
Applications of Mathematics

Katsuhisa Ozaki; Takeshi Terao; Takeshi Ogita; Takahiro Katagiri
Verified numerical computations for large-scale linear systems

Applications of Mathematics, Vol. 66 (2021), No. 2, 269–285

Persistent URL: http://dml.cz/dmlcz/148723

Terms of use:
© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/148723
http://dml.cz

66 (2021) APPLICATIONS OF MATHEMATICS No. 2, 269–285

VERIFIED NUMERICAL COMPUTATIONS FOR LARGE-SCALE

LINEAR SYSTEMS

Katsuhisa Ozaki, Saitama, Takeshi Terao, Saitama,

Takeshi Ogita, Tokyo, Takahiro Katagiri, Nagoya

Received November 25, 2019. Published online January 15, 2021.

Abstract. This paper concerns accuracy-guaranteed numerical computations for linear
systems. Due to the rapid progress of supercomputers, the treatable problem size is get-
ting larger. The larger the problem size, the more rounding errors in floating-point arith-
metic can accumulate in general, and the more inaccurate numerical solutions are obtained.
Therefore, it is important to verify the accuracy of numerical solutions. Verified numerical
computations are used to produce error bounds on numerical solutions. We report the
implementation of a verification method for large-scale linear systems and some numerical
results using the RIKEN K computer and the Fujitsu PRIMEHPC FX100, which show the
high performance of the verified numerical computations.

Keywords: verified numerical computation; floating-point arithmetic; high-performance
computing; large-scale linear system

MSC 2020 : 65G20, 65G50, 65Y05

1. Introduction

The computational speed of supercomputers, e.g. floating-point operations per

second, and the total amount of memory increase rapidly. Hence, the treatable

problem size in scientific computing is getting larger. Floating-point numbers and

their arithmetic are widely used for numerical computations. Today’s computers sup-

port standard floating-point formats, such as binary64, binary32, and more seldom

This research was supported by MEXT as “Exploratory Challenge on Post-K computer”
(Development of verified numerical computations and super high-performance computing
environment for extreme researches) using computational resources of the K computer
at RIKEN R-CCS and Fujitsu FX100 at Nagoya University through the HPCI System
Research Project (Project ID: hp190192).

c© Institute of Mathematics, Czech Academy of Sciences 2021.

DOI: 10.21136/AM.2021.0318-19 269

http://dx.doi.org/10.21136/AM.2021.0318-19

also binary16 as defined in IEEE 754 [6]. The computational precision supported by

standard hardware has not increased over 30 years. The larger the problem size, the

more number of floating-point operations are involved. Then the problems caused

by rounding errors can become crucial.

Many scientific problems are boiled down to linear systems. Therefore, it is im-

portant to obtain an accurate numerical solution of a linear system

(1.1) Ax = b

and to guarantee its accuracy. So-called verified numerical computations produce

a pair of an approximate solution and a corresponding error bound using only

floating-point arithmetic. Fast and efficient verification methods have been pro-

posed for linear systems, e.g. [10], [13], [18], [14], [17], [15], [21], [25], [26]. However,

there are few results of verified numerical computations for linear systems in mas-

sively parallel and distributed computing environments. Kolberg et al. reported that

interval linear systems with 100 000 unknowns were solved and the enclosure of the

solution set can be obtained [8].

We implemented an algorithm for accurate matrix-vector products and verified

numerical computations for linear systems and report some numerical results over

1 000 000 unknowns. Although the method is not new, this paper, first in the world,

reports numerical results of such large-scale linear systems. Our goal is to obtain

an accurate numerical result and its tight error bound. Each section in this paper

answers the following questions for the large-scale linear systems:

⊲ Section 2: Are rounding errors an actual issue? And is accuracy assurance

necessary?

⊲ Section 3: Is it possible to obtain accurate numerical results using iterative

refinements?

⊲ Sections 4, 5: Is it possible to obtain tight error bounds for accurate numerical

results?

In Section 2, we show actual relative errors for the large-scale linear systems. In

Section 3, it is shown that an iterative refinement works very efficiently to produce

accurate numerical solutions of large-scale linear systems. In Section 4, we introduce

several verification methods and discuss implementation issues on super computers.

The implemented verification method requires between 4 and 8 times as many node

hours as calculating a numerical solution by PDGESV in ScaLAPACK [1] on super-

computers as shown in Section 5, where ScaLAPACK is a library of high-performance

linear algebra routines for parallel distributed memory machines.

270

2. Notation and error of floating-point arithmetic

Let F be a set of binary floating-point numbers as defined in the IEEE 754

standard [6]. The notation fl(·), fl▽(·) and fl△(·) indicate a result of floating-
point arithmetic with rounding to nearest (roundTiesToEven), rounding downward

(roundTowardNegative) and rounding upward (roundTowardPositive), respectively.

For readability, we omit to use the notation fl for each operation in floating-point

arithmetic. For example, fl((a + b) + c) means fl(fl(a + b) + c). Let u be the

roundoff unit, for example, u = 2−53 for binary64. The notation |·| for a vector
and a matrix is to take absolute values componentwise. For example, for a ∈ R

n,

|a| = (|a1|, |a2|, . . . , |an|)⊤. In the following, I is used to denote the n-by-n identity
matrix. In our numerical examples, we used the K computer at RIKEN R-CCS and

the Fujitsu PRIMEHPC FX100 (hereafter FX100) at Nagoya University. Specifica-

tions of these supercomputers are shown in Table 1.

K computer FX100

CPU SPARC64 VIIIfx SPARC64 XIfx

Peak (GFLOPS) 128 1 126

Number of Cores 8 32

Memory 16 GB 32 GB

Maximum Number of Nodes 82 944 2 880

Table 1. The specification of 1 node of the K computer at RIKEN [23] and the Fujitsu
PRIMEHPC FX100 [3] at Nagoya University. GFLOPS in this table indicates
Giga FLoating-point number Operations Per Second.

We first demonstrate the influence of rounding errors. Using binary64, we pro-

duced a linear system whose exact solution is x = (1, 1, . . . , 1)⊤ by using Algorithm 3

in [19]. A is generated as an n-by-n random matrix. A′ (≈ A) is obtained using Al-

gorithm 3 in [19]. Some of lower bits in the significant of the elements in A′ are zeros,

so that there is no rounding error in b := A′(1, 1, . . . , 1)⊤. Hence, (1, 1, . . . , 1)⊤ is

the exact solution of A′x = b. Note that there is a case A(1, 1, . . . , 1)⊤ 6∈ F
n. We ob-

tain x̂ as an approximate solution by PDGESV in ScaLAPACK on the K computer.

Then, the relative error for x̂i is

|xi − x̂i|
|xi|

= |1− x̂i|.

Each node has a 40 000-by-40000 matrix, and we set the block-cyclic size to 200,

that is set in array descriptor for block-cyclically distributed matrix in ScaLAPACK.

Table 2 shows the average and the maximum relative error for various n. A floating-

point number in binary64 has 53 significant bits including the implicit one. For

271

n > 320 000, about half of the significant bits of the floating-point result are incorrect

because 2−26 ≈ 10−8. It means that binary64 has approximately 16 decimal digits

but only 7–8 decimal digits of the numerical results are correct. When we generate

other random matrices, the results have the same tendency.

n Number of Nodes Average Maximum

80 000 4 4.02e− 10 2.23e− 09

160 000 16 2.94e− 09 1.57e− 08

320 000 64 1.08e− 08 7.17e− 08

640 000 256 1.64e− 07 1.15e− 06

Table 2. Average and maximum relative errors.

3. Iterative refinement

First, we show how to obtain an accurate numerical solution of (1.1). We em-

ploy iterative refinements, which are well summarized in [4], Chapter 12. Rounding

error analysis for the iterative refinements using double of working precision is intro-

duced in [27]. Verification methods for linear system using iterative refinement are

proposed in [15], [20]. The steps of the iterative refinement are described as follows:

1) solve Ax = b numerically and obtain an approximation x̂,

2) compute the residual r ≈ b−Ax̂,

3) solve Ay = r numerically and obtain an approximation ŷ,

4) update x̂ := fl(x̂+ ŷ).

We repeat 2), 3), 4) until we obtain an accurate numerical solution. If we per-

form LU decomposition at 1), we can reuse the LU factors at 3) for obtaining ŷ.

Hence, the computational costs for 2), 3) and 4) are almost negligible. In step 2),

we need higher-precision computations in the cases where heavy cancellation leads

to large relative errors. Note that this partly depends on the condition number

of A, but always depends on the condition numbers of the individual dot products.

There are libraries that support accurate matrix-vector product, e.g. XBLAS [9]

and MPACK [12]. Because we need an enclosure of matrix-vector product parallel

and distributed computing, on the basis of Algorithm 5.3 (Dot2) and Algorithm 5.8

(Dot2Err) in [16], we implemented accurate algorithms for a matrix-vector product

for parallel and distributed computing. These are extensions of algorithms in [29].

The cost of an accurate matrix-vector product using Algorithm 5.3 (Dot2) in [16] with

Fused Multiply-Add is 8n2−5n flops. The notation “flops” means floating-point op-

erations. Additional computing time using the accurate algorithm for a matrix-vector

product is negligible compared to the cost of O(n3) flops for the LU decomposition.

272

Therefore, we only show the flow of the algorithm, and we omit to explain the detail

of the implementation in this paper. Figure 1 shows the image of the accurate dot

product for parallel and distributed computing. We applied Algorithm 3.3 (PDotK,

K = 2) in [29] in each node. Then, the results are transferred to the first node.

Finally, we apply Algorithm 4.4 (Sum2) in [16] and obtain the final result in the first

node.

Final Result

Sum2
...

...

...

PDot2

...

PDot2

...

PDot2

...

PDot2

Node 1

Node 2

Node k − 1

Node k

copy

transfer

transfer

transfer

Figure 1. Image of accurate dot product for parallel and distributed computing. The boxes
show floating-point numbers.

To evaluate the efficiency of the iterative refinement, we generate a matrix A

whose elements are binary64 floating-point numbers with the condition number

‖A−1‖2‖A‖2 being approximately 1010. The singular values of A are geometrically

distributed. We use Algorithm 3 in [19] and generate a linear system Ax = b whose

exact solution is x = (1, . . . , 1)⊤. Tables 3 and 4 show the maximum relative error

with iterative refinement for various n. The results in Table 3 are obtained not using

accurate matrix-vector product but PDGEMV in PBLAS. An initial approximate so-

lution x̂ is obtained at 1) using PDGESV in ScaLAPACK. Table 4 indicates that the

exact solution can be obtained in three iterations. When we generate other matrices

with the condition number 1010, the results have the same tendency. Therefore, we

273

can see that the iterative refinement with the accurate matrix-vector product works

well for such large-scale problems.

n
Iteration Number

0 1 2

160 000 2.69e− 05 7.43e− 09 9.30e− 09

320 000 5.56e− 04 1.58e− 08 8.28e− 08

640 000 9.82e− 04 8.65e− 08 9.37e− 08

1 280 000 2.68e− 02 2.72e− 07 1.85e− 07

Table 3. The maximum relative error using PDGESV in PBLAS.

n
Iteration Number

0 1 2 3

160 000 2.69e− 05 2.89e− 13 0.00e + 00 0.00e + 00

320 000 5.56e− 04 1.31e− 10 0.00e + 00 0.00e + 00

640 000 9.82e− 04 4.38e− 10 0.00e + 00 0.00e + 00

1 280 000 2.68e− 02 1.40e− 07 1.23e− 12 0.00e + 00

Table 4. The maximum relative error using the accurate algorithm for the matrix-vector
product.

4. Verification methods for linear systems

We briefly review a class of verification methods for linear systems. Let R ∈ F
n×n,

which is usually given as an approximate inverse of A. Suppose

(4.1) ‖RA− I‖∞ 6 α ∈ F, ‖R(Ax̂− b)‖∞ 6 β ∈ F.

If α < 1, then

‖x̂−A−1b‖∞ 6
β

1− α

is satisfied [18], [14], [17], [21]. There are several verification methods for comput-

ing α and β. Some of them are listed in Table 5. The cost in the table is the

number of floating-point operations including that for the LU decomposition. We

omit O(n2) terms in the column “Cost” for simplicity. Note that “Cost” depends on

the computation of α, because only matrix-vector products are necessary for β.

There is a trade-off between the cost of computing and the quality of the upper

bound α in the methods listed in the table. It means that the faster the method, the

more likely to fail in verifying α < 1 for ill-conditioned problems. Whether the value

of α is 10−8 or 0.1 makes little difference for the inclusion of the quality. So we are

interested in the cheapest verification method that is still able to verify α < 1. The

274

Method Developers Cost Year

1 Oishi-Rump 4/3n3 2002 [18]

2 Ozaki et al. 7/3n3 2010 [21]

3 Ogita-Oishi 10/3n3 2005 [14]

4 Ogita-Rump-Oishi 4n3 2005 [17]

5 Oishi-Rump 6n3 2002 [18]

Table 5. List of verified numerical computations for linear systems.

comparison of the value of α computed via the listed methods is given in [21]. Here,

we introduce Method 4, which yields the second smallest value to α in the listed

methods. If (3n+ 2)u < 1, Method 4 obtains α as

(4.2) α := fl

(α1 + γ̃3n+2(α2 + 2)

1− 2u

)
,

where

(4.3) α1 := fl(‖RA− I‖∞), α2 := fl(‖|R|(|A|e)‖∞), γ̃n := fl

(nu

1− nu

)
.

We can obtain α in (4.2) without directed rounding. The main cost for Method 4

is computations of R and fl(RA). We need 4n3 + O(n2) flops, because cost for

obtaining R and fl(RA) is 2n3 +O(n2) flops. Because

(4.4) α ≈ ‖(3n+ 2)u(|R||A|+ I)‖∞

in many cases, large n immediately produces α > 1. The constant 3n + 2 in (4.4)

can be reduced down to n as introduced in Appendix1. However, it is still propor-

tional to n, and it turns out that the bound (4.2) cannot be applied for large n.

Thus, we straightforwardly adopt Algorithm 4.5 in [15] as an established method for

computing α to show some numerical examples in this section.

Table 6 shows α obtained by (4.2) using the K computer. The column “Cnd” refers

to the condition number of the coefficient matrix. If the computation yields α > 1,

then the verification failed. We use ‘-’ to denote this case. While Method 4 produces

α < 1 for n = 100 with the condition number being 1012, it returns α > 1 for

n = 1 280 000 with the condition number being 104. In Methods 1–4, one or another

way, the error bound is derived using a worst case error analysis. This reduces the

computational complexity but leads to rough enclosures for the actual product RA.

The error estimate increases linearly with n. Together with the overestimation by

1 Thanks to the reviewer for pointing this out.

275

the use of the infinity norm, this yields the results presented in Table 6. Therefore,

a more robust method is necessary for large-scale problems, and we focus on Method 5

in this paper. Remark that the method by Kolberg et al. is based on the enclosure

theory in [24]. The method is essentially the same as Method 5.

Cnd
n

100 10 000 1 280 000
102 1.70e− 10 1.18e− 06 1.80e− 02
104 1.15e− 07 7.18e− 04 –
106 5.23e− 06 3.26e− 02 –
108 6.65e− 05 4.89e− 01 –
1010 4.86e− 04 – –
1012 2.75e− 03 – –

Table 6. Upper bound α of ‖RA− I‖∞.

Oishi and Rump proposed Method 5 obtaining α and β in (4.1), which exploits

directed rounding [18]. They take R ∈ F
n×n as an approximate inverse matrix of A.

Computing RA− I with rounding downwards and upwards, respectively, we have

(4.5) fl▽(RA− I) 6 RA− I 6 fl△(RA− I).

The procedure for (4.5) is to switch a rounding mode to RoundTowardNegative,

call PDGEMM, again switch a rounding mode to RoundTowardPositive, and call

PDGEMM. To change a rounding mode, the function fesetround is supported in C

language standardized in C99. We compute a matrix T ∈ F
n×n as

(4.6) tij := max(|fl▽(RA− I)|ij , |fl△(RA− I)|ij)

and α as

(4.7) α := fl△(‖T ‖∞).

The main cost for computing α is the computation of R, fl▽(RA) and fl△(RA).

Each of them requires 2n3 +O(n2) flops, so totally 6n3 +O(n2) flops are necessary.

Using a probabilistic error bound by Higham and Mary [5], we can expect

(4.8) α . ‖λ
√
n+ 1u(|R||A|+ I)‖∞ +O(u2),

where λ is a constant of O(1). Compared to α from Method 4 in (4.4), Method 5

produces much smaller α for large n, so we implement Method 5 for the supercom-

puters.

276

Next, we adapt a method in [20] for computing β. Let x̂ ∈ F
n be an approximate

solution of (1.1). We then compute an enclosure for the residual Ax̂ − b. Applying

Dot2Err to matrix-vector product, we get c1, r1 ∈ F
n such that

c1 − r1 6 Ax̂− b 6 c1 + r1,

where all elements in r1 are non-negative. The vectors c1 and r1 mean center and

radius, respectively. Using Dot2Err, r1 ≪ |c1| is expected. Similarly, an enclosure
of Rc1 is obtained as

c2 − r2 6 Rc1 6 c2 + r2.

Then

β := ‖fl△(|c2|+ r2 + |R|r1)‖∞.

The cost for computing β is O(n2) and negligible compared to that for α.

OpenMP

Thread 1 Thread 2 Thread 3

Compiled library routine (ex. PDGEMM)

Master Thread

Changed Rounding Mode

Master Thread

Figure 2. Change of the rounding mode.

Here, we discuss pitfalls for switches of rounding modes on parallel and distributed

computers.

(P1) Even if the rounding mode is changed in the master thread, the rounding mode

in the other threads is not changed (Fig. 2).

(P2) We use reduction functions in Message Passing Interface (MPI), for example,

MPI Reduce and MPI AllReduce. The sum is computed not on CPU, but In-

terConnect Controller (Fig. 3) on the K computer and the FX100, i.e., switches

of rounding modes by the function fesetround cannot work correctly in this

case.

(P3) If an alternative algorithm for matrix multiplication, such as Strassen [28], is

used in PDGEMM, the inequality (4.5) is not generally satisfied.

277

InterConnect Controller Sum

fesetroundCPU

Data

Figure 3. Computation in the reduction.

One may think that we can switch the rounding mode after threading by OpenMP

for (P1). However, it is impossible to do it in compiled library routines (Fig. 2), for

example, PDGEMM in PBLAS [22] and PDLANGE in ScaLAPACK, which are used

for (4.6) and (4.7), respectively. Because MPI Reduce is used for both PDGEMM

and PDLANGE, (P2) is actually a problem for the verification method.

5. Numerical results

We report several numerical examples using the K computer and the FX100.

Thanks to Fujitsu, problems (P1) and (P3) have been solved.

⊲ Fujitsu provided the function flib omp fesetround . This works for both the K

computer and the FX100. Using the function, the rounding mode of floating-point

arithmetic in PBLAS and ScaLAPACK can be changed for all threads in all nodes.

⊲ Fujitsu confirmed that an alternative algorithm for matrix multiplication, such as

Strassen [28], is not applied for PDGEMM in PBLAS.

Besides, if we set the mca option for mpiexec as

--mcacoll base reduce commute safe1,

then the order of the reduction is fixed, and floating-point arithmetic is executed

using the only CPU. Using this option tends to slow down the performance, but we

checked that this is less than 5 % in terms of the overall computing time. With this

option being used, changes of the rounding mode are also valid for MPI Reduce and

MPI AllReduce. Therefore, all issues from (P1) to (P3) are solved.

We generate test matrices, whose singular values are geometrically distributed.

For a generated matrix A, let t = (1, 1, . . . , 1)⊤ and compute the right-hand side

vector b = fl(At). Then x ≈ (1, 1, . . . , 1)⊤ for Ax = b can be expected. We apply

three iterative refinements to obtain x̂. The matrix R is obtained by solving AX = I

using PDGESV in ScaLAPACK. We set the block-cyclic size to 200. Table 7 shows

fl△(β/fl▽(1− α)) for various condition numbers for n = 10 000 and n = 1 000 000

on the K computer. If the computation yields α > 1, then the verification failed.

278

We use ‘-’ to denote this case. The results indicate that tight error bounds can be

obtained for large n.

Cnd
n

10 000 1 000 000
102 1.11e− 16 1.11e− 16
104 1.11e− 16 1.11e− 16
106 1.11e− 16 1.13e− 16
108 1.11e− 16 –
1010 1.17e− 16 –
1012 – –

Table 7. Comparison of fl△(β/fl▽(1− α)).

n No. of Nodes Time (APP) Time (VNC) Ratio of Node-hours

300 000 400 631 4 474 7.07

600 000 1 600 1 440 9 116 6.32

1 200 000 6 400 3 575 19 066 5.33

2 400 000 25 600 10 025 40 827 4.07

Table 8. Comparison of node-hours (K computer).

n No. of Nodes Time (APP) Time (VNC) Ratio of Node-hours

120 000 36 111 569 5.09

240 000 144 239 1 137 4.74

360 000 324 392 1 768 4.50

480 000 576 583 2 402 4.11

Table 9. Comparison of node-hours (FX100).

Next, we show computational performance on the K computer and the FX100.

We use APP and VNC to denote the approximate computation (PDGESV) and the

verified numerical computations including iterative refinements, respectively. Note

that the mca option is not set for the numerical example of APP. Tables 8 and 9

show computing times (Time, sec) and ratio(s) of node hours (VNC / APP) on the K

computer and the FX100. Note that the theoretical ratio is nearly nine, because the

cost of the LU decomposition is 2

3
n3 + O(n2) flops, and that of the verification is

6n3 +O(n2) flops.

There is a difference in the amount of working memory between APP and VNC.

For APP without the iterative refinement, only a matrix is stored, because A is over-

written to the LU factors and an approximate solution is obtained by backward and

forward substitutions. On the other hand, four matrices are stored for VNC: A, R,

279

fl▽(RA− I) and fl△(RA− I). Therefore, the number of nodes can be reduced for

APP, and it makes efficiency of the parallelization better. The ratios of node hours

for the reduced number of nodes are shown in Tables 10 and 11. The individual

number of nodes is given in the respective columns. In this case, the performance

is still better than the theoretical ratio. In particular, the ratio for FX100 is much

better than nine. The reason is the difference in any or all of the following factors:

the instruction level parallelism (ILP), floating-point operations performance, and

throughput of LU decomposition and matrix multiplications.

n No. of Nodes Time No. of Nodes Time Ratio of

APP APP VNC VNC Node-hours

300 000 100 2 203 400 4 470 8.12

600 000 400 4 513 1 600 9 116 8.07

1 200 000 1 600 9 624 6 400 19 066 7.92

2 400 000 6 400 21 843 25 600 40 827 7.47

Table 10. Comparison of node-hours (K computer).

n No. of Nodes Time No. of Nodes Time Ratio of

APP APP VNC VNC Node-hours

120 000 9 483 36 568 4.97

240 000 36 876 144 1 136 5.19

360 000 81 1 309 324 1 768 5.40

480 000 144 1 802 576 2 402 5.33

Table 11. Comparison of node-hours (FX100).

6. Conclusion

We reported the implementation and performance of verified numerical compu-

tations for linear systems on supercomputers. Further results for other verification

methods, memory reduced implementation, and implementation of accurate algo-

rithms for a matrix-vector product will appear in forthcoming papers. We will im-

plement recursive block matrix multiplication [2] for the improvement of (4.2). If

the dimension of the matrix is 1 000 000, and the condition number of the coefficient

matrix is 108, the method based on [18] failed to produce the error bound. We will

try to produce error bounds for the linear system implementing the methods in [10],

[25], [26] as future work. These methods can be applied for the linear system with

more ill-conditioned coefficient matrices. Moreover, the linear system with struc-

tured matrices such as symmetric positive definite matrix will be the focus in future

project on verified numerical computations using supercomputers.

280

Appendix

We introduce a better upper bound compared to (4.2). Let us be the smallest

positive floating-point number in F. Assume

(6.1) (n+ 3)u < 1,
1

2
n2us +

1

2
n2u · us +

1

2
(1 + u)n−2us < u.

Using (2.1) and (2.2) in [17] yields

a+ b 6 (1 + u)fl(a+ b),(6.2)

ab 6 (1 + u)fl(ab) +
1

2
us(6.3)

for 0 6 a, b ∈ F. If underflow does not occur in fl(ab), the term 1

2
us in (6.3) can be

omitted. From (2.8) in [17],

(6.4) (1 + u)n 6
1

1− nu

is satisfied. The inequality

(6.5)
a

1− nu
6 fl

(a

1− (n+ 1)u

)

is given in (2.14) in [17], where u−1 · us < a ∈ F. Let T := fl((RA) − I). From

Lemma 4 in [11], if fl(‖T ‖∞) < 1,

(6.6) |fl((RA)− I)− (fl(RA)− I)|ii 6 u

is satisfied for all i. Application of Theorem 4.2 in [7] with care of underflow gives

(6.7) |fl(RA)−RA| 6 nu|R||A|+ 1

2
nusE,

where all elements in E ∈ F
n×n are ones. From (6.6) and (6.7) we obtain

T − (RA− I) = fl(fl(RA)− I)− (RA− I) = fl(RA)− I +∆1 − (RA− I)

= fl(RA)−RA+∆1 = ∆2 +∆1,

where |∆1| 6 uI and |∆2| 6 nu|R||A|+ 1

2
nusE. Hence,

(6.8) |RA− I|e 6 |T |e+ |∆2|e+ |∆1|e 6 |T |e+ nu|R||A|e+ 1

2
n2use+ ue,

281

where e := (1, 1, . . . , 1)⊤. Applying (6.2) and (6.3), we obtain

(6.9) |T |e 6 (1 + u)n−1fl(|T |e)

and

(6.10) nu|R||A|e 6 nu(1 + u)n−1(|R|fl(|A|e))

6 nu
(
(1 + u)2n−1fl(|R|(|A|e)) + 1

2
nuse

)

= nu(1 + u)2n−1fl(|R|(|A|e)) + 1

2
n2u · use.

Therefore, (6.8), (6.9) and (6.10) yield

(6.11) |RA− I|e 6 |T |e+ nu|R||A|e+ 1

2
n2use + ue

6 (1 + u)n−1fl(|T |e) + nu(1 + u)2n−1fl(|R|(|A|e))

+
1

2
n2u · use +

1

2
n2use+ ue.

From (6.4), (6.5) and (6.3), we obtain an upper bound of nu(1+u)2n−1fl(|R|(|A|e))
as

(6.12) nu(1 + u)2n−1fl(|R|(|A|e)) = (1 + u)n−2nu(1 + u)n+1fl(|R|(|A|e))
6 (1 + u)n−2 nu

1− (n+ 1)u
fl(|R|(|A|e))

6 (1 + u)n−2fl

(nu

1− (n+ 2)u

)
· fl(|R|(|A|e))

6 (1 + u)n−1fl

(nu

1− (n+ 2)u
(|R|(|A|e))

)
+

1

2
(1 + u)n−2use.

Then, using (6.11), (6.12), (6.1), (6.2), (6.4) and (6.5) yields

|RA− I|e < (1 + u)n−1

(
fl(|T |e) + fl

(nu

1− (n+ 2)u
(|R|(|A|e))

))
+ 2ue

< (1 + u)n−1

(
fl(|T |e) + fl

(nu

1− (n+ 2)u
(|R|(|A|e))

)
+ 2ue

)

6 (1 + u)n+1 · fl
(
|T |e+ nu

1− (n+ 2)u
(|R|(|A|e)) + 2ue

)

6
1

1− (n+ 1)u
· fl

(
|T |e+ nu

1− (n+ 2)u
(|R|(|A|e)) + 2ue

)

6 fl

(|T |e+ (nu/(1− (n+ 2)u))(|R|(|A|e)) + 2ue

1− (n+ 2)u

)
.

282

Therefore, we finally have

(6.13) ‖RA− I‖∞ 6 fl

(‖ |T |e+ (nu/(1− (n+ 2)u))(|R|(|A|e)) + 2ue‖∞
1− (n+ 2)u

)
.

This upper bound is almost three time better than (4.2).

Let

α′ := fl

(‖ |T |e+ (nu/(1− (n+ 2)u))(|R|(|A|e))‖∞
1− (n+ 1)u

)
.

From a similar discussion, we produce

‖RA− I‖∞ 6 α′ + 2u.

Therefore,

1− ‖RA− I‖∞ > 1− 2u− α′

is satisfied. Here, from (2.1) in [17] and fl(1− 2u) = 1− 2u we derive

1− ‖RA− I‖∞ > (1 − u)fl((1− 2u)− α′).

This is applicable to [17], Theorem 3.2.

The alternative method using the unit in the first place is proposed in [11].

A c k n ow l e d gm e n t s. The authors wish to thank the anonymous reviewers

for comments on earlier version of this paper and suggestions for future work. We

sincerely express our thank to Fujitsu Limited for developing the function of switches

of rounding modes and giving us the fruitful information of BLAS functions. Thanks

to Mr.Ryota Ochiai, Mr.Atsushi Sakamoto, and Mr.Ryota Kobayashi, former stu-

dents in Shibaura Institute of Technology for the assistance of coding and numerical

tests.

References

[1] L. S. Blackford, J. Choi, A.Cleary, E.DAzevedo, J. Demmel, I.Dhillon, J. Dongarra,
S.Hammarling, G.Henry, A. Petitet, K. Stanley, D.Walker, R. C.Whaley: ScaLAPACK
- Scalable Linear Algebra PACKage. Available at http://www.netlib.org/scalapack/
(2019). sw

[2] A.M.Castaldo, R. C.Whaley, A. T.Chronopoulos: Reducing floating point error in dot
product using the superblock family of algorithms. SIAM J. Sci. Comput. 31 (2008),
1156–1174. zbl MR doi

[3] FUJITSU: FUJITSU Supercomputer PRIMEHPC FX100. Available at
https://www.fujitsu.com/global/products/computing/servers/

supercomputer/primehpc-fx100/ (2020).
[4] N. J. Higham: Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, 2002. zbl MR doi

283

https://swmath.org/software/00830
https://zbmath.org/?q=an:1189.65076
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2466152
http://dx.doi.org/10.1137/070679946
https://www.fujitsu.com/global/products/computing/servers/supercomputer/primehpc-fx100/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/primehpc-fx100/
https://zbmath.org/?q=an:1011.65010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1927606
http://dx.doi.org/10.1137/1.9780898718027

[5] N. J. Higham, T.Mary: A new approach to probabilistic rounding error analysis. SIAM
J. Sci. Comput. 41 (2019), A2815–A2835. zbl MR doi

[6] IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic: IEEE Std
754-2008. IEEE, NewYork, 2008. doi

[7] C.-P. Jeannerod, S.M.Rump: Improved error bounds for inner products in floating-point
arithmetic. SIAM J. Matrix Anal. Appl. 34 (2013), 338–344. zbl MR doi

[8] M.Kolberg, G. Bohlender, L.G. Fernandes: An efficient approach to solve very large
dense linear systems with verified computing on clusters. Numer. Linear Algebra Appl.
22 (2015), 299–316. zbl MR doi

[9] X.Li, J. Demmel, D.Bailey, Y.Hida, J. Iskandar, A.Kapur, M.Martin, B. Thompson,
T.Tung, D.Yoo: XBLAS - Extra Precise Basic Linear Algebra Subroutines. Available
at https://www.netlib.org/xblas/ (2008). sw

[10] A.Minamihata, K. Sekine, T.Ogita, S.M.Rump, S.Oishi: Improved error bounds for
linear systems with H-matrices. Nonlinear Theory Appl., IEICE 6 (2015), 377–382. doi

[11] Y.Morikura, K.Ozaki, S.Oishi: Verification methods for linear systems using ufp esti-
mation with rounding-to-nearest. Nonlinear Theory Appl., IEICE 4 (2013), 12–22. doi

[12] M.Nakata: The MPACK: Multiple Precision Arithmetic BLAS (MBLAS) and LAPACK
(MLAPACK). Available at http://mplapack.sourceforge.net/ (2011). sw

[13] A.Neumaier: A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure
for linear interval equations. Reliab. Comput. 5 (1999), 131–136. zbl MR doi

[14] T.Ogita, S. Oishi: Fast verification for large-scale systems of linear equations. IPSJ
Trans. 46 (2005), 10–18. (In Japanese.)

[15] T.Ogita, S. Oishi, Y.Ushiro: Computation of sharp rigorous componentwise error
bounds for the approximate solutions of systems of linear equations. Reliab. Comput. 9
(2003), 229–239. zbl MR doi

[16] T.Ogita, S.M.Rump, S.Oishi: Accurate sum and dot product. SIAM J. Sci. Comput.
26 (2005), 1955–1988. zbl MR doi

[17] T.Ogita, S.M.Rump, S.Oishi: Verified Solution of Linear Systems Without Directed
Rounding: Technical Report No. 2005-04. Advanced Research Institute for Science and
Engineering, Waseda University, Tokyo, 2005.

[18] S.Oishi, S.M.Rump: Fast verification of solutions of matrix equations. Numer. Math.
90 (2002), 755–773. zbl MR doi

[19] K.Ozaki, T.Ogita: Generation of linear systems with specified solutions for numerical
experiments. Reliab. Comput. 25 (2017), 148–167. MR

[20] K.Ozaki, T.Ogita, S.Miyajima, S.Oishi, S.M.Rump: A method of obtaining verified
solutions for linear systems suited for Java. J. Comput. Appl. Math. 199 (2007), 337–344. zbl MR doi

[21] K.Ozaki, T.Ogita, S.Oishi: An algorithm for automatically selecting a suitable verifi-
cation method for linear systems. Numer. Algorithms 56 (2011), 363–382. zbl MR doi

[22] A.Petitet: PBLAS - Parallel Basic Linear Algebra Subprograms. Available at
http://www.netlib.org/scalapack/pblas_qref.html. sw

[23] RIKEN Center for Computational Science: What is K? Available at
https://www.r-ccs.riken.jp/en/k-computer/about/ (2019).

[24] S.M.Rump: Kleine Fehlerschranken bei Matrixproblemen: PhD Thesis. Universität
Karlsruhe, Karlsruhe, 1980. (In German.) zbl doi

[25] S.M.Rump: Accurate solution of dense linear systems I: Algorithms in rounding to
nearest. J. Comput. Appl. Math. 242 (2013), 157–184. zbl MR doi

[26] S.M.Rump: Accurate solution of dense linear systems II: Algorithms using directed
rounding. J. Comput. Appl. Math. 242 (2013), 185–212. zbl MR doi

[27] R.D. Skeel: Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comput. 35 (1980), 817–832. zbl MR doi

284

https://zbmath.org/?q=an:07123205
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4002728
http://dx.doi.org/10.1137/18M1226312
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://zbmath.org/?q=an:1279.65052
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3038111
http://dx.doi.org/10.1137/120894488
https://zbmath.org/?q=an:1363.65088
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3313260
http://dx.doi.org/10.1002/nla.1950
https://swmath.org/software/11672
http://dx.doi.org/10.1587/nolta.6.377
http://dx.doi.org/10.1587/nolta.4.12
https://swmath.org/software/12855
https://zbmath.org/?q=an:0936.65055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1702530
http://dx.doi.org/10.1023/A:1009997221089
https://zbmath.org/?q=an:1029.65045
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1984561
http://dx.doi.org/10.1023/A:1024655416554
https://zbmath.org/?q=an:1084.65041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2196584
http://dx.doi.org/10.1137/030601818
https://zbmath.org/?q=an:0999.65015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1888837
http://dx.doi.org/10.1007/s002110100310
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3693809
https://zbmath.org/?q=an:1108.65019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2269516
http://dx.doi.org/10.1016/j.cam.2005.08.034
https://zbmath.org/?q=an:1209.65051
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2774120
http://dx.doi.org/10.1007/s11075-010-9389-6
http://www.netlib.org/scalapack/pblas_qref.html
http://www.netlib.org/scalapack/pblas_qref.html
https://swmath.org/software/19577
https://zbmath.org/?q=an:0437.65036
http://dx.doi.org/10.15480/882.321
https://zbmath.org/?q=an:1255.65084
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2997436
http://dx.doi.org/10.1016/j.cam.2012.10.010
https://zbmath.org/?q=an:1260.65034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2997437
http://dx.doi.org/10.1016/j.cam.2012.09.024
https://zbmath.org/?q=an:0441.65027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0572859
http://dx.doi.org/10.2307/2006197

[28] V.Strassen: Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354–356. zbl MR doi
[29] N.Yamanaka, T.Ogita, S.M.Rump, S.Oishi: A parallel algorithm for accurate dot

product. Parallel Comput. 34 (2008), 392–410. MR doi

Authors’ addresses: Katsuhisa Ozaki (corresponding author), Takeshi Terao, Shibaura
Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan,
e-mail: ozaki@sic.shibaura-it.ac.jp, nb17105@shibaura-it.ac.jp; Takeshi Ogita,
Tokyo Woman’s Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585,
Japan, e-mail: ogita@lab.twcu.ac.jp; Takahiro Katagiri, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan, e-mail: katagiri@cc.nagoya-u.ac.jp.

285

https://zbmath.org/?q=an:0185.40101
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0248973
http://dx.doi.org/10.1007/BF02165411
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2428885
http://dx.doi.org/10.1016/j.parco.2008.02.002

		webmaster@dml.cz
	2021-04-19T14:37:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

