Commentationes Mathematicae Universitatis Caroline

Aleš Drápal; Michael Kinyon
 Normality, nuclear squares and Osborn identities

Commentationes Mathematicae Universitatis Carolinae, Vol. 61 (2020), No. 4, 481-500

Persistent URL: http://dml.cz/dmlcz/148659

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Normality, nuclear squares and Osborn identities

Aleš Drápal, Michael Kinyon

Abstract

Let Q be a loop. If $S \leq Q$ is such that $\varphi(S) \subseteq S$ for each standard generator of $\operatorname{Inn} Q$, then S does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.

Keywords: loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification

Classification: 20N05

Bruck's paper [11] can be regarded as the beginning of the systematic theory of loops. A relatively long development notwithstanding, there still arise various lacunae in the foundations. The intent of this paper is to fill some of these. Standard references for loop theory are [10], [12], [29] and essentially all uncited claims can be found therein.

1. Normality and inner mappings

Let S be a subloop of a loop Q. It is well known, see [29], that S is normal if and only if $\varphi(S)=S$ for all $\varphi \in \operatorname{Inn} Q$, where $\operatorname{Inn} Q$ denotes the group of inner mappings. Since $\operatorname{Inn} Q$ is closed for inverses, the condition $\varphi(S)=S$ may be replaced by $\varphi(S) \subseteq S$. The standard generators of Inn Q are $L_{x y}^{-1} L_{x} L_{y}, R_{y x}^{-1} R_{x} R_{y}$ and $L_{x}^{-1} R_{x}$, where $L_{x}: y \mapsto x y$ is the left translation of the element $x \in Q$, and $R_{x}: y \mapsto y x$ is the right translation. Recall that $\operatorname{Inn} Q$ is defined as $\{\varphi \in$ $\operatorname{Mlt} Q: \varphi(1)=1\}$, where $\operatorname{Mlt} Q=\left\langle L_{x}, R_{x}: x \in Q\right\rangle$. The question addressed in this section is whether for S to be normal it suffices to assume that $\varphi(S) \subseteq S$ holds for all standard generators φ.

It does not seem to be really surprising that the answer is negative. Nevertheless, some effort seems to be needed to obtain an example that is easy to describe.

DOI 10.14712/1213-7243.2020.038
Second author is partially supported by Simons Foundation Collaboration Grant 359872.

The example presented below was obtained while investigating the structure of multiplicative equivalences, see [16].

An equivalence " \sim " upon the loop Q is said to be multiplicative if

$$
\begin{equation*}
x \sim y \text { and } u \sim v \quad \Longrightarrow \quad x u \sim y v \tag{1.1}
\end{equation*}
$$

holds for all $x, y, u, v \in Q$. If " \sim " is multiplicative then $[x]_{\sim} \cdot[y]_{\sim}=[x y]_{\sim}$ is a well defined operation upon Q / \sim and the set $S=[1]_{\sim}$ is closed under multiplication. However, S is not necessarily closed under (left or right) division.

Proposition 1.1. Let " \sim " be a multiplicative equivalence upon a loop Q. Put $S=[1]_{Q}$ and assume that $x S=S x=[x]_{\sim}$ for all $x \in Q$. Then $L_{x}^{-1} R_{x}(S)=S$ for all $x \in Q$, and if φ is equal to $L_{x y}^{-1} L_{x} L_{y}$ or $R_{y x}^{-1} R_{x} R_{y}$, then $\varphi(S) \subseteq S$ for all $x, y \in Q$. Furthermore, S is a subloop of Q.

Proof: First note that $L_{x}^{-1} R_{x}(S)=S$ is the same as $x S=S x$. Furthermore, $L_{x} L_{y}(S)=x[y]_{\sim} \subseteq[x]_{\sim}[y]_{\sim} \subseteq[x y]_{\sim}=L_{x y}(S)$ for all $x, y \in Q$. To see that S has to be a subloop, consider $s, t \in S$. Since $s S=S=t S$, there has to be $L_{t}^{-1} L_{s}(S)=S$, and thus $t \backslash s \in S$.

Corollary 1.2. Let " \sim " be a multiplicative equivalence upon a loop Q that is not a loop congruence. Put $S=[1]_{\sim}$, and suppose that $x S=S x=[x]_{\sim}$ for all $x \in Q$. Then there exist $x, y \in Q$ such that $L_{x y}^{-1} L_{x} L_{y}(S)$ or $R_{y x}^{-1} R_{x} R_{y}(S)$ is a proper subset of S.

Proof: By Proposition 1.1 the latter two sets have to be subsets of S. If both of them are equal to S for all $x, y \in Q$, then $\varphi(S)=S$ for every standard generator φ of $\operatorname{Inn} Q$. In such a case $S \unlhd Q$ and " \sim " is a loop congruence.

Consider now a construction of loops that generalizes an idea of G. E. Bates and F. Kiokemeister in [9]. The ingredients for the construction are a binary operation "." upon a set A, a loop Q and injective mappings $f_{a, b}: Q \rightarrow Q$ for $a, b \in A$. The underlying set is equal to $A \times Q$.

The following statement coincides with Theorem 4.1 of [16].
Proposition 1.3. Let "" be a binary operation upon a set A and let 1 be the neutral element of this operation. Suppose that mappings $x \mapsto a x$ and $x \mapsto x a$ are surjective upon A for all $a \in A$. Set

$$
\begin{equation*}
[c / b]=\{a \in A: a b=c\} \quad \text { and } \quad[a \backslash c]=\{b \in A: a b=c\} \tag{1.2}
\end{equation*}
$$

for all $a, b, c \in A$. For all $a, b \in A$ let $f_{a, b}$ be an injective mapping $Q \rightarrow Q$, where Q is a loop. Suppose that $f_{a, b}$ is the identity mapping whenever $1 \in\{a, b\}$. The
element $(1,1)$ is then a neutral element of the binary operation that is defined upon $A \times Q$ by

$$
\begin{equation*}
(a, x) \cdot(b, y)=\left(a b, f_{a, b}(x y)\right) \tag{1.3}
\end{equation*}
$$

This operation yields a loop if and only if
(1) for all $c, b \in A$ the sets $\operatorname{Im}\left(f_{a, b}\right), a \in[c / b]$, are pairwise distinct and partition Q; and
(2) for all $a, c \in A$ the sets $\operatorname{Im}\left(f_{a, b}\right), b \in[a \backslash c]$, are pairwise distinct and partition Q.

In the next two lemmas assume that M is the loop upon $A \times Q$ that has been constructed by means of Proposition 1.3. Define an equivalence " \sim " upon M by

$$
\begin{equation*}
(a, x) \sim(b, y) \Longleftrightarrow a=b \tag{1.4}
\end{equation*}
$$

Lemma 1.4. If $(a, x) \in M$, then $[(a, x)]_{\sim}=\{a\} \times Q=(a, x)(1 \times Q)=$ $(1 \times Q)(a, x)$, and $1 \times Q=[(1,1)]_{\sim}$ is a subloop of M.

Proof: By (1.3), $(a, x)(1, y)=\left(a, f_{a, 1}(x y)\right)=(a, x y)$. Each element of Q can be expressed as $x y$ for some $y \in Q$.

Lemma 1.5. The equivalence " \sim " is a multiplicative equivalence of M. It is a congruence of Q if and only if A is a loop.

Proof: The projection $M \rightarrow A,(a, x) \mapsto a$, is compatible with multiplication. Hence " \sim " is a multiplicative equivalence. This equivalence is a congruence of M if and only if A is a loop since the multiplication determines the divisions uniquely.

In the following result, $[x]$ denotes the integer part of the real number x.
Theorem 1.6. For a prime p define an operation $\oplus=\oplus_{p}$ upon \mathbb{Z} by

$$
a \oplus b=\left\{\begin{array}{l}
p\left(\left[\frac{a}{p^{2}}\right]+\left[\frac{b}{p^{2}}\right]\right) \text { if } p \mid a+b \text { and } p \nmid a ; \tag{1.5}\\
a+b \text { in every other case. }
\end{array}\right.
$$

Let an infinite loop Q be partitioned to subsets Q_{i} of the same cardinality, $i \in \mathbb{Z}_{p}$. Thus $Q=\bigcup Q_{i}$, and $Q_{i} \cap Q_{j}=\emptyset$ if $i, j \in \mathbb{Z}_{p}$ and $i \neq j$. For each $i \in \mathbb{Z}_{p}$ choose a bijection $\pi_{i}: Q \rightarrow Q_{i}$, and set $\pi_{a}=\pi_{i}$ whenever $a \equiv i \bmod p$.
Define an operation "." upon $\mathbb{Z} \times Q$ by

$$
(a, x)(b, y)=\left\{\begin{array}{l}
\left(a \oplus b, \pi_{(a+b-p) / p}(x y)\right) \text { if } p \mid a+b \text { and } p \nmid a \tag{1.6}\\
(a \oplus b, x y)=(a+b, x y) \text { in every other case }
\end{array}\right.
$$

Then $M=(A \times Q, \cdot)$ is a loop with unit $(0,1)$ in which $(a, x) \sim(b, y) \Longrightarrow a=b$ defines a multiplicative equivalence such that $S=[(0,1)]_{\sim}=\{0\} \times Q$ is subloop of M that is not a normal subloop of M. If φ is a standard generator of $\operatorname{Inn} M$, then $\varphi(S) \subseteq S$, and there exists a standard generator φ such that $\varphi(S) \neq S$. If Q is commutative, then M is commutative too.

Proof: Let us first verify that the construction of M conforms with Proposition 1.3. Consider $a, b \in \mathbb{Z}$. If $p \nmid a+b$ or if $p \mid a, b$ set $f_{a, b}=\mathrm{id}_{Q}$. In the other cases put $f_{a, b}=\pi_{(a+b-p) / p}$.

Fix $a, c \in \mathbb{Z}$ and consider, with respect to " \oplus ", the set $[a \backslash c]$ as defined by (1.2). If $p \nmid c$ and $a \oplus b=c$, then $c=a+b$ and $[a \backslash c]=\{c-a\}$. The same is true if $p \mid a, c$. In these cases $f_{a, b}=\operatorname{id}_{Q}$. This means that (1.3) and (1.6) yield the same result and that condition (2) of Proposition 1.3 gets satisfied.

Suppose now that $p \mid c, c=a \oplus b$ and $p \nmid a$. Express a as $a_{2} p^{2}+a_{1} p+a_{0}$ and b as $b_{2} p^{2}+b_{1} p+b_{0}$, where $\left\{a_{0}, b_{0}, a_{1}, b_{1}\right\} \subseteq\{0, \ldots, p-1\}$. Then $c=p\left(a_{2}+b_{2}\right)$ and $p=a_{0}+b_{0}$. The set $[a \backslash c]$ is hence equal to $\left\{c p-a_{2} p^{2}+x p+p-a_{0}: 0 \leq x<p\right\}$. That can be also expressed as $\left\{c p-a+p\left(a_{1}+x+1\right): 0 \leq x<p\right\}$.

The fact that $[a \backslash c]$ is always nonempty means that $u \mapsto a \oplus u$ is a surjective mapping $\mathbb{Z} \rightarrow \mathbb{Z}$ for any $a \in \mathbb{Z}$. Assume again that $p \mid c, p \nmid a$ and $b \in[a \backslash c]$. The definition of $(a, x)(b, y)$ from (1.5) agrees with that of (1.3), by the choice of $f_{a, b}$. What remains is to verify condition (2) of Proposition 1.3. If $b=c p-a+$ $p\left(a_{1}+x+1\right)$, then $(a+b-p) / p=c+a_{1}+x$. If x runs through \mathbb{Z}_{p}, then $c+a_{1}+x$ runs through \mathbb{Z}_{p} as well. Hence (2) holds.

Since mirror arguments are also true, (M, \cdot) is a loop, by Proposition 1.3. Lemmas 1.4 and 1.5 imply that Corollary 1.2 can be used to prove the rest.

2. Normal nuclei and LC loops

Left central loops (or LC loops) were introduced by F. Fenyves in [19]. There are several ways how they can be described, see [19], [30]. A unified treatment appears in Theorem 2.2. While Theorem 2.2 and Corollary 2.3 build upon the existing concepts [19], [30], [31], they contain several characterizations that seem to be new.

In a loop Q, we will denote the left and right inverses of the element x by $x^{\lambda}:=1 / x$ and $x^{\varrho}:=x \backslash 1$, respectively.

Let Q be a loop. Then $N_{\lambda}=\{a \in Q: a \cdot x y=a x \cdot y$ for all $x, y \in Q\}$ is known as the left nucleus of Q. Equations $x \cdot a y=x a \cdot y$ and $x y \cdot a=x \cdot y a$ yield the middle and the right nucleus, respectively. The main new result of this section is that in every LC loop the left nucleus is a normal subloop (Theorem 2.11).

The proof of this fact starts with Proposition 2.6 and does not depend upon the preceding statements.

In each LC loop $N_{\lambda}=N_{\mu}$. This is because every LC loop Q is a left inverse property (LIP) loop, i.e. it satisfies $x^{\lambda} \cdot x y=y$ for all $x, y \in Q$. An equivalent characterization of an LIP loop is that for each $x \in Q$ there exists $y \in Q$ such that $L_{x}^{-1}=L_{y}$, where $L_{x}: a \mapsto x a$ is the left translation of the element $x \in Q$. Similarly, Q is a RIP loop if the inverse of each right translation $R_{x}: a \mapsto a x$ is also a right translation. Loops that are both LIP and RIP are called inverse property (IP) loops.

A loop Q is said to be a left alternative property (LAP) loop if $x \cdot x y=x x \cdot y$ for all $x, y \in Q$. Clearly, Q satisfies the LAP if and only if L_{x}^{2} is a left translation for all $x \in Q$. RAP loops are defined in a mirror way, and the intersection of LAP and RAP loops is the variety of alternative property (AP) loops.

Elements of nuclei can be characterized by means of autotopisms. Let Q be a loop. Denote by S_{Q} the symmetric group upon Q. A triple $(\alpha, \beta, \gamma) \in S_{Q}^{3}$ is an autotopism if $\alpha(x) \beta(y)=\gamma(x y)$ for all $x, y \in Q$. Autotopisms of Q form a group that is denoted by $\operatorname{Atp}(Q)$. For $x \in Q$ put $\lambda_{x}=\left(L_{x}, \mathrm{id}_{Q}, L_{x}\right), \varrho_{x}=\left(\mathrm{id}_{Q}, R_{x}, R_{x}\right)$ and $\mu_{x}=\left(R_{x}^{-1}, L_{x}, \mathrm{id}_{Q}\right)$. The following facts are well known and easy to prove:

Lemma 2.1. Let a be an element of a loop Q. Then $\lambda_{a} \in \operatorname{Atp}(Q) \Longleftrightarrow a \in N_{\lambda}$, $\varrho_{a} \in \operatorname{Atp}(Q) \Longleftrightarrow a \in N_{\varrho}$ and $\mu_{a} \in \operatorname{Atp}(Q) \Longleftrightarrow a \in N_{\mu}$. Furthermore, consider $\sigma=(\alpha, \beta, \gamma) \in \operatorname{Atp}(Q)$:
(i) $\alpha=\operatorname{id}_{Q} \Longrightarrow \sigma=\varrho_{a}$ for some $a \in N_{\varrho}$;
(ii) $\beta=\mathrm{id}_{Q} \Longrightarrow \sigma=\lambda_{a}$ for some $a \in N_{\lambda}$; and
(iii) $\gamma=\operatorname{id}_{Q} \Longrightarrow \sigma=\mu_{a}$ for some $a \in N_{\mu}$.

Let Q be an LIP loop. Then $x^{\lambda}=x^{\varrho}$ for each $x \in Q$. Put $I(x)=x^{-1}=$ $1 / x$. Then I permutes Q and $(\alpha, \beta, \gamma) \in \operatorname{Atp}(Q) \Longleftrightarrow(I \alpha I, \gamma, \beta) \in \operatorname{Atp}(Q)$. Lemma 2.1 can be used to see that $a \in N_{\lambda} \Longleftrightarrow\left(I L_{a} I, L_{a}, \mathrm{id}_{Q}\right) \Longleftrightarrow a \in N_{\mu}$. Thus $N_{\lambda}=N_{\mu}$ in every LIP loop Q. Similarly $N_{\varrho}=N_{\mu}$ in an RIP loop. Each IP loop thus contains a nucleus $N_{\lambda}=N_{\mu}=N_{\varrho}$. An element belonging to the nucleus is said to be nuclear. Note that in a general setting the nucleus is defined as $N_{\lambda} \cap N_{\mu} \cap N_{\varrho}$.

Theorem 2.2. Let Q be a loop. The following conditions are equivalent:
(1) $x(x \cdot y z)=(x \cdot x y) z$ for all $x, y, z \in Q$;
(2) $x x \cdot y z=(x \cdot x y) z$ for all $x, y, z \in Q$;
(3) $(x x \cdot y) z=x(x \cdot y z)$ for all $x, y, z \in Q$;
(4) $y(x \cdot x z)=(y \cdot x x) z$ for all $x, y, z, \in Q$;
(5) Q is an LAP loop such that $x^{2} \in N_{\lambda}$ for each $x \in Q$;
(6) Q is an LAP loop such that $x^{2} \in N_{\mu}$ for each $x \in Q$;
(7) Q is an LIP loop such that $x^{2} \in N_{\lambda}$ for each $x \in Q$;
(8) $\lambda_{x}^{2}=\left(L_{x}^{2}, \operatorname{id}_{Q}, L_{x}^{2}\right) \in \operatorname{Atp}(Q)$ for each $x \in Q$;
(9) $L_{x}^{2} L_{y}$ is a left translation of Q for all $x, y \in Q$; and
(10) $L_{y} L_{x}^{2}$ is a left translation of Q for all $x, y \in Q$.

Proof: First note that (8) is an equivalent expression of (1). The same is true for (9). Indeed, if $x(x \cdot y z)=w z$ for all $z \in Q$, then the substitution $z=1$ implies that $w=x \cdot x y$. Similarly, (4) $\Longleftrightarrow(10)$. Furthermore, note that setting $y=1$ or $z=1$ gives the LAP for all of the identities (1)-(4). Using LAP it is clear that $(1) \Longleftrightarrow(2)$ and $(1) \Longleftrightarrow(3)$. The equivalence $(2) \Longleftrightarrow$ (5) is immediate as well. Now, setting $y=x^{\varrho}=x \backslash 1$ in (1) yields $x\left(x \cdot x^{\varrho} z\right)=x z$. Thus $x \cdot x^{\varrho} z=z$ for all $x, z \in Q$. Hence (1) \Rightarrow (7). Since $N_{\lambda}=N_{\mu}$ in every LIP loop, the implication $(7) \Rightarrow(5)$ follows from $x \cdot x y=x\left(x^{-1} x^{2} y\right)=x^{2} y$. We have shown the equivalence of $(1),(2),(3),(5),(7),(8)$ and (9). The next step is to prove $(4) \Longleftrightarrow(6)$. An equivalent form of (4) is $\left(y / x^{2}\right)(x \cdot x z)=y z$. This can be expressed as $\left(R_{x^{2}}^{-1}, L_{x}^{2}, \operatorname{id}_{Q}\right) \in \operatorname{Atp}(Q)$ for all $x \in Q$. In an LAP loop $L_{x}^{2}=L_{x^{2}}$. Thus (4) $\Longleftrightarrow(6)$, by Lemma 2.1. Furthermore, $(5) \Rightarrow$ (6) since $(5) \Longleftrightarrow(7)$, and $N_{\lambda}=N_{\mu}$ in every LIP loop. To finish it thus suffices to prove that every loop satisfying (6) is an LIP loop. Such a loop fulfils $x^{\lambda} x^{2}=x$ since $x^{\lambda} x^{2} x^{\varrho}=x^{\lambda} \cdot x^{2} x^{\varrho}=x^{\lambda}\left(x \cdot x x^{\varrho}\right)=1=x x^{\varrho}$ 。By $(4), x^{\lambda}(x \cdot x z)=\left(x^{\lambda} x^{2}\right) z=x z$ for all $x, z \in Q$, i.e., Q satisfies the LIP.

A loop is said to be an $L C$ loop if it satisfies the conditions of Theorem 2.2. The mirror conditions yield the $R C$ loops. A loop is said to be a C loop, see [19], [31], if it is both an LC loop and an RC loop. Theorem 2.2 easily yields the ensuing characterization of C loops.

Corollary 2.3. Let Q be a loop. The following are equivalent:
(1) Q is a C loop;
(2) Q is an IP loop in which each square is nuclear;
(3) Q is an AP loop with $x^{2} \in N_{\mu}$ for all $x \in Q$;
(4) $(y x \cdot x) z=y(x \cdot x z)$ for all $x, y, z \in Q$;
(5) $\mu_{x}^{2}=\left(R_{x}^{-2}, L_{x}^{2}, \mathrm{id}_{Q}\right) \in \operatorname{Atp}(Q)$ for all $x \in Q$;

Proof: Equivalences $(1) \Longleftrightarrow(2)$ and $(1) \Longleftrightarrow(3)$ follow from Theorem 2.2 in an immediate way. The implication $(3) \Longrightarrow(4)$ is also clear. Setting $y=1$ and $z=1$ in (4) establishes the AP. Hence (3) \Longrightarrow (4). Substituting $(y / x) / x$ for y in (4) yields $y z=((y / x) / x) \cdot x(x z)$. That is the same as (5).

The identity $x y \cdot z x=x(y z \cdot x)$ defines Moufang loops and can be expressed by saying that $\lambda_{x} \varrho_{x} \in \operatorname{Atp}(Q)$ for all $x \in Q$. This observation served in [17] as an impetus to investigate all conditions of the form $\sigma_{x}^{\varepsilon} \tau_{x}^{\eta} \in \operatorname{Atp}(Q)$ for each
$x \in Q$, where $\{\varepsilon, \eta\} \subseteq\{-1,1\},\{\sigma, \tau\} \subseteq\{\lambda, \varrho, \mu\}$ and $\sigma \neq \tau$. It turns out that the varieties obtained in this way are the varieties of Moufang, left Bol, right Bol, left conjugacy closed (LCC), right conjugacy closed (RCC), Buchsteiner and extra loops. In other words, these are the varieties that can be obtained by nuclear identification.

The case when $\sigma=\tau$ and $\varepsilon=\eta$ was not investigated in [17]. This may be regarded as an omission. Assume $\varepsilon=\eta=1$ and $\sigma=\tau$. The case $\sigma=\lambda$ describes the LC loops, by Theorem 2.2. The RC loops correspond to the case $\sigma=\varrho$, by a mirror argument. Corollary 2.3 implies that the C loops can be obtained from the case $\sigma=\mu$. The LC loops, RC loops and C loops thus result from a nuclear identification as well. It is easy to verify that the same varieties appear when $\sigma=\tau$ and $\varepsilon=\eta=-1$ is assumed.

Proposition 2.4. If a loop Q satisfies two of the $L C C, L C$ and $L B o l$ identities, then it satisfies all three. A left Bol loop Q is $L C$ if and only if $x^{2} \in N_{\lambda}$ for each $x \in Q$.

Proof: Every left Bol loop satisfies the LAP. Hence point (5) of Theorem 2.2 can be used to prove that a left Bol loop Q is an LC loop if and only if $x^{2} \in N_{\lambda}$ for each $x \in Q$. The latter condition also characterizes those left Bol loops that are LCC, e.g. by formula (11) of [17]. A loop Q that is both LCC and LC is an LCC loop that satisfies the LAP and has all squares in N_{λ}. Such a loop is left Bol, e.g. by formula (13) of [17].

Left Bol LCC loops have been studied under the name Burn loops, see [27]
Proposition 2.5. Let Q be a loop. The following are equivalent.
(i) Q is an extra loop;
(ii) Q is an LC loop that is also a right Bol loop, or an RCC loop, or a Buchsteiner loop; and
(iii) Q is a C loop that is also a left Bol loop, or an LCC loop.

Proof: Extra loops are the Moufang loops with squares in the nucleus, see [18]. Each extra loop is thus a C loop, by Corollary 2.3. Extra loops are conjugacy closed because a Moufang loop is conjugacy closed if and only if all squares are in the nucleus, as in [19] (cf. formula (13) of [17]). Thus (i) \Rightarrow (iii). The definition of extra loops is mirror symmetric. Thus also (i) \Rightarrow (iii'), where (iii') is the mirror version of (iii). Denote by (ii') the condition (ii) from which the Buchsteiner clause is removed. Trivially, (iii') \Rightarrow (ii'). An LAP loop that is RCC or Buchsteiner is an extra loop, by the mirror version of [17, Corollary 2.5]. Hence an LC loop has to be an extra loop if it is a Buchsteiner loop or an RCC loop. A right Bol loop with the LAP is Moufang, see [29]. Hence an LC loop is extra if it is right Bol.

Therefore (ii) \Rightarrow (i). Both (i) \Longleftrightarrow (iii') and (i) \Longleftrightarrow (iii) follow. Thus if (iii) holds, then Q is conjugacy closed. Conjugacy closed loops with squares in the nucleus are Buchsteiner [17, Theorem 3.3]. Therefore (iii) \Rightarrow (ii).

Let x be an element of loop Q. Then T_{x} is defined as $R_{x}^{-1} L_{x}$.
Proposition 2.6. Let Q be a loop with a subloop S. Suppose that $S \leq N_{\lambda} \cap N_{\mu}$. If $T_{x}^{ \pm 1}(s) \in S$ for each $x \in Q$ and $s \in S$, then $S \unlhd Q$. Furthermore, $L_{x y}^{-1} L_{x} L_{y}(s)=$ $T_{x y}^{-1} T_{x} T_{y}(s)$ for all $x, y \in Q$ and $s \in S$.
Proof: Suppose that $s \in S$ and $x, y \in Q$. Then $s x \cdot y=s \cdot x y$ and so $R_{x y}^{-1} R_{y} R_{x}(s)=s$. Furthermore,

$$
T_{x} T_{y}(s) \cdot x y=T_{x} T_{y}(s) x \cdot y=x T_{y}(s) \cdot y=x \cdot T_{y}(s) y=x \cdot y s
$$

Therefore $T_{x y}^{-1} T_{x} T_{y}(s)=(x y) \backslash\left(T_{x} T_{y}(s) \cdot x y\right)=x y \backslash(x \cdot y s)=L_{x y}^{-1} L_{x} L_{y}(s) \in S$.
Corollary 2.7. Let Q be a loop such that $N_{\mu}=N_{\lambda} \leq Q$. Then N_{μ} is a normal subloop if and only if $T_{x}^{ \pm 1}(a) \in N_{\mu}$ for all $x \in Q$ and $a \in N_{\mu}$.

Lemma 2.8. Let Q be a LIP loop such that $x^{-1} \in N_{\mu}$ for all $x \in Q$ and $a \in N_{\mu}$. Then $T_{x}^{-1}(a)=x^{-1} a x$ and $T_{x}(a)=x a x^{-1}$.
Proof: We have $T_{x}^{-1}(y)=x \backslash(y x)=x^{-1} \cdot y x$ for all $x, y \in Q$ since Q is LIP. Put $y=x a x^{-1}$. By our assumptions, $y \in N_{\mu}$, and so

$$
\begin{aligned}
T_{x}^{-1}\left(x a x^{-1}\right) & =x^{-1}\left(x a x^{-1} \cdot x\right)=\left(x^{-1} \cdot x a x^{-1}\right) x=\left(x^{-1}\left(x \cdot a x^{-1}\right)\right) x \\
& =\left(a x^{-1}\right) x=a\left(x^{-1} x\right)=a
\end{aligned}
$$

Therefore $T_{x}(a)=x a x^{-1}$.
Corollary 2.9. Let Q be a LIP loop such that $x^{2} x^{-1} \in N_{\mu}$ for all $x \in Q$ and $a \in N_{\mu}$. Then $N_{\mu} \unlhd Q$.

Proof: This follows directly from Lemma 2.8 and Corollary 2.7 since $N_{\lambda}=N_{\mu}$ in every LIP loop Q.

If Q is an LIP loop, $x \in Q$ and $a \in N_{\mu}=N_{\lambda}$, then $(a x)^{-1}=x^{-1} a^{-1}$ as $\left(x^{-1} a^{-1}\right)(a x)=x^{-1} x=1$ and $(x a)^{-1}=a^{-1} x^{-1}$ as $(x a)\left(a^{-1} x^{-1}\right)=1$.

Lemma 2.10. Let Q be an LC loop. Then $x a x^{-1} \in N_{\mu}$ for every $x \in Q$ and $a \in N_{\mu}$.

Proof: An LC loop is an LIP loop. Hence $N_{\lambda}=N_{\mu}$. All squares of an LC loop belong to N_{λ}. Therefore $x a x^{-1} \in N_{\mu}$ if and only if $y^{2} \cdot x a x^{-1} \in N_{\mu}$ for some $y \in Q$. Put $y=(x a)^{-1}=a^{-1} x^{-1}$. Then $y^{2} \cdot x a x^{-1}=y^{2} \cdot y^{-1} x^{-1}=$ $y \cdot\left(y \cdot y^{-1} x^{-1}\right)=a^{-1} x^{-1} \cdot x^{-1}=a^{-1} x^{-2} \in N_{\mu}$.

Theorem 2.11. If Q is an LC loop, then $N_{\lambda}=N_{\mu} \unlhd Q$.
Proof: This is a straightforward consequence of Lemma 2.10 and Corollary 2.9.

By Theorem 2.11 the nucleus of a C loop is normal. This was first proved by J. D. Phillips and P. Vojtěchovský in [31].

3. Osborn loops

A major motivation for studying Osborn loops is that they are a broad structured variety of loops which include interesting classical varieties of loops, such as Moufang loops and conjugacy closed loops, as special cases. Before turning to that, we look at another approach. We informally mimic the scheme of nuclear identification studied in [17].

Let Q be a loop. For $x \in Q$, let $\alpha_{x}, \beta_{x} \in \operatorname{Sym} Q$ satisfy $\alpha_{x}(1)=\beta_{x}(1)=x$. If $\left(\alpha_{x}, \mathrm{id}_{Q}, \alpha_{x}\right)$ and $\left(\mathrm{id}_{Q}, \beta_{x}, \beta_{x}\right)$ are autotopisms, then it is easy to see that $\alpha_{x}=L_{x}$ and $\beta_{x}=R_{x}$, in which case the autotopisms are λ_{x} and ϱ_{x}, respectively. However, instead of assuming at the outset that α_{x} and β_{x} are translations, we leave them as permutations to be determined. Analogous with the approach in [17], we assume that for each $x \in Q$,

$$
\left(\operatorname{id}_{Q}, \beta_{x}, \beta_{x}\right)\left(\alpha_{x}, \operatorname{id}_{Q}, \alpha_{x}\right)=\left(\alpha_{x}, \beta_{x}, \beta_{x} \alpha_{x}\right)
$$

is an autotopism, i.e.,

$$
\alpha_{x}(y) \cdot \beta_{x}(z)=\beta_{x} \alpha_{x}(y z)
$$

for all $x, y, z \in Q$. (The arbitrariness of the choice of the order in which we multiplied the triples will be dealt with below.)

Setting $z=1$, we get $\alpha_{x}=R_{x}^{-1} \beta_{x} \alpha_{x}$, and so $\beta_{x}=R_{x}$. Thus

$$
\begin{equation*}
\alpha_{x}(y) \cdot z x=\alpha_{x}(y z) \cdot x \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in Q$. Taking $y=1$, we get $\alpha_{x}(z) \cdot x=x \cdot z x$. This gives us $\alpha_{x}=R_{x}^{-1} L_{x} R_{x}$, but in the interest of easily finding other expressions for α_{x}, we will rewrite (3.1) as

$$
\begin{equation*}
\alpha_{x}(y) \cdot z x=x(y z \cdot x) \tag{3.2}
\end{equation*}
$$

Our autotopism is now

$$
\psi_{x}:=\left(\alpha_{x}, R_{x}, L_{x} R_{x}\right)
$$

A loop Q is said to be an Osborn loop if for each $x \in Q$, there exists $\alpha_{x} \in$ $\operatorname{Sym}(Q)$ such that (3.2) holds. As noted, α_{x} can be expressed in terms of translations so that (3.2) is an identity in the language of loops and thus Osborn loops form a variety. We next list a few different expressions for α_{x}.

Lemma 3.1. Let Q be an Osborn loop and for each $x \in Q$, let $\alpha_{x} \in \operatorname{Sym}(Q)$ be such that (3.2) holds. Then

$$
\alpha_{x}=R_{x}^{-1} L_{x} R_{x}=L_{x} R_{x} R_{x^{\lambda}}=L_{x^{\lambda}}^{-1}
$$

Proof: We have already noted the first equality, which can be obtained from (3.2) by taking $z=1$. Instead taking $z=x^{\lambda}$, we have $\alpha_{x}=L_{x} R_{x} R_{x^{\lambda}}$. Now set $y=x^{\lambda}$ and note that $\alpha_{x}\left(x^{\lambda}\right)=R_{x}^{-1} L_{x} R_{x}\left(x^{\lambda}\right)=1$. Thus $z x=x\left(x^{\lambda} z \cdot x\right)$, that is, $R_{x}=L_{x} R_{x} L_{x^{\lambda}}$. Rearranging this, we have $L_{x^{\lambda}}^{-1}=R_{x}^{-1} L_{x} R_{x}$, which completes the proof.

It is worth recording separately a consequence of the last equality of the preceding lemma.

Corollary 3.2. Let Q be an Osborn loop. For all $x \in Q$,

$$
\begin{equation*}
R_{x} R_{x^{\lambda}} L_{x^{\lambda}} L_{x}=\operatorname{id}_{Q} \tag{3.3}
\end{equation*}
$$

Now for all x in an Osborn loop Q, we have $\psi_{x \varrho}^{-1}=\left(L_{x}, R_{x \varrho}^{-1}, R_{x \varrho}^{-1} L_{x \varrho}^{-1}\right)$. From (3.3), we obtain $R_{x^{\varrho}}^{-1} L_{x^{\varrho}}^{-1}=R_{x} L_{x}$, and so

$$
\begin{equation*}
\psi_{x \varrho}^{-1}=\left(L_{x}, R_{x \varrho}^{-1}, R_{x} L_{x}\right) \tag{3.4}
\end{equation*}
$$

is an autotopism.
Let Q be a loop and let $\left(Q^{\mathrm{op}}, *\right)$ denote the opposite loop defined by $x * y:=y x$, with translations $L_{x}^{\mathrm{op}}:=R_{x}$ and $R_{x}^{\mathrm{op}}:=L_{x}$ and inverses $x^{\hat{\lambda}}=x^{\varrho}$ and $x^{\hat{\varrho}}=x^{\lambda}$. A triple (α, β, γ) is an autotopism of Q if and only if (β, α, γ) is an autotopism of Q^{op}. Thus $\psi_{x} \in \operatorname{Atp}(Q)$ if and only if $\left(L_{x}^{\mathrm{op}}, R_{x \hat{\varrho}}^{\mathrm{op}-1}, R_{x}^{\mathrm{op}} L_{x}^{\mathrm{op}}\right) \in \operatorname{Atp}\left(Q^{\mathrm{op}}\right)$, that is, if and only if $\psi_{x^{\hat{\varrho}}} \in \operatorname{Atp}\left(Q^{\mathrm{op}}\right)$. Since we already have that $\psi_{x} \in \operatorname{Atp}(Q)$ if and only if $\psi_{x e} \in \operatorname{Atp}(Q)$, we conclude that a loop Q is an Osborn loop if and only if its opposite loop Q^{op} is an Osborn loop. In particular, any Osborn identity is equivalent to its mirror, which is the corresponding identity in Q^{op}.

Informally, if we had multiplied the triples $\left(\alpha_{x}, \operatorname{id} Q, \alpha_{x}\right)$ and (id $\left.Q, \beta_{x}, \beta_{x}\right)$ in the opposite order and assumed that the product is an autotopism, we would have obtained $\alpha_{x}=L_{x}$, the autotopism $\left(L_{x}, \beta_{x}, R_{x} L_{x}\right)$, and various expressions for the permutation β_{x}. This is precisely (3.4), and so we would have been led to the same variety of loops.

The various forms of the autotopisms ψ_{x} and $\psi_{x e}$ lead to corresponding equivalent identities.

Theorem 3.3. The following identities are equivalent in loops.
(1) $(x \cdot y x) / x \cdot z x=x(y z \cdot x)$;
(2) $x\left(y x^{\lambda} \cdot x\right) \cdot z x=x(y z \cdot x)$;
(3) $x^{\lambda} \backslash y \cdot z x=x(y z \cdot x)$;
(4) $x y \cdot x \backslash(x z \cdot x)=(x \cdot y z) x$;
(5) $x y \cdot\left(x \cdot x^{\varrho} z\right) x=(x \cdot y z) x$;
(6) $x y \cdot z / x^{\varrho}=(x \cdot y z) x$;
(7) $x^{\lambda} \backslash\left(x^{\lambda} y \cdot z\right)=(y \cdot z x) / x$;
(8) $x \backslash(x y \cdot z)=\left(y \cdot z x^{\varrho}\right) / x^{\varrho}$.

Proof: Any two components of an autotopism uniquely determine the third. Identities (1), (2) and (3) are equivalent because they all express that ψ_{x} is an autotopism with different forms of the first component α_{x}. Identities (4), (5) and (6) are the mirrors of (1), (2) and (3), respectively.

Next, starting with (3), replace y with $x^{\lambda} y$ to get $y z \cdot x=L_{x} R_{x}\left(x^{\lambda} y \cdot z\right)=$ $R_{x} L_{x^{\lambda}}^{-1}\left(x^{\lambda} y \cdot z\right)$, using Lemma 3.1. Applying R_{x}^{-1} to both sides, we obtain (7). The steps are reversible, so (3) is equivalent to (7). Finally, (8) is the mirror version of (7).

Any one of the identities in Theorem 3.3 may be taken as the definition of Osborn loops. When we use these in what follows, we shall often just refer to "an Osborn identity" rather than singling out the particular form.

From comparing the identities of Theorem 3.3 with the Moufang identity $x y \cdot z x=x(y z \cdot x)$ or its mirror image, we see that any Moufang loop is an Osborn loop. We now give a more thorough characterization.

A loop Q is flexible (FLX) if $x y \cdot x=x \cdot y x$ for all $x, y \in Q$.
Theorem 3.4. Any of the following are necessary and sufficient for an Osborn loop Q to be a Moufang loop: (i) LIP, (ii) RIP, (iii) FLX, (iv) LAP, (v) RAP.

Proof: Moufang loops are diassociative, i.e., any 2-generated subloop is associative. Conditions (i)-(v) are all particular instances of diassociativity so their necessity is clear.

For sufficiency, (i), (ii) and (iii) are immediate from identities in Theorem 3.3. For (iv): If LAP holds, then for all $x \in Q, x^{\lambda} \backslash x=L_{x^{\lambda}}^{-1}(x)=R_{x}^{-1} L_{x} R_{x}(x)=$ $(x \cdot x x) / x=(x x \cdot x) / x=x x$. Thus for all $z \in Q, x(x \cdot z x)=x x \cdot z x=$ $x^{\lambda} \backslash x \cdot z x=x(x z \cdot x)$ using an Osborn identity in the last equality. Cancelling we have $x \cdot z x=x z \cdot x$, that is, FLX holds. The proof of the sufficiency of (v) is dual to this.

Other instances of diassociativity are also sufficient for an Osborn loop to be a Moufang loop. For example, a loop Q satisfies the antiautomorphic inverse
property if $x^{\lambda}=x^{\varrho}$ and $(x y)^{\varrho}=y^{\varrho} x^{\varrho}$ for all $x, y \in Q$. We omit the proof that an AAIP Osborn loop is Moufang as it is a little more involved than the proofs of the five cases of Theorem 3.4.

As we will see, an instance of diassociativity which is not sufficient for an Osborn loop Q to be Moufang is the weak inverse property (WIP): $x(y x)^{\varrho}=y^{\varrho}$ or equivalently, $(x y)^{\lambda} x=y^{\lambda}$ for all $x, y \in Q$.

The origin of Osborn loops lies in a paper of J. M. Osborn, see [28], who studied loops in which WIP holds in every loop isotope. He proved that such a loop must satisfy the identity $x y \cdot \theta_{x}(z) x=(x \cdot y z) x$ where for each x, θ_{x} is a permutation. A. S. Basarab in [1] dubbed a loop satisfying the identity an Osborn loop. In the same paper, Basarab also introduced generalized Moufang loops, which we discuss further below. These turn out to be precisely WIP Osborn loops, but not every Osborn loop has the WIP.

Independently and two years after Basarab's paper appeared, E. D. Huthnance also studied what are now called Osborn loops in his Ph.D. dissertation, see [22]. By an amusing coincidence, Huthnance reversed Basarab's terminology by using "Osborn loops" to refer to Basarab's generalized Moufang loops and "generalized Moufang loops" to refer to Basarab's Osborn loops. We follow Basarab since his paper appeared first and other papers have since been published following his convention [4], [5], [7], [21]. Many, but not all of the results in the remainder of this section can be found in Basarab's papers.

If $(\alpha, \beta, \gamma) \in \operatorname{Atp}(Q)$ is such that $\beta(1)=1$, then it is well known and easy to show that $\alpha=\gamma=L_{c} \beta$ where $c=\alpha(1)$. In this case, β is called a left pseudoautomorphism with companion c. A left pseudoautomorphism is an automorphism if and only if the companion lies in the left nucleus.

Dually, if $(\alpha, \beta, \gamma) \in \operatorname{Atp}(Q)$ is such that $\alpha(1)=1$, then $\beta=\gamma=R_{c} \alpha$ where $c=\beta(1)$. In this case, α is called a right pseudoautomorphism with companion c.

A loop Q is a G-loop if it is isomorphic to all of its loop isotopes. For instance, groups or more generally, conjugacy closed loops are G-loops. It is well known that a loop is a G-loop if and only if each element occurs as a companion of some left pseudoautomorphism and of some right pseudoautomorphism.

Lemma 3.5. Let Q be a G-loop, i.e., for each $x \in Q$, there exists a left pseudoautomorphism φ_{x} and a right pseudoautomorphism ψ_{x}, each with companion x. Assume further that $\varphi_{x} \psi_{x}=\psi_{x} \varphi_{x}=\operatorname{id}_{Q}$ and $\varphi_{x}(x)=x=\psi_{x}(x)$. Then Q is an Osborn loop.

Proof: Multiplying the autotopisms $\left(L_{x} \varphi_{x}, \varphi_{x}, L_{x} \varphi_{x}\right)$ and $\left(\psi_{x}, R_{x} \psi_{x}, R_{x} \psi_{x}\right)$, we get that $\left(L_{x}, \varphi_{x} L_{x} \psi_{x}, L_{x} \varphi_{x} R_{x} \psi_{x}\right)$ is an autotopism. For each $y \in Q$,

$$
L_{x} \varphi_{x} R_{x} \psi_{x}(y)=L_{x} \varphi_{x}\left(\psi_{x}(y) \cdot x\right)=L_{x} \varphi_{x} \psi_{x}(y) \cdot \varphi_{x}(x)=x y \cdot x
$$

since φ is a left pseudoautomorphism and using the assumptions of the lemma. Thus $L_{x} \varphi_{x} R_{x} \psi_{x}=R_{x} L_{x}$, and so for each $x \in Q,\left(L_{x}, \varphi_{x} L_{x} \psi_{x}, R_{x} L_{x}\right)$ is an autotopism. This autotopism has the form $\left(L_{x}, \beta_{x}, R_{x} L_{x}\right)$ for a permutation β_{x} and so Q is an Osborn loop.

Corollary 3.6. Every conjugacy closed loop is an Osborn loop.
Proof: A loop Q is conjugacy closed if and only if for each $x \in Q, T_{x}=R_{x}^{-1} L_{x}$ is a right pseudoautomorphism with companion x (this is LCC) and T_{x}^{-1} is a left pseudoautomorphism with companion x (this is RCC). CC-loops are well known to be G-loops. Since $T_{x}(x)=x=T_{x}^{-1}(x)$, the lemma applies.

It is, in fact, easy to show from working directly with the autotopisms defining LCC and RCC loops that an Osborn loop is CC if and only if it is LCC if and only if it is RCC.
A. S. Basarab in [8] defined a loop Q to be a $V D$-loop (probably named after Valentin Danilovich Belousov) if every T_{x} is a left pseudoautomorphism with companion x and every T_{x}^{-1} is a right pseudoautomorphism with companion x. Thus a VD-loop is defined by the identity $x(x y / x) \cdot(x z / x)=x((x \cdot y z) / x)$ and its mirror. Every VD-loop is a G-loop, as follows from the characterization of G-loops stated above. Moufang loops with nuclear fourth powers and CC-loops with nuclear squares are VD-loops.

Corollary 3.7 ([8]). Every VD-loop is an Osborn loop.
As discussed above, a generalized Moufang loop is a WIP Osborn loop. Such loops are characterized by the identity $x(y z \cdot x)=\left(y^{\lambda} x^{\lambda}\right)^{\varrho} \cdot z x$ or its equivalent mirror. Indeed, suppose this identity holds. Then for each $x,\left(\varrho R_{x^{\lambda}} \lambda, R_{x}, L_{x} R_{x}\right)$ is an autotopism. This has the form $\left(\alpha_{x}, R_{x}, L_{x} R_{x}\right)$ for a permutation α_{x} and so $\varrho R_{x^{\lambda}} \lambda=L_{x}^{-1}$ by Lemma 3.1. This is precisely WIP. The steps are clearly reversible, establishing the desired characterization.
J. M. Osborn showed that for what we now call a generalized Moufang loop Q, the factor loop $Q / N(Q)$ is a Moufang loop. A. S. Basarab in [1] proved that every isotope of a generalized Moufang loop is a generalized Moufang loop. Every WIP CC-loop is a generalized Moufang loop. In fact, combining results of A. S. Basarab in [2] and E. G. Goodaire and D. A. Robinson in [20], WIP CC-loops are precisely generalized Moufang loops with every square in the nucleus. A short proof of the latter fact appears in Section 4, cf. Theorem 4.3. Generalized Moufang loops satisfy a suitably generalized version of Moufang's theorem, see [3].

One can certainly obtain generalized Moufang loops which are neither CCloops nor Moufang loops by, say, taking the direct product of a WIP CC-loop which is not an extra loop and a Moufang loop which is not an extra loop. The
smallest example given by this construction is obtained from the nonassociative CC-loop of order 6 and the nonassociative Moufang loop of order 12. However it is not known what is the order of the smallest generalized Moufang loop which is neither a Moufang loop nor a CC-loop, nor has there ever been any effort at a classification of generalized Moufang loops of small orders.

Let Q be a loop. Recall that the multiplication group of Q is the permutation group $\operatorname{Mlt}(Q)=\left\langle L_{x}, R_{x}: x \in Q\right\rangle$. The left and right multiplication groups of Q are, respectively, $\operatorname{Mlt}_{\lambda}(Q)=\left\langle L_{x}: x \in Q\right\rangle$ and $\operatorname{Mlt}_{\varrho}(Q)=\left\langle R_{x}: x \in Q\right\rangle$.

Theorem 3.8. Let Q be an Osborn loop. Then $\operatorname{Mlt}_{\lambda}(Q)$ and $\operatorname{Mlt}_{\varrho}(Q)$ are normal subgroups of $\operatorname{Mlt}(Q)$.

Proof: It is sufficient to show that for all $x, y \in Q, R_{x}^{-1} L_{y} R_{x}, R_{x} L_{y} R_{x}^{-1} \in$ $\operatorname{Mlt}_{\lambda}(Q)$ and $L_{x}^{-1} R_{y} L_{x}, L_{x} R_{y} L_{x}^{-1} \in \operatorname{Mlt}_{\varrho}(Q)$. The first follow immediately from writing Theorem 3.3 (7), (8) in terms of translations:

$$
\begin{align*}
R_{x}^{-1} L_{y} R_{x} & =L_{x^{\lambda}}^{-1} L_{x^{\lambda} y} \tag{3.5}\\
L_{x}^{-1} R_{y} L_{x} & =R_{x^{\varrho}}^{-1} R_{y x^{\varrho}} \tag{3.6}
\end{align*}
$$

Next rearrange (3.5) to get $R_{x} L_{x^{\lambda} y} R_{x}^{-1}=R_{x} L_{x^{\lambda}} R_{x}^{-1} L_{y}$. From Lemma 3.1, we have $R_{x} L_{x^{\lambda}} R_{x}^{-1}=L_{x}^{-1}$. Replacing y with $x^{\lambda} \backslash y$, we get $R_{x} L_{y} R_{x}^{-1}=L_{x}^{-1} L_{x^{\lambda} \backslash y}$. Similarly, $L_{x} R_{y} L_{x}^{-1}=R_{x}^{-1} R_{y / x^{e}}$, completing the proof.

The left and right inner mapping groups $\operatorname{Inn}_{\lambda}(Q)$ and $\operatorname{Inn}_{\varrho}(Q)$ of a loop Q are the stabilizers of 1 in $\operatorname{Mlt}_{\lambda}(Q)$ and $\operatorname{Mlt}_{\varrho}(Q)$, respectively. In terms of generators, it turns out that $\operatorname{Inn}_{\lambda}(Q)=\left\langle L_{x y}^{-1} L_{x} L_{y}: x, y \in Q\right\rangle$ and $\operatorname{Inn}_{\varrho}(Q)=\left\langle R_{y x}^{-1} R_{x} R_{y}\right.$: $x, y \in Q\rangle$.

Theorem 3.9. Let Q be an Osborn loop. Then for all $x, y \in Q$,

$$
\left[L_{y}, R_{x}\right]=\left(L_{x^{\lambda} y}^{-1} L_{x^{\lambda}} L_{y}\right)^{-1}=R_{x y^{\varrho}}^{-1} R_{y^{\varrho}} R_{x}
$$

Therefore $\operatorname{Inn}_{\lambda}(Q)=\left\langle\left[L_{x}, R_{y}\right]: x, y \in Q\right\rangle=\operatorname{Inn}_{\varrho}(Q)$.
Proof: The first equality follows from multiplying (3.5) on the left by L_{y}^{-1}. The second equality follows from exchanging x and y in (3.6), multiplying on the left by R_{x}^{-1} and then taking inverses of both sides. The remaining assertion follows from the characterizations of the left and right inner mapping groups in terms of generators.

Lemma 3.10. Let Q be a loop. If $\operatorname{Mlt}_{\lambda}(Q) \unlhd \operatorname{Mlt}(Q)$, then the right nucleus of Q is a normal subloop. If $\operatorname{Mlt}_{\varrho}(Q) \unlhd \operatorname{Mlt}(Q)$, then the left nucleus of Q is a normal subloop.

Proof: See [15, Lemma 1.5].
Theorem 3.11. Let Q be an Osborn loop. Then the three nuclei of Q coincide and the nucleus is a normal subloop.

Proof: The left nucleus of a loop Q is the fixed point set of $\operatorname{Inn}_{\lambda}(Q)$, the right nucleus is the fixed point set of $\operatorname{Inn}_{\varrho}(Q)$, and the middle nucleus is the fixed point set of $\left\langle\left[L_{x}, R_{y}\right]: x, y \in Q\right\rangle$. Thus the equality of the nuclei follows from Theorem 3.9. The normality follows from Theorem 3.8 and Lemma 3.10.

Call an Osborn loop proper if it is neither conjugacy closed nor Moufang. By exhaustive computer search, there are no proper Osborn loops up through order 13. The smallest known ones have order 16, and again by exhaustive computer search, they are the smallest which have nontrivial nucleus. There are two of them, up to isomorphism. Each is a G-loop and each contains the dihedral group D_{8} as a subloop. Each has center of order 2, coinciding with the nucleus, and the factor by the center is a nonassociative WIP CC-loop of order 8. Each is nilpotent of class 3 ; the second center is a copy of \mathbb{Z}_{2} and the factor by the second center is \mathbb{Z}_{4}. The two loops can be distinguished equationally; one satisfies $L_{x}^{4}=R_{x}^{4}=\mathrm{id}$ but the other does not.

Lemma 3.12. Let Q be an Osborn loop. Then for each $x, y \in Q$,
(1) $L_{x y}^{-1} L_{x} L_{y}$ is a right pseudoautomorphism with companion $y / x^{\varrho} \cdot(x y)^{\varrho}$;
(2) $R_{y x}^{-1} R_{x} R_{y}$ is a left pseudoautomorphism with companion $(y x)^{\lambda} \cdot x^{\lambda} \backslash y$.

Proof: We compute the autotopism

$$
\psi_{(x y)^{\varrho}} \psi_{x^{\varrho}}^{-1} \psi_{y^{\varrho}}^{-1}=\left(L_{x y}^{-1} L_{x} L_{y}, R_{(x y) \varrho} R_{x^{\varrho}}^{-1} R_{y^{\varrho}}^{-1}, \omega_{x, y}\right),
$$

where we do not need the particular expression for $\omega_{x, y}$. The first component $L_{x y}^{-1} L_{x} L_{y}$ fixes 1 and hence is a right pseudoautomorphism. The companion is $R_{(x y) \varrho} R_{x^{\varrho}}^{-1} R_{y^{\varrho}}^{-1}(1)=y / x^{\varrho} \cdot(x y)^{\varrho}$, as claimed.

Corollary 3.13. Let Q be an Osborn loop. For each $x \in Q, L_{x^{\lambda}} L_{x}=L_{x} L_{x}$ e and $R_{x} R_{x^{\lambda}}=R_{x^{\varrho}} R_{x}$ are automorphisms.

Proof: By Lemma 3.12, $L_{x^{\lambda}} L_{x}$ is a left pseudoautomorphism with companion $x /\left(x^{\lambda}\right)^{\varrho} \cdot\left(x^{\lambda} x\right)^{\varrho}=1$. Now $L_{x^{\lambda}} L_{x} L_{x^{\varrho}}(y)=L_{x^{\lambda}} L_{x}\left(x^{\varrho}\right) \cdot L_{x^{\lambda}} L_{x}(y)=$ $x^{\lambda} \cdot L_{x^{\lambda}} L_{x}(y)=L_{x^{\lambda}} L_{x^{\lambda}} L_{x}(y)$. Canceling $L_{x^{\lambda}}$, we obtain $L_{x^{\lambda}} L_{x}=L_{x} L_{x e}$ as claimed. The remaining assertions follow dually.

A loop Q satisfies the crossed inverse property (CIP) if $x y \cdot x^{\varrho}=y$ or equivalently $x^{\lambda} \cdot y x=y$ for all $x, y \in Q$.

Lemma 3.14. A CIP Osborn loop is a commutative Moufang loop.
Proof: For such a loop Q, from $y=x y \cdot x^{\varrho}$, we have $x^{\varrho} y=x^{\varrho}\left(x y \cdot x^{\varrho}\right)=$ $\left(x^{\varrho}\right)^{\lambda} \backslash x \cdot y x^{\varrho}=1 \cdot y x^{\varrho}=y x^{\varrho}$, and so Q is commutative. Commutative loops are flexible, so Q is Moufang by Theorem 3.4.

A loop is left automorphic or a left A-loop if $\operatorname{Inn}_{\lambda}(Q) \leq \operatorname{Aut}(Q)$. Left automorphic loops form a variety because the defining condition can be expressed equationally using the generators: $L_{x y}^{-1} L_{x} L_{y}(z u)=L_{x y}^{-1} L_{x} L_{y}(z) \cdot L_{x y}^{-1} L_{x} L_{y}(u)$. Right automorphic loops are defined dually.

Theorem 3.15. Let Q be a left or right automorphic Osborn loop. Then $Q / N(Q)$ is a commutative Moufang loop.

Proof: We prove the left case. We use Lemma 3.12 and the assumption that each $L_{x, y}$ is an automorphism to conclude that the companion $y / x^{\varrho} \cdot(x y)^{\varrho}$ lies in $N(Q)$. Thus in $Q / N(Q)$, the identity $y / x^{\varrho} \cdot(x y)^{\varrho}=1$ holds. This is equivalent to $x y=y / x^{\varrho}$ or $x y \cdot x^{\varrho}=y$ for all $x, y \in Q$. By Lemma 3.14, we have the desired result.

As a corollary, we obtain yet another proof of Basarab's CC-loop theorem, see [6]. Basarab's proof was explicated in a simplified form in [25] and another proof was given in [14].

Corollary 3.16. Let Q be a CC-loop. Then $Q / N(Q)$ is an abelian group.
Proof: CC-loops are left automorphic, so by Corollary 3.6 and Theorem 3.15, $Q / N(Q)$ is commutative. Commutative CC-loops are abelian groups, see [26].
A. S. Basarab in [1] proved that if Q is a loop such that every loop isotope is Osborn, then $Q / N(Q)$ has WIP and hence is a generalized Moufang loop (and hence $(Q / N(Q)) / N(Q / N(Q))$ is a Moufang loop. However, he did not address the following, which is still the outstanding open problem in the theory of Osborn loops.

Problem 3.17 ([24]). If Q is an Osborn loop, is every loop isotopic to Q an Osborn loop?

Problem 3.18. Does there exist a simple, proper Osborn loop?
Note that an affirmative answer to Problem 3.18 would be a counterexample to Problem 3.17: if Q is a simple, proper Osborn loop, then by Theorem 3.11, $N(Q)=\{1\}$. If every loop isotopic to Q is an Osborn loop, then by the discussion
above, $Q \cong Q / N(Q)$ is a generalized Moufang loop and hence a Moufang loop, contradicting the assumption that Q is proper.

4. Loops that are both Osborn and Buchsteiner

As discussed in the last section, there are many equivalent ways to define Osborn loops. We shall use the following characterization:

$$
\begin{equation*}
Q \text { is an Osborn loop } \Longleftrightarrow \psi_{x}=\left(L_{x^{\lambda}}^{-1}, R_{x}, L_{x} R_{x}\right) \in \operatorname{Atp}(Q) \tag{4.1}
\end{equation*}
$$

for all $x \in Q$.
Buchsteiner loops are characterized by the law $x \backslash(x y \cdot z)=(y \cdot z x) / x$. Setting $y=x$ yields $L_{x}^{-1} L_{x^{2}}=R_{x}^{-1} L_{x} R_{x}$, while $z=x$ gives $L_{x}^{-1} R_{x} L_{x}=R_{x}^{-1} R_{x^{2}}$. Thus

$$
\begin{equation*}
L_{x^{2}}=L_{x} R_{x}^{-1} L_{x} R_{x} \quad \text { and } \quad R_{x^{2}}=R_{x} L_{x}^{-1} R_{x} L_{x} \tag{4.2}
\end{equation*}
$$

if $x \in Q, Q$ a Buchsteiner loop.
A straightforward calculation using (4.2) yields

$$
\begin{equation*}
R_{x}^{2} L_{x^{2}}^{-1} L_{x}^{2}=R_{x^{2}} \quad \text { if } x \in Q, Q \text { a Buchsteiner loop. } \tag{4.3}
\end{equation*}
$$

Both Osborn and Buchsteiner loops are known to have the property that $N_{\lambda}=$ $N_{\varrho}=N_{\mu}$. In the following we shall thus consider only the nucleus $N=N(Q)$.

$$
\begin{equation*}
L_{x^{2}}=L_{x} L_{x^{\lambda}}^{-1} \quad \text { if } x^{2} \in N(Q), Q \text { a loop. } \tag{4.4}
\end{equation*}
$$

This is true because (a) $x^{2} \cdot x^{\lambda}=x$ since $\left(x^{2} \cdot x^{\lambda}\right) x=x^{2}\left(x^{\lambda} \cdot x\right)=x^{2}$, and so (b) $x^{2} \cdot x^{\lambda} y=\left(x^{2} \cdot x^{\lambda}\right) y=x y$.

$$
\begin{equation*}
L_{x^{2}}=L_{x} R_{x}^{-1} L_{x} R_{x} \quad \text { if } x^{2} \in N(Q), Q \text { an Osborn loop. } \tag{4.5}
\end{equation*}
$$

This follows from Lemma 3.1 since $L_{x^{\lambda}}^{-1}=L_{x}^{-1} L_{x^{2}}$, by (4.4).
The following fact can be obtained directly from the definition of Buchsteiner loops and is well known:

$$
\begin{equation*}
Q \text { is a Buchsteiner loop } \Longleftrightarrow \varphi_{x}=\left(L_{x}, R_{x}^{-1}, L_{x} R_{x}^{-1}\right) \in \operatorname{Atp}(Q) \tag{4.6}
\end{equation*}
$$

for all $x \in Q$.
Theorem 4.1 (Kinyon). Let Q be a loop. Consider the following three properties:
(a) Q is an Osborn loop;
(b) Q is a Buchsteiner loop;
(c) Q is a loop such that all squares are in the nucleus.

Any two of these properties imply the third property.

Proof: Let φ_{x} and ψ_{x} be the triples from (4.1) and (4.6), $x \in Q$. Then

$$
\gamma_{x}=\varphi_{x} \psi_{x}=\left(L_{x} L_{x^{\lambda}}^{-1}, \operatorname{id}_{Q}, L_{x} R_{x}^{-1} L_{x} R_{x}\right)
$$

If (a) and (b) are true, then $\gamma_{x} \in \operatorname{Atp}(Q)$, and so $L_{x} R_{x}^{-1} L_{x} R_{x}(1)=x^{2} \in N(Q)$. For the rest we can assume that $x^{2} \in N(Q)$ for all $x \in Q$. It will suffice to show that $\gamma_{x}=\left(L_{x^{2}}, \operatorname{id}_{Q}, L_{x^{2}}\right)$ if Q is an Osborn loop or a Buchsteiner loop. First note that $x^{2} \in N(Q)$ implies $L_{x} L_{x^{\lambda}}^{-1}=L_{x^{2}}$, by (4.4). If Q is Buchsteiner, then $L_{x^{2}}=L_{x} R_{x}^{-1} L_{x} R_{x}$ by (4.2). The same equality follows from (4.5) if Q is Osborn.

Theorem 4.2 (G. T. Jaiyeola \& J. O. Adeniran [23]). Let Q be a loop. Consider the following three properties:
(a) Q is an Osborn loop;
(b) Q is a Buchsteiner loop;
(c) Q satisfies the law $(x \cdot x y)\left(x^{\lambda} \cdot x z\right)=x(x \cdot y z)$.

Any two of these properties imply the third property.
Proof: First note that (c) is equivalent to the assumption that

$$
\begin{equation*}
\delta_{x}=\left(L_{x}^{2}, L_{x^{\lambda}} L_{x}, L_{x}^{2}\right) \in \operatorname{Atp}(Q) \quad \text { for all } x \in Q \tag{4.7}
\end{equation*}
$$

For every $x \in Q$

$$
\varphi_{x}^{-2} \delta_{x}=\left(\operatorname{id}_{Q}, R_{x}^{2} L_{x^{\curlywedge}} L_{x}, R_{x} L_{x}^{-1} R_{x} L_{x}\right)
$$

If Q is both Osborn and Buchsteiner, then $\left(\operatorname{id}_{Q}, R_{x^{2}}, R_{x^{2}}\right) \in \operatorname{Atp}(Q)$, by Theorem 4.1. In such a loop $\delta_{x} \in \operatorname{Atp}(Q)$ if $\varphi_{x}^{-2} \delta_{x}=\left(\operatorname{id}_{Q}, R_{x^{2}}, R_{x^{2}}\right)$. Now, $R_{x^{2}}=$ $R_{x} L_{x}^{-1} R_{x} L_{x}$ by (4.2), while (4.4) and (4.3) imply $R_{x}^{2} L_{x^{\lambda}} L_{x}=R_{x}^{2} L_{x^{2}}^{-1} L_{x}^{2}=R_{x^{2}}$. Thus (a) and (b) imply (c).

If (a) and (c) hold, then $\varphi_{x}^{-2} \delta_{x} \in \operatorname{Atp}(Q)$, and that yields

$$
x^{2}=R_{x} L_{x}^{-1} R_{x} L_{x}(1) \in N(Q)
$$

It remains to consider the case when both (b) and (c) are true. For that use that

$$
\psi_{x^{\varrho}}^{2} \delta_{x}=\left(\operatorname{id}_{Q}, R_{x^{\varrho}}^{2} L_{x^{\lambda}} L_{x},\left(L_{x^{\varrho}} R_{x^{\varrho}}\right)^{2} L_{x}^{2}\right) .
$$

We obtain that $R_{x \varrho}^{2} L_{x^{\lambda}} L_{x}(1)=\left(x^{\varrho}\right)^{2} \in N(Q)$ for all $x \in Q$.
Theorem 4.3. Let Q be a loop. Consider the following three properties:
(a) Q is a generalized Moufang loop;
(b) Q is a WIP CC loop;
(c) Q is a loop such that all squares are in the nucleus.

Any two of these properties imply the third property.

Proof: This is a direct consequence of Theorem 4.1 since a WIP loop is a CC loop if and only if it is a Buchsteiner loop, by [17, Theorem 5.5], and since a loop is a generalized Moufang loop if and only if it is a WIP Osborn loop.

Note that Theorem 4.3 remains true if point (c) is replaced by the point (c) of Theorem 4.2. Note also that by [17, Theorem 5.5] a WIP LCC loop is CC, and a WIP RCC loop is also CC.

References

[1] Basarab A.S., A class of WIP loops, Mat. Issled. 2 (1967), vyp. 2, 3-24 (Russian).
[2] Basarab A. S., A certain class of G-loops, Mat. Issled. 3 (1968), vyp. 2 (8), 72-77 (Russian).
[3] Basarab A. S., Moufang's theorem, Bul. Akad. Štiince RSS Moldoven, 1968, (1968), no. 1, 16-24 (Russian).
[4] Basarab A. S., Isotopy of WIP loops, Mat. Issled. 5 (1970), vyp. 2 (16), 3-12 (Russian).
[5] Basarab A. S., The Osborn loop, Studies in the theory of quasigroups and loops, 193, Izdat. "Štiinca", Kishinev, 1973, pages 12-18 (Russian).
[6] Basarab A.S., A class of LK-loops, Mat. Issled. 120 Bin. i n-arnye Kvazigruppy (1991), 3-7, 118 (Russian).
[7] Basarab A. S., Osborn's G-loops, Quasigroups Related Systems 1 (1994), no. 1, 51-56.
[8] Basarab A. S., Generalized Moufang G-loops, Quasigroups Related Systems 3 (1996), 1-5.
[9] Bates G. E., Kiokemeister F., A note on homomorphic mappings of quasigroups into multiplicative systems, Bull. Amer. Math. Soc. 54 (1948), 1180-1185.
[10] Belousov V.D., Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (Russian).
[11] Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354.
[12] Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1958.
[13] Csörgő P., Drápal A., Kinyon M. K., Buchsteiner loops, Internat. J. Algebra Comput. 19 (2009), no. 8, 1049-1088.
[14] Drápal A., Conjugacy closed loops and their multiplication groups, J. Algebra 272 (2004), no. 2, 838-850.
[15] Drápal A., On multiplication groups of left conjugacy closed loops, Comment. Math. Univ. Carolin. 45 (2004), no. 2, 223-236.
[16] Drápal A., On multiplicative equivalences that are totally incompatible with division, Algebra Universalis 80 (2019), no. 3, Paper No. 32, 9 pages.
[17] Drápal A., Jedlička P., On loop identities that can be obtained by a nuclear identification, European J. Combin. 31 (2010), no. 7, 1907-1923.
[18] Fenyves F., Extra loops. I., Publ. Math. Debrecen 15 (1968), 235-238.
[19] Fenyves F., Extra loops. II. On loops with identities of Bol-Moufang type, Publ. Math. Debrecen 16 (1969), 187-192.
[20] Goodaire E. G., Robinson D. A., Some special conjugacy closed loops, Canad. Math. Bull. 33 (1990), no. 1, 73-78.
[21] Hrůza B., Sur quelques propriétés des inverse-faibles, Knižnice Odborn. Věd. Spisů Vysoké Učení Tech. v Brně B-56 (1975), 101-107 (French).
[22] Huthnance E. D., Jr., A Theory of Generalized Moufang Loops, Thesis (Ph.D.)-Georgia Institute of Technology, Georgia, 1969.
[23] Jaiyéolá T. G., Adéníran J. O., A new characterization of Osborn-Buchsteiner loops, Quasigroups Related Systems 20 (2012), no. 2, 233-238.
[24] Kinyon M., A survey of Osborn loops, plenary talk at the First Milehigh Conference on Loops, Quasigroups, \& Nonassociative Systems, University of Denver, Denver, CO, 2005, https://www.cs.du.edu/~petr/milehigh/2005/kinyon_talk.pdf.
[25] Kinyon M. K., Kunen K., Phillips J.D., Diassociativity in conjugacy closed loops, Comm. Algebra 32 (2004), no. 2, 767-786.
[26] Kunen K., The structure of conjugacy closed loops, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889-2911.
[27] Nagy P. T., Strambach K., Loops as invariant sections in groups, and their geometry, Canad. J. Math. 46 (1994), no. 5, 1027-1056.
[28] Osborn J. M., Loops with the weak inverse property, Pacific J. Math. 10 (1960), 295-304.
[29] Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990.
[30] Phillips J. D., Vojtěchovský P., The varieties of loops of Bol-Moufang type, Algebra Universalis 54 (2005), no. 3, 259-271.
[31] Phillips J. D., Vojtěchovský P., C-loops: an introduction, Publ. Math. Debrecen 68 (2006), no. 1-2, 115-137.
A. Drápal:

Department of Algebra, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic

E-mail: drapal@karlin.mff.cuni.cz
M. Kinyon:

Department of Mathematics, University of Denver, 2390 S. York St., Denver, Colorado, CO 80208, USA

E-mail: mkinyon@du.edu

