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Abstract. A method of characterizing all eigenvalues of a preconditioned discretized
scalar diffusion operator with Dirichlet boundary conditions has been recently introduced
in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a
slightly different approach that extends the previous results in some directions. Namely, we
provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity
operator with tensor data, discretized with the conforming finite element method, and
preconditioned by the inverse of a matrix of the same operator with different data. Our
results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to
the original and preconditioning problems. The bounds are two-sided, guaranteed, easily
accessible, and depend solely on the material data.

Keywords: bound on eigenvalues; preconditioning; elliptic differential equation

MSC 2020 : 65F08, 65N30

1. Introduction

In 2009, Nielsen, Tveito, and Hackbusch studied in [12] the spectra of elliptic dif-

ferential operators of the type ∇·k∇ defined on infinite-dimensional spaces which are

preconditioned using the inverse of the Laplacian. They proved that the range of the

scalar coefficient k is contained in the spectrum of the preconditioned operator, pro-

vided that k is continuous. Ten years later, Gergelits, Mardal, Nielsen, and Strakoš
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showed in [4] without any assumptions on the continuity of the scalar function k that

there exists a one-to-one pairing between the eigenvalues of the discretized operator

of the type ∇·k∇ preconditioned by the inverse of the discretized Laplacian and the

intervals determined by the images under k of the supports of the conforming finite

element (FE) nodal basis functions used for the discretization.

The present paper contributes to the results of [4] and generalizes some of them.

While in [4], a one-to-one pairing between the eigenvalues and images of the scalar

data k defined on supports of the FE basis function is proved, we introduce guaran-

teed two-sided bounds on all individual eigenvalues. Our approach is based on the

Courant-Fischer min-max principle. Similarly to [4], the bounds can be obtained

solely from the data of the original and preconditioning problems defined on sup-

ports of the FE basis functions. While in [12] and [4] only the diffusion operator

with scalar data is considered and the Laplacian operator is used for precondition-

ing, we treat also the diffusion operator with tensor data and with Dirichlet or Robin

boundary conditions for both the original and preconditioning operators. Our theory

also applies to operators with non-zero null spaces and to operators with vector val-

ued unknown functions; as an example we study the elasticity operator with general

tensor data. Any kind of conforming FE basis functions can be employed for dis-

cretization; the sets of the FE basis functions must be the same for the original and

preconditioning operators. For the sake of brevity, the name ‘preconditioning ma-

trix’ (or ‘operator’) will be used for the matrix M̃ (or operator) which is (spectrally)

close to the original matrix M (or operator, respectively) rather than for the inverse

of M̃. In contrast, in literature, including [4], M̃−1 is often called the preconditioning

matrix.

For numerical solution of sparse discretized elliptic partial differential equations,

the conjugate gradient method (or Krylov subspace methods for symmetric prob-

lems, in general) is a method of choice; see, e.g., [8], [17], [13]. It is well known that

its convergence depends on distribution (clustering) of eigenvalues of the related

matrices and on the sizes of components of the initial residual in directions of the as-

sociated invariant subspaces. For example, well separated clusters of eigenvalues are

favorable for the convergence rate, see, e.g., [8], [16] or the example in [4], Section 2.

Using finite precision arithmetic, however, similar types of spectra can slow down

the convergence; see, e.g. [9], [15] and the recent comprehensive paper [6]. There-

fore, being aware of the bounds on the individual eigenvalues we can better estimate

the quality of the preconditioner. Our approach can also provide guaranteed easily

accessible lower bounds on the smallest eigenvalue of the preconditioned problem,

which is required, for example, for accurate algebraic error estimates; see, e.g., [10].

The structure of the paper is as follows. In the subsequent section, we introduce

the diffusion and linear elasticity equations as examples of scalar and vector valued
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elliptic differential equations which our approach can be applied to. In Section 3, the

discretization and the preconditioning setting are described. In Section 4, the main

part of the paper, we suggest a method of estimating the eigenvalues of the pre-

conditioned matrices. The theoretical developments are accompanied by illustrative

examples. Finally, we compare our method with the recent results from [4]. A short

conclusion summarizes the paper.

2. Diffusion and elasticity problems

Our theory of estimating the eigenvalues will be applied to two frequent types of

scalar and vector valued elliptic partial differential equations: the diffusion and linear

elasticity equations, respectively. To this end, let us briefly introduce the associated

definitions and notation; see, e.g., [1], [2], [3], [11] for further details. We assume

general mixed boundary conditions for the diffusion equation, and for simplicity of

exposition, homogeneous Dirichlet boundary conditions for the elasticity equation.

Let Ω ⊂ R
d be a bounded polygonal domain, where d = 2 or 3. We consider the

diffusion equation with Dirichlet and Robin boundary conditions

−∇ ·A∇u = f in Ω, u = g1 on ∂Ω1, n ·A∇u = g2 − g3u on ∂Ω2,

where ∂Ω1 and ∂Ω2 are two disjoint and relatively open parts of the boundary ∂Ω,

∂Ω = ∂Ω1∪∂Ω2, and n denotes the outer normal to ∂Ω2. After lifting the solution u

by a differentiable function u0 that fulfills the non-homogeneous Dirichlet boundary

condition and substituting u := u + u0, the weak form of the new problem reads:

find u ∈ V = {v ∈ H1(Ω); v = 0 on ∂Ω1} such that

(2.1) (u, v)A = lA,f(v), v ∈ V,

where

(u, v)A =

∫

Ω

∇v ·A∇u dx+

∫

∂Ω2

g3uv dS,

lA,f (v) =

∫

Ω

fv dx−

∫

Ω

∇v ·A∇u0 dx+

∫

∂Ω2

g2v dS +

∫

∂Ω2

n ·A∇u0v dS,

for u, v ∈ V ; see, e.g., [3] for details. We assume f ∈ L2(Ω), g2 ∈ L2(∂Ω2), and

g3 ∈ L∞(∂Ω2), g3(x) > 0 on ∂Ω2. The material data A : Ω → R
d×d are assumed

to be essentially bounded, i.e. A ∈ L∞(Ω;Rd×d), symmetric, and uniformly elliptic

(positive definite) in Ω. Thus there exist constants 0 < cA 6 CA < ∞ such that

(2.2) cA‖v‖
2
Rd 6 (A(x)v,v)Rd 6 CA‖v‖

2
Rd , x ∈ Ω, v ∈ R

d.
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The weak form of the linear elasticity problem with homogeneous boundary con-

ditions reads: find u ∈ V d
0 , V0 = {v ∈ H1(Ω); v = 0 on ∂Ω}, such that

(2.3) (u,v)C = lC,F (v), v ∈ V d
0 ,

where

(u,v)C =

∫

Ω

d∑

i,j,k,l=1

cijkl
∂uk

∂xl

∂vi

∂xj
dx,

lC,F (v) =

∫

Ω

d∑

i=1

Fivi dx,

for u,v ∈ V d
0 , where F ∈ (L2(Ω))d are body forces. Due to the homogeneous

Dirichlet boundary conditions on ∂Ω1 = ∂Ω, we use the special notation V0 of the

solution space. Let

(2.4) τij =

d∑

k,l=1

cijklekl(u), i, j = 1, . . . , d,

be the components of the Cauchy stress tensor τ with the strain components eij
obtained from the displacement vector u as

ekl(u) =
1

2

(∂uk

∂xl
+

∂ul

∂xk

)
, k, l = 1, . . . , d.

Assuming d = 3 and denoting ei = eii, i = 1, . . . , d, we can write

e =




e1

e2

e3

2e12

2e23
2e31




=




∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1







u1

u2

u3


 = ∂u.

We assume that the coefficients cijkl of the tensor c in (2.4) are bounded measurable

functions defined in Ω, cijkl ∈ L∞(Ω), fulfilling the symmetry conditions

(2.5) cijkl = cjikl = cklij , i, j, k, l = 1, . . . , d.

Further, we assume there exists a constant µ > 0 such that

µ

d∑

i,j=1

ξ2ij 6

d∑

i,j,k,l=1

cijkl(x)ξijξkl for all symmetric tensors ξ ∈ R
d×d, x ∈ Ω.
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Assuming d = 3 and denoting τi := τii, i = 1, . . . , d, due to the symmetries (2.5)

of c, there exist coefficients cij ∈ L∞(Ω), i, j = 1, . . . , 6, such that the stress vector τ

can be obtained from the strain vector as

τ =




τ1

τ2

τ3

τ12

τ23

τ31




=




c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66







e1

e2

e3

2e12

2e23
2e31




= Ce.

Starting from this place, we will use only the new set of material coefficients cij ,

i, j = 1, . . . , 6, (instead of cijkl , i, j, k, l = 1, . . . , d) and call the associated ma-

trix C. Certain material symmetries imply special structures of C. For example,

homogeneous cubic 3D materials correspond to c11 = c22 = c33, c44 = c55 = c66,

c12 = c13 = c23, and annihilate the other components, where c11 > c12, c11+2c12 > 0

and c44 > 0. In particular, for isotropic material, we have

c11 =
E(1− ν)

(1 + ν)(1− 2ν)
, c12 =

Eν

(1 + ν)(1− 2ν)
, c44 =

E

2(1 + ν)
,

where E > 0 is the Young modulus and ν ∈ (−1, 12 ) is the Poisson ratio [11].

The vector F of external forces fulfills

−∂⊤τ = −




∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1







τ1

τ2

τ3

τ12

τ23

τ31




=




F1

F2

F3


 = F ,

yielding

−∂⊤C∂u = F .

Thus (u,v)C and lC,F (v) can be equivalently written as

(u,v)C =

∫

Ω

(∂v)⊤C∂u dx,

lC,F (v) =

∫ ⊤

Ω

F dx.

If d = 2, the dimensions of the arrays naturally reduce. For example, for cubic

materials we get

u =

(
u1

u2

)
, τ =




τ1

τ2

τ12



 , ∂ =




∂

∂x1
0

0 ∂
∂x2

∂
∂x2

∂
∂x1



 , C =




c11 c12 0

c12 c11 0

0 0 c44



 .
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3. Discretization and preconditioning

We assume that a conforming FE method is employed to discretize the diffusion

and elasticity problems defined by (2.1) and (2.3), respectively. The domain Ω is thus

decomposed into a finite number of elements Ej , j = 1, . . . , Ne. Some continuous FE

basis functions (with compact supports) denoted by ϕk, k = 1, . . . , N , are used as

approximation and test functions. By Pk we denote the smallest patch of elements

covering the support of ϕk. Correspondingly to Section 2, we denote the material

data of the diffusion and elasticity operators by A and C, respectively, and the

data of the associated preconditioning operators by Ã and C̃, respectively. The

function g3 entering the Robin boundary conditions is allowed to be different in the

original and preconditioning operators; therefore, it is denoted by g̃3 in the latter.

The stiffness matrices A and C of the systems of linear equations of the discretized

problems (2.1) and (2.3), respectively, have elements

Akl =

∫

Ω

∇ϕl(x) ·A(x)∇ϕk(x) dx+

∫

∂Ω2

g3(x)ϕl(x)ϕk(x) dS

and

(3.1) Ckl =

∫

Ω

(∂(ϕl1 (x), . . . , ϕld(x))
⊤)⊤C(x)∂(ϕk1 (x), . . . , ϕkd

(x))⊤ dx,

respectively, where k, l = 1, . . . , N , and k, l ∈ {1, . . . , N}d. The preconditioning

matrices Ã and C̃ obtained for the material data Ã and C̃, respectively, have elements

Ãkl =

∫

Ω

∇ϕl(x) · Ã(x)∇ϕk(x) dx+

∫

∂Ω2

g̃3(x)ϕl(x)ϕk(x) dS

and

C̃kl =

∫

Ω

(∂(ϕl1(x), . . . , ϕld(x))
⊤)⊤C̃(x)∂(ϕk1 (x), . . . , ϕkd

(x))⊤ dx,

respectively. All integrals are supposed to be carried out exactly.

The idea of preconditioning, see, e.g. [7], Section 10.3 or [13], Chapters 9 and 10,

is based on the assumptions that a system of linear equations with a matrix M̃

is relatively easily solvable and that the spectrum of M̃−1M is more favorable than

that ofM regarding some iterative solution method, which does not necessarily mean

a smaller condition number [4]. Substituting the equation Mu = B with

M̃
−1

Mu = M̃
−1

B or M̃
−1/2

MM̃
−1/2

v = M̃
−1/2

B, u = M̃
−1/2

v,

thus leads to equivalent problems that can be solved more efficiently than the original

one.
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4. Bounds on eigenvalues of preconditioned problems

The main results of the paper are introduced in this section. Instead of present-

ing our results for a general elliptic second order partial differential equation with

tensor data and a vector valued unknown function u, we first develop our theory for

the (scalar) diffusion equation with tensor data in full detail. Then we apply the

same approach to the elasticity equation. The section is concluded by some gen-

eral remarks, mainly on the relationship between our results and the recent results

from [4].

4.1. Diffusion equation. The lower and upper bounds on the eigenvalues

0 6 λ1 6 . . . 6 λN of Ã
−1

A for any uniformly positive definite measurable dataA, Ã :

Ω → R
d×d are introduced in this part. The boundary conditions of the original and

preconditioning problems may differ at most in the function g3, i.e. instead of g3,

the function g̃3 can be used in the Robin boundary condition of the preconditioning

problem. We assume, however, that there exist constants 0 < cg 6 Cg < ∞ such

that

0 6 cg g̃3(x) 6 g3(x) 6 Cg g̃3(x), x ∈ ∂Ω2.

Since N is the number of the FE basis functions we have A, Ã ∈ R
N×N . We now

build two sequences of positive real numbers λL
k and λU

k , k = 1, . . . , N . Let us first

set
αmin
j = ess inf

x∈Ej

λmin(Ã
−1(x)A(x)),

αmax
j = ess sup

x∈Ej

λmax(Ã
−1(x)A(x)),

if no edge of Ej lies in ∂Ω2, and

αmin
j = min

{
ess inf

x∈∂Ω2∩Ej ,
g3(x) 6=0

g̃−1
3 (x)g3(x), ess inf

x∈Ej

λmin(Ã
−1(x)A(x))

}
,

αmax
j = max

{
ess sup

x∈∂Ω2∩Ej ,
g3(x) 6=0

g̃−1
3 (x)g3(x), ess sup

x∈Ej

λmax(Ã
−1(x)A(x))

}

if at least one edge of Ej lies in ∂Ω2, j = 1, . . . , Ne. IfA(x) and Ã(x) are element-wise

constant and if g3 and g̃3 are constant on every edge (of any element) lying in ∂Ω2, the

computation of αmin
j and αmax

j reduces to calculating the extreme eigenvalues of d×d

matrices on all individual elements Ej, j = 1, . . . , Ne, and eventually comparing them

with g̃−1
3 (x)g3(x) on some of the attached edges. For every function ϕk, supported

on the patch Pk, let us set

(4.1) λL
k = min

Ej⊂Pk

αmin
j , λU

k = max
Ej⊂Pk

αmax
j , j = 1, . . . , N.
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Thus λL
k and λU

k are in the above sense the smallest and the largest, respectively,

eigenvalues of Ã−1(x)A(x) on the patch Pk, or the extremes of g̃
−1
3 g3 along the

parts of the boundary of Pk lying in ∂Ω2. After inspecting all patches, we sort the

two sequences in (4.1) in non-decreasing order. Thus we obtain two bijections

r, s : {1, . . . , N} → {1, . . . , N}

such that

(4.2) λL
r(1) 6 λL

r(2) 6 . . . 6 λL
r(N), λU

s(1) 6 λU
s(2) 6 . . . 6 λU

s(N).

Note that we could define and compute λL
k and λ

U
k directly without defining α

min
j and

αmax
j . However, dealing with the constants αmin

j and αmax
j is more algorithmically

acceptable, because it allows avoiding multiple evaluation of eigenvalues of Ã−1A

on every element.

Next we prove an auxiliary lemma. Let σ(M) denote the spectrum of the matrixM.

Lemma 4.1. Let A(x), Ã(x) ∈ R
d×d be symmetric and positive definite for all

x ∈ D ⊂ Ω. Let there exist constants 0 < c1 6 c2 < ∞ and 0 < c3 6 c4 < ∞ such

that

(4.3) σ(Ã−1(x)A(x)) ⊂ [c1, c2], x ∈ D,

and

0 6 c3g̃3(x) 6 g3(x) 6 c4g̃3(x), x ∈ ∂Ω2 ∩ D.

Then for u ∈ H1
0 (Ω) we get

(4.4) c1

∫

D

∇u · Ã∇u dx 6

∫

D

∇u ·A∇u dx 6 c2

∫

D

∇u · Ã∇u dx

and

(4.5) min{c1, c3}

(∫

D

∇u · Ã∇u dx+

∫

∂Ω2∩D

g̃3u
2 dS

)

6

∫

D

∇u ·A∇u dx+

∫

∂Ω2∩D

g3u
2 dS

6 max{c2, c4}

(∫

D

∇u · Ã∇u dx+

∫

∂Ω2∩D

g̃3u
2 dS

)
.
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P r o o f. Since for all v ∈ R
d and x ∈ D it follows from (4.3) that

c1v
⊤Ã(x)v 6 v⊤A(x)v 6 c2v

⊤Ã(x)v,

we get (4.4) by setting v = ∇u and integrating all three terms over D. Inequali-

ties (4.5) follow obviously using g3 > 0. �

Now we introduce the first part of the main results of this paper.

Theorem 4.2. Let us assume that the (d − 1)-dimensional measure of ∂Ω1 is

positive. The lower and upper bounds on the eigenvalues 0 < λ1 6 λ2 6 . . . 6 λN

of Ã−1A are given by (4.2), i.e.,

(4.6) λL
r(k) 6 λk 6 λU

s(k), k = 1, . . . , N.

P r o o f. Due to the positive measure of ∂Ω1, the matrices Ã and A are positive

definite. We only prove the lower bounds of (4.6); the upper bounds can be proved

analogously. Due to the Courant-Fischer min-max theorem, e.g. [7], Theorem 8.1.2,

λk = max
S,

dimS=N−k+1

min
v∈S,
v 6=0

v⊤Av

v⊤Ãv
,

where S denotes a subspace of RN . Then we have

λ1 = max
S,

dimS=N

min
v∈S,
v 6=0

v
⊤
Av

v⊤Ãv
= min

v∈R
N,

v 6=0

v
⊤
Av

v⊤Ãv
> λL

r(1),

where the inequality follows from Lemma 4.1. Indeed, using u =
N∑
i=1

viϕi, defini-

tion (4.1) and Lemma 4.1 with D = Ω, we get

v⊤Av

v⊤Ãv
=

∫
Ω ∇u ·A∇u dx+

∫
∂Ω2

g3u
2 dS

∫
Ω ∇u · Ã∇u dx+

∫
∂Ω2

g̃3u2 dS
> min

Ej⊂Ω
αmin
j = min

Pk⊂Ω
λL
k = λL

r(1).

Then we proceed to

λ2 = max
S,

dimS=N−1

min
v∈S,
v 6=0

v⊤Av

v⊤Ãv
> min

v∈R
N,

v 6=0, vr(1)=0

v⊤Av

v⊤Ãv
> λL

r(2),
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where the last inequality follows from Lemma 4.1, where (due to vr(1) = 0)D contains

only the patches associated to the FE basis functions ϕj , j 6= r(1),

D =
⋃

j∈{1,...,N}\{r(1)}

Pj ,

and from

min
v∈R

N,
v 6=0, vr(1)=0

v⊤Av

v⊤Ãv
= min

u=
N∑

i=1

viϕi,

vr(1)=0

∫
D ∇u ·A∇u dx+

∫
∂Ω2∩D g3u

2 dS
∫
D
∇u · Ã∇u dx+

∫
∂Ω2∩D

g̃3u2 dS

> min
Ej⊂D

αmin
j = min

Pk⊂D
λL
k = λL

r(2).

We can proceed further in the same manner to get all inequalities λL
r(k) 6 λk of (4.6).

�

In Theorem 4.2, we consider positive definite problems with homogeneous Dirich-

let and/or general Robin boundary conditions (with g3 > 0). Neumann boundary

condition is a special type of Robin boundary condition with g3 = 0. In practical

implementation of non-homogeneous Dirichlet boundary conditions, the lifting func-

tion u0 does not necessarily have to be employed. If the same non-homogeneous

Dirichlet boundary conditions are considered for the original and preconditioning

problems, the method of getting the lower and upper bounds (4.2) can be used un-

changed. Our theory, however, does not cover the settings where the original and

preconditioning problems are considered under different non-homogeneous Dirich-

let boundary conditions or different functions g2 in Robin boundary conditions, or

if ∂Ω1 in the preconditioning problem does not coincide with ∂Ω1 used for the original

problem.

If periodic or Neumann boundary conditions are applied along ∂Ω and if they are

the same for the original and preconditioning problems, then A and Ã are singular;

they share the smallest eigenvalue λ1 = 0 and the associated eigenvector. Then we

can use the same method again to get the bounds on all of the eigenvalues of the

preconditioned matrix; however, we must omit the null space of A (which is the same

as the null space of Ã) from the respective formulas. To justify the method, we can

proceed analogously as in the proof of Theorem 4.2, where the vectors v are now

additionally considered fulfilling Ãv 6= 0. Then

λ2 > min
v∈R

N,

Ãv 6=0

v⊤Av

v⊤Ãv
> λL

r(1).

30



We can proceed further, analogously to the proof of Theorem 4.2,

λ3 > min
v∈R

N,

Ãv 6=0,vr(1)=0

v⊤Av

v⊤Ãv
> λL

r(2).

In this way we get N − 1 lower bounding numbers on the non-zero eigenvalues of

Ã−1A, where both A and Ã are now considered restricted to the subspace of RN that

is orthogonal to the null space of A. Analogously, we get the upper bounds; thus

finally,

λL
r(k−1) 6 λk 6 λU

s(k), k = 2, . . . , N.

Let us now apply our method to some examples.

E x am p l e 4.3. Assume d = 2, Ω = (−π, π)2, ∂Ω2 = {x;x1 = π},

A(x) =

(
1 + 0.3 sign(sinx2) 0.3 + 0.1 cosx1

0.3 + 0.1 cosx1 1 + 0.3 sign(sinx2)

)
,

and a simple and a more sophisticated preconditioning operators with

Ã1(x) =

(
1 0

0 1

)
, and Ã2(x) =

(
1 0.3

0.3 1

)
,

respectively. Let us consider one of the following settings:

(a) uniform grid with piece-wise bilinear FE functions, N = 102 or 302, g3 = 0; see

Figure 1;

(b) uniform grid with piece-wise bilinear FE functions, periodic boundary condi-

tions, N = 212; see Figure 2;

(c) non-uniform grid and triangular elements with piece-wise linear FE functions,

g3 = g̃3 = 1 + x2
2, N = 400; see Figure 3.

The numerical experiments illustrate the results of Theorem 4.2, i.e. that the

bounds on the eigenvalues are guaranteed for different types of boundary conditions.

We can also notice that sinceA is point-wise closer to Ã2 than to Ã1, the spectrum of

the second preconditioned problem (together with its bounds) is closer to unity than

the spectrum of the problem preconditioned by using Ã1. Note also that refining

the mesh does not lead to more accurate bounds in general. This is caused by the

difference between the extreme eigenvalues of Ã−1
i A, i = 1, 2, on individual elements;

see also Section 4.3.

The number of CG steps needed to reduce the energy norm of the errors by the

factor 10−9 (starting with zero initial vectors) for setting (a) with f = 1 in Ω is 17

and 13 for Ã1 and Ã2, respectively, for N = 102, and 20 and 15 for Ã1 and Ã2,

respectively, for N = 302.
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Figure 1. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.3 (a)

with N = 102 (top graphs) and N = 302 (bottom graphs) preconditioned by
operators with Ã1 (left) and Ã2 (right).
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Figure 2. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.3 (b)

with N = 212 preconditioned by operators with Ã1 (left) and Ã2 (right).

Let us emphasize that the error analysis of CG requires not only the eigenvalue

distribution, but also (an estimate of) the components of the initial residual in direc-

tions of the associated eigenvectors; see, e.g., [4], Formula (2.7) and Remark 4.1. In

some cases, however, the eigenvalue distribution can lead to a quite accurate estimate

of the number of CG steps:
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Figure 3. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.3 (c)

with N = 400 preconditioned by operators with Ã1 (left) and Ã2 (right) with
g3 = g̃3 = 1 + x22.

E x am p l e 4.4. Assume d = 2, Ω = (−π, π)2, homogeneous Dirichlet boundary

conditions, a uniform grid, N = 182, and bilinear FE functions. Let Ω1 and Ω2 be

two small subdomains in Ω (each covering four elements). Let A(x) = b(x)I, where

(4.7) b(x) = 1+ z, x ∈ Ω1, b(x) = 1− z, x ∈ Ω2, b(x) = 1, x ∈ Ω \ (Ω1 ∪Ω2),

where z is some constant in (−1, 1). For preconditioning we use the Laplacian,

i.e. Ã = I. In Figure 4, it is shown that the spectrum of Ã−1A contains only a few

outlying eigenvalues; their number does not depend on z. In accordance with this,

the number of CG steps to reduce the energy norm of the error by the factor 10−9

is constant (equal to 11) independently of z ∈ [0.9, 0.999]. Note that such a z yields

the condition numbers of Ã−1A varying from 19 to 1999.
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Figure 4. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.4 for

z = 0.9 (left) and the detail view (right).
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4.2. Elasticity equation. In the linear elasticity problem, or in vector valued

problems in general, the searched function has multiple components,

u(x) = (u1(x), . . . , ud(x))
⊤,

where individual components are coupled within the equation. For approximation

of the scalar functions uj, j = 1, . . . , d, we use the same sets of the FE basis func-

tions ϕk, k = 1, . . . , N , supported again inside the patches Pk. Recall that for the

sake of simplicity, we consider homogeneous Dirichlet boundary conditions only.

Lemma 4.5. Let C(x), C̃(x) ∈ R
m×m, where m = 3 if d = 2, and m = 6 if

d = 3. Let C and C̃ be symmetric and positive definite for all x ∈ D ⊂ Ω. Let there

exist constants 0 < c1 6 c2 < ∞ such that

(4.8) σ(C̃−1(x)C(x)) ⊂ [c1, c2], x ∈ D.

Then for u ∈ V d
0 we get

(4.9) c1

∫

D

(∂u)⊤C̃∂u dx 6

∫

D

(∂u)⊤C∂u dx 6 c2

∫

D

(∂u)⊤C̃∂u dx.

P r o o f. From (4.8) for all v ∈ R
d, x ∈ D, we get

c1v
⊤C̃(x)v 6 v⊤C(x)v 6 c2v

⊤C̃(x)v.

Then by setting v = ∂u and integrating over D, we obtain (4.9). �

We now show how to obtain the guaranteed bounds on all individual eigenvalues

0 < λ1 6 . . . 6 λdN of the preconditioned elasticity problem C̃−1C for any positive

definite material data C and C̃. Since N is the number of the FE basis functions

defined on Ω used to approximate each component of u, the number of unknowns

is dN . We now build two sequences λL
k and λU

k , k = 1, . . . , dN , to bound the

eigenvalues of C̃−1C. In contrast to Section 4.1, for the sake of brevity, we do not

define αmin
j and αmax

j , but we directly set

λ̂L
k = ess inf

x∈Pk

λmin(C̃
−1(x)C(x)), λ̂U

k = ess sup
x∈Pk

λmax(C̃
−1(x)C(x)),

k = 1, . . . , N . Similarly to the case of the diffusion equation in Section 4.1, we sort

these two series in non-decreasing order, and thus get bijections

R,S : {1, . . . , N} → {1, . . . , N},

such that

λ̂L
R(1) 6 . . . 6 λ̂L

R(N), λ̂U
S(1) 6 . . . 6 λ̂U

S(N).
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Moreover, we double (if d = 2) or triple (if d = 3) all items in the two series of λ̂L
k

and λ̂U
k and get two new d-times longer sequences

λL
(k−1)d+1 = . . . = λL

kd = λ̂L
k , λU

(k−1)d+1 = . . . = λU
kd = λ̂U

k , k = 1, . . . , N,

that can be sorted in non-decreasing order. Thus we obtain two bijections

r, s : {1, . . . , dN} → {1, . . . , dN},

such that

λL
r(1) = . . . = λL

r(d)(4.10)

6 λL
r(d+1) = . . . = λL

r(2d) 6 . . . 6 λL
r(dN−d+1) = . . . = λL

r(dN),

λU
s(1) = . . . = λU

s(d)(4.11)

6 λU
s(d+1) = . . . = λU

s(2d) 6 . . . 6 λU
s(dN−d+1) = . . . = λU

s(dN).

Note that for k = 1, . . . , N ,

λ̂L
R(k) = λL

r((k−1)d+1) = . . . = λL
r(kd),

λ̂U
S(k) = λU

s((k−1)d+1) = . . . = λU
s(kd).

Now we can introduce the second part of the main results of this paper.

Theorem 4.6. The lower and upper bounds on all eigenvalues 0 < λ1 6 λ2 6

. . . 6 λdN of C̃
−1C can be obtained from (4.10) and (4.11), namely

(4.12) λL
r(k) 6 λk 6 λU

s(k), k = 1, . . . , dN.

P r o o f. The proof is similar to the proof of Theorem 4.2. By the Courant-

Fischer min-max theorem,

λk = max
S,

dimS=dN−k+1

min
v∈S,
v 6=0

v⊤Cv

v⊤C̃v
.

Then

λd > . . . > λ1 = min
v∈R

dN,
v 6=0

v⊤Cv

v⊤C̃v
> λL

r(1) = . . . = λL
r(d),

where the last inequality follows from Lemma 4.5. Indeed, representing the coeffi-

cients of the components of u = (u1, . . . , ud) with respect to the FE basis functions
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in a single vector v = (v⊤(1), . . . , v
⊤
(d))

⊤= (v1, . . . , vNd)
⊤, v(j) ∈ R

N , j = 1, . . . , d, we

get
v⊤Cv

v⊤C̃v
=

∫
Ω
(∂u)⊤C∂u dx

∫
Ω
(∂u)⊤C̃∂u dx

> min
Pk⊂Ω

λ̂L
k = λ̂L

R(1) = λL
r(1) = . . . = λL

r(d).

Next, we remove ϕR(1) from all d bases approximating the components of u =

(u1, . . . , ud). Then

λ2d > . . .>λd+1 > min
v∈R

N, v 6=0,
vR(1)=0,...,v(d−1)N+R(1)=0,

v⊤Cv

v⊤C̃v
> λL

r(d+1) = . . . = λL
r(2d),

where the last inequality follows from

v⊤Cv

v⊤C̃v
=

∫
D
(∂u)⊤C∂u dx

∫
D
(∂u)⊤C̃∂u dx

> min
Pk⊂D

λ̂L
k = λ̂L

R(2) = λL
r(d+1) = . . . = λL

r(2d),

where vR(1) = 0, . . . , v(d−1)N+R(1) = 0, and correspondingly,

D =
⋃

j∈{1,...,N}\{R(1)}

Pj .

Continuing further in this way, we can prove the lower bounds in (4.6). Analogously,

we can get the upper bounds. �

E x am p l e 4.7. Assume the elasticity equation with homogeneous Dirichlet

boundary conditions, d = 2, Ω = (−π, π)2, N = 212, and the data

(4.13) C(x) =
E(x)

(1 + ν)(1 − 2ν)




1− ν ν 0

ν 1− ν 0

0 0 0.5 (1− 2ν)



 ,

where

E(x) = 1 + 0.3 sign(x1x2), ν = 0.2.

Preconditioning is performed with the constant (homogeneous) data of the

type (4.13) with E = 1 and either ν = 0 or ν = 0.2, denoted by C̃1 and C̃2,

respectively. A uniform grid with piece-wise bilinear FE functions is employed. We

can see in Figure 5 that the preconditioning matrix using the data C̃2, which are

closer to C, yields the spectrum of the preconditioned matrix closer to unity. More-

over, we can notice two clusters of eigenvalues approximately equal to 0.7 and 1.3,

respectively. The number of CG steps to reduce the energy norms of the errors

by the factor of 10−9 is 14 and 11 for C̃1 and C̃2, respectively, when we consider

F = (1, 0)⊤. In this example, C̃1 is diagonal, while C̃2 is more dense. Therefore,

the overall efficiency strongly depends on the implementation of the preconditioner.

These considerations are, however, beyond the scope of this paper.
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Figure 5. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of the elasticity prob-

lem of Example 4.7 with N = 212 preconditioned by operators with C̃1 (left)

and C̃2 (right).

R em a r k 4.8. The bilinear form (u,v)C associated with the linear elasticity

operator is equivalent to the following bilinear forms defined in V d
0 , see [1],

(u,v)C,△ =

∫

Ω

d∑

i,j=1

∂vi

∂xj

∂ui

∂xj
dx,

(u,v)C,ε =

∫

Ω

(∂v)⊤∂u dx,

(u,v)C,d =

∫

Ω

d∑

i=1

(∂(0, . . . , 0, vi, 0, . . . , 0)
⊤)⊤C∂(0, . . . , 0, ui, 0, . . . , 0)

⊤ dx,

where v = (v1, . . . , vd)
⊤. The equivalence constants and the proofs can be found in [1]

and in the references therein. We may notice that our preconditioning matrix C̃ with

the data in the form C̃(x) = I is the same as the matrix of the discretized form

(u,v)C,ε. Therefore, using our method for obtaining the bounds on the eigenvalues

of preconditioned problems can be used to estimate the equivalence constants of the

above forms defined in finite-dimensional subspaces of V d
0 spanned by the FE basis

functions; for example, we can immediately get

λL
r(1)(u,u)C,ε 6 (u,u)C 6 λU

s(dN)(u,u)C,ε.

4.3. General remarks. Let us now compare our results obtained for the diffu-

sion equation with the recent results from [4]. Analogies for the elasticity equation

can be considered straightforwardly. In [4], the existence of a pairing between the

eigenvalues of the preconditioned matrix and the intervals obtained from the scalar

data defined on the patches is proved. Especially, in any of the intervals, some eigen-

value must be found. This allows us to estimate the accuracy of the bounds provided
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that the scalar data are continuous or mildly changing in (parts of) Ω. In our paper,

instead, we get that λk ∈ [λL
r(k), λ

U
s(k)], or λk ∈ [λL

r(k−1), λ
U
s(k)] if the operator is

semi-definite with the null space of dimension 1. Let us note that

λL
k 6 λU

k , λL
r(k) 6 λU

s(k), r(k) 6 s(k), k = 1, . . . , N,

but r(k) 6= s(k) in general, thus the intervals containing the individual eigenvalues

are different from the intervals obtained in [4]. Sometimes, however, the intervals

obtained by our method and by the method of [4] (ordered appropriately) coincide;

see the following example.

E x am p l e 4.9. Let us consider the test problem from [4], Section 4: the dif-

fusion equation, Ω = (0, 1)2, A(x) = sin(x1 + x2)I, and homogeneous Dirichlet

boundary conditions on ∂Ω. Let us use a uniform grid with piece-wise bilinear FE

functions, N = 92 or N = 192. For preconditioning we use Ã(x) = I. The ap-

propriately ordered bounds provided by [4] and the bounds obtained by our method

coincide; they are displayed in Figure 6.
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Figure 6. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.9 with

N = 92 (left) and N = 192 (right).

The approach developed in [4] can be modified to the case of tensor data and the

existence of a permutation p : {1, . . . , N} → {1, . . . , N} can be proved, such that

(4.14) λk ∈ [λL
p(k), λ

U
p(k)], k = 1, . . . , N.

Weyl’s inequality (see, e.g., [14], Section 3.5) is used in the proof in the same way as

in [4]; the only change is in substituting the extremes of the scalar material data on

every patch Pj by the extremes of the eigenvalues of Ã
−1(x)A(x) on Pj . Therefore,

we do not provide the proof here. The bounds obtained from (4.6) and from (4.14)

are compared in Example 4.11.
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Using (4.14), under some special conditions, analogously to the results of [4], some

eigenvalues can be identified exactly including their multiplicity. Since we do not

present the proof of (4.14), let us formulate and prove this statement separately. For

the sake of brevity, we formulate it for the case of non-singular diffusion equation

with tensor data only. Generalization to problems with vector valued unknowns is

straightforward; see also Example 4.7.

Lemma 4.10. Let there exist c > 0 such that Ã−1(x)A(x) = cI on a union of

m patches D =
m⋃

k=1

Pjk . Let none of the patches Pjk , k = 1, . . . ,m, attach to ∂Ω2

where g3 6= 0, and let the patches be associated with m linearly independent FE

functions ϕj1 , . . . , ϕjm . Let A be non-singular. Then c is an eigenvalue of Ã−1A of

multiplicity at least m.

P r o o f. Let e(j) ∈ R
N , (e(j))i = δij , where δij is the Kronecker delta symbol.

Then for every j = j1, . . . , jm,

v
⊤
Ae

(j)

v⊤Ãe(j)
=

∫
Ω
∇v ·A∇ϕj dx+

∫
∂Ω2

g3ϕjv dS∫
Ω
∇v · Ã∇ϕj dx+

∫
∂Ω2

g̃3ϕjv dS
=

c
∫
Ω∇v · Ã∇ϕj dx∫
Ω
∇v · Ã∇ϕj dx

= c

for all v ∈ R
N , v 6= 0. This means that c is an eigenvalue of Ã−1A associated with

the eigenvectors e(j), j = j1, . . . , jm. Since the eigenvectors are linearly independent,

the multiplicity of c is at least m. �

E x am p l e 4.11. In this example, we compare our method of estimating the

eigenvalues of Ã−1A with the method of [4] adapted for tensor data. Especially,

we compare the bounds (4.6) with the intervals (4.14). Since we do not know the

permutation p, we order the intervals according to the permutation r given by (4.2).

Let us consider d = 2, Ω = (−1, 1)2, N = 182, and bilinear FE basis functions. Let

A(x) =

(
1.2 + 0.5 (1 + signx1)x1 0

0 1.1− 0.5 (1 + signx2)x2

)
,

and let us use Ã = I for preconditioning. The eigenvalues of Ã−1A and their bounds

are displayed in Figure 7. The guaranteed bounds (4.6) are found on the left, while

the guaranteed (unordered) intervals from (4.14) are displayed on the right. In this

example, the bounds do not provide sharp localization of the eigenvalues (left). The

intervals, however, provide very sharp localization of a half of the spectrum (right).
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Figure 7. Lower (λLr(k)) and upper (λ
U
s(k)) bounds on eigenvalues λk of Example 4.11 (left)

and intervals [λLr(k), λ
U
r(k)] (right).

Let us finally focus on limitations of our theory. We could see that in some

examples the bounds did not get closer to the true eigenvalues when the mesh size

decreases. As a representative 2D example we can take the diffusion equation with

constant data, preconditioned by the Laplacian, say,

(4.15) A = diag(2, 1), Ã = diag(1, 1).

While the constant lower and upper bounds are obtained

λL
k = 1, λU

k = 2, k = 1, . . . , N,

the true eigenvalues of Ã−1A are distributed between these two bounds almost achiev-

ing both extremes 1 and 2. We could conclude that if the data are of the tensor type

and if the preconditioner is poor, i.e. Ã−1(x)A(x) is not close enough to a mul-

tiple of the identity I in Ω, the bounds λL
r(k) and λU

s(k) may not say much about

the true eigenvalues; the types of the FE basis functions and of the mesh affect the

distribution of the true eigenvalues as well. Interestingly, from very recent results of

Gergelits et al. [5] we can conclude that the spectrum of the operator△−1[∇·(A∇)],

i.e. the continuous form of example (4.15), is equal to [1, 2]. We hope that further

study elucidates a relationship between the eigenvalues of Ã−1A and the continuous

case.
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5. Conclusion

To the best of our knowledge, [4] is the first paper on estimating all eigenvalues of

a preconditioned discretized diffusion operator. Motivated by [4], we contribute to

this theory by introducing another approach based on the Courant-Fisher min-max

principle. This allows generalizing some of the results of [4] to vector valued equa-

tions with tensor data and with more general boundary conditions preconditioned

by arbitrary operators of the same type. We provide guaranteed bounds (defined

by (4.2) and by (4.10)–(4.11) for scalar and vector problems, respectively) to every

particular eigenvalue. On the other hand, the approach of [4] can provide more ac-

curate estimates of (parts of) the spectra in general. Analogously to [4], the bounds

are easily accessible and obtained solely from the data defined on supports of the

FE basis functions. If the data are element-wise constant, only O(N) arithmetic

operations and sorting of two series of N numbers must be performed. Although

we applied our method to only two types of differential equations, we are convinced

that the same approach can be used in a wide variety of problems.

A c k n ow l e d gm e n t. The authors thank the anonymous referee for comments

and suggestions which improved the manuscript, and Zdeněk Strakoš for helpful
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