ,
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where ((κ)) are formal Laurent series and the equivalence ∼ is given by for
any element f ∈ Funκ(P,Q) as ]f ∼ κf . Obviously, Funκ(P,Q) is again
BV-algebra thanks to the compatibility of ] with d, ∆, {·, ·}, and ?.

Note that we constructed a non-unital BV algebra. Nevertheless, we would
like to define the exponential of an element X ∈ Funκ(P,Q) as

exp
(
X
)

=
∞∑
n=0

1
n! X ? . . . ? X︸ ︷︷ ︸

n−times

= 1⊗ 1︸ ︷︷ ︸
in k⊗k

+X +
∞∑
n=2

1
n!X ? . . . ? X︸ ︷︷ ︸

in Funκ(P,Q)

,

where k⊗ k is a tensor product of two 1-dimensional vector spaces. The space
k ⊗ k is not a subspace of Funκ(P,Q) but we can formally add an element
1⊗ 1, the generator of Funκ(P,Q)(0,−1) which will play the role of the unit.
We can extend the maps d and ∆ naturally as d(1⊗ 1) = 0 and ∆(1⊗ 1) = 0.

Moreover, the element 1⊗ 1 has a nice geometric interpretation for both
closed and open modular operad – it corresponds to the surface without any
punctures or boundaries and with the geometric genus g = 0, the sphere.

Lemma 18. If S is a degree 0 element of Funκ(P,Q) which is of order zero
in κ, then

(d+ ∆) exp
(S
κ
)

= 1
κ

(dS + ∆S + {S, S}) exp
(S
κ
)
.

Proof. The arguments of the proof are the same as in Lemma 1 of [5]. �

Remark 19. Let P be as a vector space degree-wise finite. In [1], Barannikov
observed that every dg operad morphism from Feynman transform of P to Q,
i.e., Fey(P)→ Q, is equivalently given by a degree 0 solution S ∈ Funκ(P,Q)
of the quantum master equation

dS + ∆S + 1
2{S, S} = 0 .

If we look closely at the case Q = EV , the equation (4.8) in [1] is (up to sign
convention)

(dP + dV )SGn + ∆SG−1
n+2 + 1

2
∑

G1+G2=G
I1tI2=[n]

{SG1
I1t{i}, S

G2
I2t{j}} = 0 ,

where S =
∑

n,G
stable

SGn , SGn ∈ Fun(P, EV )(n,G). Thanks to the modified defi-
nition of BV-algebra in (11), where we used the operator ], we get from the
above lemma exactly the same equation with respect to the G-grading.



296 L. PEKSOVÁ

Therefore having an algebra over the Feynman transform of P is equivalent
with the condition that exp

(
S/κ

)
is (d+ ∆)-closed in the space Funκ(P, EV ).

4. Space of formal functions
and Special deformation retracts

In the following, we will specialize to the case Q = EV and further we write
shortly Fun(P, V ) instead of Fun(P, EV ).

Remark 20. We can equivalently define the formal functions as coinvariants
since there are mutually inverse isomorphisms between the space of invariants
and coinvariants. Coinvariants better capture the idea of “commuting” variables.
However, operad theory produces invariants so we stick to them.

Definition 21. A special deformation retract (SDR) is a pair (V, d) and
(W, e) of dg vector spaces, a pair p and i of their morphisms and a homotopy
k : V → V between ip and 1V

k (V, d)
(( p // (W, e)

i
oo

that satisfy the following conditions

d2 = 0, e2 = 0, |d| = |e| = 1, . . . differentials,
pd = ep, ie = di, |p| = |i| = 0, . . . chain maps,
ip− 1V = kd+ dk, |k| = −1, . . . homotopy map,
pi− 1W = 0, . . . deformation retract,
pk = 0, ki = 0, k2 = 0 . . . special deformation retract.

Remark 22. Few comments on this definition.
It is possible to consider only the first three conditions, i.e., chain maps i, p

between chain complexes (V, d), (W, e), with homotopy k. In that case, one gets
the so-called standard situation. When considering also the fourth condition
one gets the deformation retract. But in the next, we will always consider all
of the listed conditions - the Special Deformation Retract.

For any dg vector space (V, d) it is possible to construct an SDR since there
is always a decomposition

V ∼= H(V )⊕ Im(d)⊕W ,

where H(V ) is a cohomology of vector space V with respect to d. Such de-
composition is also known as harmonious Hodge decomposition. The homotopy
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map k is defined as follows
k|H(V )⊕W = 0 , k|Im(d) = (d|W )−1

.

As was shown in Proposition 2.5 of [2], in case we have a bilinear homoge-
neous form compatible with the differential d that is either graded symmetric
or graded antisymmetric, it is possible to choose the decomposition compatible
with this form. Obviously, the symplectic form ω of degree −1 (introduced in
definition 10) satisfies these conditions.

By similar arguments as those in [5] we can consider a basis {αk} of H(V )∗,
a basis {βk} of (Im d)∗ and a basis {γk} of W ∗ such that we can split the
symplectic form to ω′ = (ai, aj), ω′′ = (bi, cj). This allows us, similarly as in
Lemma 5 ibid, to also decompose the BV Laplacian ∆ = ∆α + ∆βγ and the
BV bracket {, } = {, }α + {, }βγ on Fun(P, V ). Thus we have a BV algebra
structure on Fun(P, H(V )).

The next lemma simply follows from the well-known tensor trick: Given
two SDRs

(14) k1 (V1, d1)
(( p1 // (W1, e1)

i1
oo k2 (V2, d2)

(( p2 // (W2, e2)
i2

oo

we can construct an SDR on their tensor product V1 ⊗ V2,W1 ⊗ W2. The
differentials, chain maps and the homotopy are given as d1 ⊗ 1 + 1 ⊗ d2,
e1 ⊗ 1 + 1⊗ e2, i1 ⊗ i2, p1 ⊗ p2, and 1⊗ k2 + k1 ⊗ i2p2, respectively.
Lemma 23. Let P be operad with the trivial differential. If

k (V, d)
(( p // (H(V ), 0)

i
oo

is an SDR, then

(15) K (Fun(P, V ), D)
(( P // (Fun(P, H(V )), 0)

I
oo

is an SDR, where

D =
∑
n≥1

n∑
i=1

1P ⊗ (1⊗i−1 ⊗ d∗ ⊗ 1⊗n−i),

I =
∑
n≥1

1P ⊗ (p∗)⊗n, P =
∑
n≥1

1P ⊗ (i∗)⊗n,

K =
∑
n≥1

∑
σ∈Σn

n∑
i=1

σ

n! 1P ⊗ (1⊗i−1 ⊗ k∗ ⊗ (p∗i∗)⊗n−i) .(16)
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Remark 24. Everything said above is valid also for Funκ(P, V ) and
Funκ(P, H(V )). We only need to set

D(1⊗ 1) = 0 , K(1⊗ 1) = 0 ,
I(1⊗ 1) = 1⊗ 1 , P (1⊗ 1) = 1⊗ 1 ,

for the “artificially” added unit. Obviously, the condition IP − 1 = KD+DK
is satisfied also for the element 1⊗ 1.

5. Homological perturbation lemma

Definition 25. Let (V, d) be a dg vector space. A perturbation δ : V → V
of the differential d is a linear map of degree 1 such that (d+ δ)2 = 0.

Theorem 26 (Perturbation lemma). Consider an SDR as above:

(17) k (V, d)
(( p // (W, e)

i
oo

Let δ be a perturbation of d which is small in the sense that

(1− δk)−1 ≡
∞∑
i=0

(δk)i

is a well defined linear map V → V . Denote A ≡ (1− δk)−1δ and d′ ≡ d+ δ,
e′ ≡ e+ pAi, i′ ≡ i+ kAi, p′ ≡ p+ pAk, k′ ≡ k + kAk

(18) (V, d′)k′
'' p′ // (W, e′)

i′
oo

Then if (17) is an SDR, then (18) is an SDR.

We now apply this theorem to our situation. Consider the SDR of Lemma 23

K (Fun(P, V ), D)
(( P // (Fun(P, H(V )), 0)

I
oo

Obviously perturbation by δ = ∆ satisfies the assumptions of the theorem.

Definition 27. The effective action W is defined by

exp
(
W/κ

)
≡ P ′

(
exp
(
S/κ

))
= P

(
1 +

∞∑
i=1

(∆K)i
)(

exp
(
S/κ

))
,

where S ∈ Funκ(P, V ) is the solution of the quantum master equation
of Remark 19.
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Proposition 28. The effective action W is a well-defined element of
Funκ(P, H(V )) of the zeroth order in κ. Moreover, W satisfies the master
equation on Funκ(P, H(V ))

∆αexp
(
W/κ

)
= 0 .

Or equivalently,
∆αW + 1

2{W,W}α = 0 .

The proof of the proposition with all the details could be found in [4].

Remark 29. For the commutative modular operad, i.e., P = QC, the space
of formal functions is just an algebra of symmetric tensor powers of V ∗.

In this case, the connected sum corresponds to the symmetric tensor powers.
The BV Laplace (6) and the BV bracket (7) give a standard BV formalism,
[8]. A reader, interested in an explicit comparison, might find useful section
“Skeletal version” of [4].

In remark 19, we recalled that Feynman transform of modular operad is
equivalently given as a solution S of the quantum master equation. In [7],
this algebraic structure was in the commutative case called loop homotopy Lie
algebra. The proposition 28 restricted to this case then says that we constructed
a minimal model of the loop homotopy Lie algebra.

Acknowledgement. The author wants to express gratitude to Martin Dou-
bek, Branislav Jurčo, and Ján Pulmann for close collaboration and many
helpful discussions, and also would like to thank the anonymous reviewer for
many useful comments.

The research was supported by grant GAUK No. 544218 and grant SVV-2020-
-260589.

References
[1] Barannikov, S., Modular operads and Batalin-Vilkovisky geometry, Int. Math. Res. Not.

IMRN 19 (2007), 31 pp., Art. ID rnm075.
[2] Chuang, J., Lazarev, A., Abstract Hodge decomposition and minimal models for cyclic

algebras, Lett. Math. Phys. 89 (1) (2009), 33–49.
[3] Doubek, M., Jurčo, B., Münster, K., Modular operads and the quantum open-closed

homotopy algebra, J. High Energy Phys. 158 (12) (2015), 54 pp., Article ID 158.
[4] Doubek, M., Jurčo, B., Peksová, L., Pulmann, J., Quantum homotopy algebras, in

preparation.
[5] Doubek, M., Jurčo, B., Pulmann, J., Quantum L∞ algebras and the homological pertur-

bation lemma, Comm. Math. Phys. 367 (1) (2019), 215–240.



300 L. PEKSOVÁ

[6] Eilenberg, S., MacLane, S., On the groups H(Π, n). I, Ann. of Math. (2) 58 (1) (1953),
55–106.

[7] Markl, M., Loop homotopy algebras in closed string field theory, Comm. Math. Phys.
221 (2) (2001), 367–384.

[8] Schwarz, A., Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys. 155 (2)
(1993), 249–260.

[9] Zwiebach, B., Oriented open-closed string theory revisited, Ann. Physics 267 (2) (1998),
193–248.

Charles University,
Faculty of Mathematics and Physics,
Sokolovská 83, 186 75 Prague, Czech Republic
E-mail: lada.peksova@gmail.com

mailto:lada.peksova@gmail.com

		webmaster@dml.cz
	2021-02-23T15:02:55+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




