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Finite groups with prime graphs of diameter 5

Ilya B. Gorshkov, Andrey V. Kukharev

Abstract. In this paper we consider a prime graph of finite groups. In par-
ticular, we expect finite groups with prime graphs of maximal diameter.

1 Introduction
In this paper, all groups are finite. The prime graph Γ(G) of a group G is defined
as follows. The vertex set is π(G) the set of prime divisors of the order of G, and
two distinct primes r, s ∈ π(G) considered as vertices of the graph are adjacent if
and only if there exists an element g ∈ G such that |g| = rs.

We say that the graph Γ is isomorphic to the prime graph of the group G if the
vertices of the graph Γ can be marked of primes so that the resulting graph Γ′ is
equal to the graph Γ(G).

The structure of a finite group G such that Γ(G) is disconnected has been
determined by Williams [6]. All simple groups G such that Γ(G) is disconnected
have been described in [2] and [6].

The complement of the prime graph of a solvable group does not contain tri-
angles that have been proved by Lucido [3]. In [1] were completely classified of a
prime graphs of solvable groups. In particular, the graph Γ is isomorphic to Γ(G),
where G is a solvable group if and only if the complement of Γ is without triangles
and 3-colorable. However, the general question remains open.

Question 1. When a graph Γ is isomorphic to a prime graph of some group?

In this paper we consider the diameter of Γ(G). We write d(p, q) to denote the
distance between elements p and q if they are in the same connected component of
Γ(G). We define the diameter of Γ(G) as follows:
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diam(Γ(G)) = max{d(p, q)|p, q in the same connected component of Γ(G)} .

Lucido [3] proved that diam(Γ(G)) ≤ 5. Moreover, she classifies all almost
simple groups with property that the diameter of its prime graph is equal to 5.

Theorem 1. [3, Proposition 12] Let G be an almost simple group such that
diam(Γ(G)) = 5. Then G has the following structure:

G ' E8(q) ·H, where q = pn, q ≡ 0, 1 or 4 mod 5, n = 3s5t where s, t > 0 and
H = 〈γ〉, where γ is a field automorphism of order n.

The main goal of this paper is to describe groups with a prime graph of diam-
eter 5.

A chain graph is a graph without any cycles. Denote by s(G) the number of
connected components of Γ(G) and by πi(G), i = 1, . . . , s(G), its ith connected
component. If G has even order, then put 2 ∈ π1(G).

Theorem 2. Let G be a group such that diam(Γ(G)) = 5 and a, b1, b2, b3, b4, c is a
chain in Γ(G). Then G = K.S.A where K is a nilpotent subgroup, S is a simple
group and A ≤ Out(S), {a, b1, b4, c} ⊆ π(S) \ (π(K) ∪ π(A)). Furthermore one of
the following statements holds:

1. diam(Γ(G) \ Γ(K)) = 5. In particular, G/K is an almost simple group
satisfying Lucido theorem.

2. If b2 ∈ π(K), then b3 ∈ π(K) ∪ π(A). The graph Γ(S) contains more than 2
connected components and {a, b1, b4, c} ∩ π1(S) = ∅.

Remark 1. Note that, when G satisfies the statement 1 of Theorem 2, then G/K
satisfies the Lucido theorem. Hence, G/K ' E8(q).H, where q = pn, q ≡ 0, 1 or
4 mod 5, n = 3s5t where s, t > 0 and H = 〈γ〉, where γ is a field automorphism of
order n. The existence of groups satisfying the statement 2 of Theorem 2 depends
on the validity of the following conjecture.

Conjecture 1. Let S be a finite simple group with disconnected prime graph, a, b ∈
π2(S) be different primes and x, y ∈ S be elements of order a and b respectively. If
there exists an irreducible S-module M such that CM (x) > 1, then CM (y) > 1.

It is easy to see that if the conjecture is true, then statement 2 of Theorem 2 is
impossible.

Williams [6] and Kondratev [2] described simple groups G such that Γ(G) is
disconnected. In particular, from this description follows that S is isomorphic
A1(q), where 3 < q ≡ ±1(4), or simple group of exceptional Lie type.
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2 Definitions and preliminary results
Lemma 1. [1, Theorem 2]An unlabeled graph F is isomorphic to the prime graph
of some solvable group if and only if its complement F is 3-colorable and triangle-
free.

Lemma 2. [3, Proposition 1] Let G be a finite solvable group. If p, q, r are three
distinct primes of π(G), then G contains an element of order the product of two of
these primes.

Lemma 3. [3, Lemma 5] Let G be a finite simple group. If p ∈ π1(G), then
d(2, p) ≤ 2.

For graph Γ we will denote Γ the complement of Γ. Denote by t(G) the maximal
number of primes in π(G) pairwise nonadjacent in Γ(G). In graph theory this
number is called the independence number of a graph. By analogy we denote by
t(2, G) the maximal number of vertices in the independent sets of Γ(G) containing
2. Let ω(G) be the spectrum of G; i.e., the set of element orders of G. Denote by
ωi(G) the set of n ∈ ω(G) such that every prime divisor of n belongs to πi(G).

Lemma 4. [4] Let G be a finite group satisfying the two conditions:
(a) there exist three primes in π(G) pairwise nonadjacent in Γ(G);
(b) there exists an odd prime in π(G) nonadjacent in Γ(G) to the prime 2.
Then there exists a non-abelian simple group S such that S ≤ G = G/K ≤

Aut(S) for the maximal normal solvable subgroup K of G. Furthermore, t(S) ≥
t(G)− 1, and one of the following statements holds:

(1) S ' A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G) a Sylow p-subgroup of

G is isomorphic to a Sylow p-subgroup of S. In particular, t(2, S) ≥ t(2, G).

Lemma 5. [5, Lemma 3.6] Let s and p be distinct primes, a groupH be a semidirect
product of a normal p-subgroup T and a cyclic subgroup C = 〈g〉 of order s, and
let [T, g] 6= 1. Suppose that H acts faithfully on a vector space V of positive
characteristic t not equal to p. If the minimal polynomial of g on V does not equal
xs − 1, then

(i) CT (g) 6= 1;
(ii) T is non-abelian;
(iii) p = 2 and s = 22

δ

+ 1 is a Fermat prime.

Lemma 6. [7, Lemma 2.12] Let S be a finite simple group of Lie type. If r, s, t ∈
π(S) and rt, st ∈ ω(S), but rs 6∈ ω(S), then a Sylow t-subgroup of S is not cyclic.

3 Proof of Theorem 2
Let G be such that diam(Γ(G)) = 5, a, b1, b2, b3, b4, c ∈ V (Γ(G)) be a path of
length 5. The numbers a, b2, c is a triangle in Γ(G). Lemma 2 implies that G is
non-solvable. Therefore, 2 ∈ π(G). Moreover, since diam(Γ(G)) > 2 it follows that
t(2, G) ≥ 3. Using Lemma 4, we get G ' K.S.A, where K is a solvable radical
of G, S is a non-abelian simple group and A ≤ Out(S).
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Lemma 7. S 6' L2(q) for odd q.

Proof. Notice, that Γ(L2(q)) is a graph with three connected components every of
which is complete. In particular, Γ(L2(q)) does not contains chains.

The proof is by contradiction. Let S ' L2(q) for some q = pn where p is odd
prime. Assume that a ∈ π(K). Lemma 4 implies that b2, b3, b4, c ∈ π(S)\π(|K||A|).
Therefore, Γ(S) contains a chain of length 4; a contradiction with the fact that
Γ(S) does not contain chain. By analogy, we can show that π(K) does not contain
b1, b4, c.

Assume that b2 ∈ π(K). Therefore, a, b1 ∈ π((q − 1)/2) or c, b4 ∈ π((q − 1)/2).
Let r ∈ {a, c} ∩ π((q − 1)/2). We have that L2(q) includes a Frobenius group F
with kernel Q of order q and complement K of order (q−1)/2. Let G = T CG such
that T < K and K/T includes a normal Sylow b2-subgroup H. Let P be a Sylow
p-subgroup of G. Assume that P < CG(H). Since H is a normal subgroup of G
we have that X = 〈PG〉 < CG(H). We have that XK/K is a normal subgroup
of S. Therefore, XK/K = S and r ∈ π(CG(H)); a contradiction. Therefore, P
acts no trivial on H. From Frattini’s argument it follows that NG(P ) includes a
r-subgroup T such that TK/K is a Sylow r-subgroup of S. From Lemma 5 it
follows that CG(H) contains an element of order b2r; a contradiction. By analogy,
we can show that π(K) does not contain b3. Thus a, b1, b2, b3, b4, c ∈ π(S.A); a
contradiction with Theorem 1. �

Lemma 8. S 6' Alt7.

Proof. Assume that S ' Alt7. Then a Sylow 3-subgroup of S is an elementary
abelian group of order 9. Therefore, for every p ∈ π(K) we have 3p ∈ ω(G). Using
this fact it is easy show that diam(G) ≤ 3.

�

Lemma 9. If t ∈ π(K), then 2t ∈ ω(G).

Proof. Assume that there exists t ∈ π(K) such that 2t 6∈ ω(G). Let RCG be such
that K = K/R includes a normal t-subgroup T . Let P ∈ Syl2(K.S/R). We have
that P is cyclic or generalized quaternion group. Since PR/R is a Sylow subgroup
of S, we see that PR/R is a dihedral group. A finite simple group has a dihedral
Sylow 2-subgroup only in the case isomorphic to Alt7 or L2(q). From Lemmas 7
and 8 we have that S does not isomorphic L2(q) and Alt7. �

Lemma 10. b1, b4, c, a 6∈ π(K).

Proof. Assume that c ∈ π(K). Lemma 4 implies that a, b1, b2, b3 ∈ π(S) \ (π(A) ∩
π(K)). Since πn(S), where n > 1, is a full component of Γ(S), we see that
a, b1, b2, b3 ∈ π1(S). From Lemma 9 it follows that 2c ∈ ω(G). Therefore, ω(G)
does not contain an element of order 2t for t ∈ {a, b1, b2}. Since a, b1, b2, b3 ∈ π1(S),
we obtain dS(2, a) > 3. It is a contradiction with Lemma 3.

Assume that b1 ∈ π(K). From Lemma 4 it follows that b3, c ∈ π(S). If
b4 ∈ π(S), then similar as above, we can get a contradiction. Let b4 ∈ π(K).
From the Frattini argument we have that automorphisms groups of Sylow b1- and
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b4-subgroups are non-solvable. Therefore, Sylow b1- and b2-subgroups are not
cyclic, in particular b1b4 ∈ ω(K); a contradiction. Assume that b4 ∈ π(A). Hence,
2b4 ∈ ω(S.A). Since S 6' Alt7 and S 6' L2(q), we see that 2b1 ∈ ω(G). Thus
a, b1, 2, b4, c is a chain in Γ(G); a contradiction. Therefore, b1 ∈ π(K). Similarly,
it can be shown that a, b4 6∈ π(K). �

Lemma 11. {b1, b4, c, a} ∩ π(A) = ∅.

Proof. Similar to Lemma 10. �

Lemma 12. K is nilpotent.

Proof. Assume that π(K) includes p, q such that a Hall {p, q}-subgroup H of K
does not nilpotent. From the Frattini argument it follows that NG(H) includes a
subgroup T such that T/NK(H) ' S. Let X CNG(H) be such that a Hall {p, q}-
subgroup of NK(H)/X is not nilpotent but for every X < Y C NG(H) a Hall
{p, q}-subgroup of NK(H)/Y is nilpotent. Denote by ˜ : NG(H) → NG(H)/X

the natural homomorphism. Let N = NG(H). From definition follows that Ñ
includes a normal t-subgroup T , where t ∈ {p, q}. Let r ∈ {p, q} \ {t}, R ∈
Sylr(Ñ). From definition of Ñ follows that R acts no trivial on T . The Frattini
argument implies that NG̃(R)/NK̃(R) includes a subgroup isomorphic S. Let x, y ∈
NG̃(R) be elements of order a and c respectively. Assume that Z(R) < CG̃(x).
Therefore, 〈xNG̃(R)〉 < CG̃(Z(R)). We know that 〈xNG̃(R)〉/〈xNG̃(R)〉∩NK̃(R) ' S.
Therefore, y ∈ CG̃(Z(R)) and d(a, c) = 2; a contradiction. We have x 6∈ CG̃(Z(R)).
Similar we can show that x 6∈ CG̃(Z(R)). Applying Lemma 5 for groups T.Z(R).〈x〉
and T.Z(R).〈y〉 we obtain G̃ contains elements of order ta and tc, in particular,
d(a, c) = 2; a contradiction.

We show that for every p, q ∈ π(K) a Hall {p, q}-subgroup of K is nilpotent.
Therefore, Sylow p- and q-subgroups are commute. Hence, K is nilpotent. �

Lemma 13. If b2 ∈ π(K) \ π(G/K), then b3 ∈ π(K) ∪ π(A). The graph Γ(S)
contains more than 2 connected components and a, b1, b4, c 6∈ π1(S).

Proof. From Lemmas 10 and 11 follow that a, b1, b4, c ∈ π(S). Assume that
c, b4 ∈ π1(S). Since d(2, c) = 2 there exists h ∈ π(S) such that 2h, ch ∈ ω(S).
From Lemma 6 follows that a Sylow h-subgroup of S is not cyclic. Consequently
hb2 ∈ ω(G). Thus a, b1, b2, h, c is a chain in Γ(G), in particular d(a, c) < 5; a
contradiction. We have c, b4 ∈ π2(S). Since π2(G) is a full component of Γ(S), we
see that b3 ∈ π(K) ∪ π(A). Assume that a, b1 ∈ π1(S). If b3 ∈ π(K), then similar
as above we can show that a, c 6∈ π1(S); a contradiction. Therefore, b3 ∈ π(A). In
this case we know that 2b3 ∈ ω(S.A). Hence, a, b1, 2, b3, b4, c is a chain of Γ(A.S).
From Lucido Theorem 1 follows that a, b1 6∈ π1(S); a contradiction. �

The main assertion of the theorem follows from Lemmas 10, 11 and 12. The
statements 1) and 2) of Theorem follows from Lemmas 1 and 13.
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