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Abstract. Let k = Q
(√

2,
√

d
)

be an imaginary bicyclic biquadratic number field, where

d is an odd negative square-free integer and k
(2)
2 its second Hilbert 2-class field. Denote by

G = Gal(k
(2)
2 /k) the Galois group of k

(2)
2 /k. The purpose of this note is to investigate the

Hilbert 2-class field tower of k and then deduce the structure of G.

Keywords: 2-class group; imaginary biquadratic number field; capitulation; Hilbert 2-
class field
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1. Introduction

Let k be an algebraic number field. For a prime number p, let Clp(k) be the

p-Sylow subgroup of the ideal class group Cl(k) of k. Let k
(1)
p be the Hilbert p-class

field of k, that is the maximal unramified (including the infinite primes) abelian field

extension of k whose degree over k is a p-power. Put k
(0)
p = k and let k

(i)
p denote the

Hilbert p-class field of k
(i−1)
p for any integer i > 1. Then the sequence of fields

k = k(0)p ⊂ k(1)p ⊂ k(2)p ⊂ . . . ⊂ k(i)p . . .

is called the p-class field tower of k. If k
(i)
p 6= k

(i−1)
p for all i > 1 the tower

is said to be infinite, otherwise the tower is said to be finite, and the mini-

mal integer i satisfying the condition k
(i)
p = k

(i−1)
p is called the length of the

tower.

One of the most important and difficult problems in algebraic number theory is to

decide whether a p-class field tower of a number field is finite or not. Furthermore,
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the study of structure of the Galois group of the tower is an open problem. However,

for p = 2 and Clp(k) being isomorphic to Z/2Z × Z/2Z, the Hilbert 2-class field

tower of k terminates in at most two steps and the structure of the Galois group

G = Gal(k
(2)
2 /k) is closely related to the capitulation problem in the unramified

quadratic extensions of k, see [15]. Our contribution in this paper is to investigate

the Hilbert 2-class field tower of some families of imaginary bicyclic biquadratic

number fields k = Q
(√

2,
√
d
)

, where d is an odd negative square free integer, and

to determine the structure of G involving the capitulation problem.

Note that we are looking forward to make a detailed study of some imagi-

nary triquadratic number fields of the form Q
(

ζ8,
√
d
)

for which the 2-class group

is related to the one of k in many cases (see for example [4], Theorem 5.17).

Note also that there are many works interested in such question for the fields

Q
(√

−2,
√
−d

)

, Q
(√

2,
√
−d

)

and Q
(√

−1,
√
d
)

, d always being an odd nega-

tive square free integer (see for example [3], [5], [7]), which are all subfields

of Q
(

ζ8,
√
d
)

.

2. Notations and preliminary results

Let k be a number field. Along this paper, we adopt the following notations:

⊲ d: a negative odd square free integer,

⊲ k = Q
(√

2,
√
d
)

,

⊲ k∗: the absolute genus field of k,

⊲ Ok: the ring of integers of k,

⊲ k
(1)
2 : the Hilbert 2-class field of k,

⊲ k
(2)
2 : the Hilbert 2-class field of k

(1)
2 ,

⊲ G: the Galois group of k
(2)
2 /k,

⊲ [a]: the class of an ideal a in Ok,

⊲ Cl(k): the class group of k,

⊲ Cl2(k): the 2-class group of k,

⊲ h2(k): the 2-class number of k,

⊲ h2(m): the 2-class number of a quadratic field Q
(√

m
)

,

⊲ Nk′/k: the norm map of some extension k′/k,

⊲ N : the absolute norm of a quadratic extension over Q,

⊲ Ek: the unit group of Ok,

⊲ εm: the fundamental unit of Q
(√

m
)

, if m > 1 is a square-free integer,

⊲ (a/p)4: the biquadratic residue symbol,

⊲ k+: the maximal real subfield of k, if k is a CM-field,

⊲ Wk: the group of roots of unity contained in k,
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⊲ Qk = (Ek : WkEk+) is Hasse’s unit index, if k is a CM-field,

⊲ q(k) =
(

Ek :
∏

i

Eki

)

is the unit index of k, if k is multiquadratic, and ki are the

quadratic subfields of k.

Let us start by determining fields k = Q
(√

2,
√
d
)

satisfying the condition

that Cl2(k) is of type (2, 2) (i.e., isomorphic to Z/2Z× Z/2Z). We will also deduce

the group of units of k. From [18], Proposition 4 we get the following results.

Proposition 2.1. Let d be an odd negative square free integer. Then the rank

of Cl2(k) equals 2 if and only if d takes one of the following forms:

(1) d = −p for a prime p ≡ 1 (mod 8),

(2) d = −pq ≡ 3 (mod 4) for primes p and q such that (2/p) = (2/q) = −1,

(3) d = −pq ≡ 1 (mod 4) for primes p and q such that (2/p) 6= (2/q),

(4) d = −p1p2q for primes p1 ≡ p2 ≡ 5 (mod 8) and q ≡ 3 (mod 8),

(5) d = −q1q2q3 for primes q1 ≡ q2 ≡ q3 ≡ 3 (mod 8).

The third assertion of the above proposition implies the following theorem which

gives conditions to have Cl2(k) of type (2, 2).

Theorem 2.2. Let d be an odd negative square free integer. Then Cl2(k) is of

type (2, 2) if and only if d takes one of the following forms:

(1) d = −pq for primes p ≡ 5 (mod 8) and q ≡ 7 (mod 8) satisfying (p/q) = −1,

(2) d = −pq for primes p ≡ 1 (mod 8) and q ≡ 3 (mod 8) satisfying (p/q) = −1.

P r o o f. Let d be an odd negative square free integer such that d 6= −1. By the

class number formula (see [20]), we have:

h2(k) =
1

2
q(k)h2(2)h2(2d)h2(d) =

1

2
q(k)h2(2d)h2(d).

We have that −dε2 is not a square in Q
(√

2
)

. In fact, if −dε2 = α2 for some α

in Q
(√

2
)

then N
Q(

√
2)/Q(−dε2) = −d2 = N

Q(
√
2)/Q(α)

2. So, by [1], Proposition 3,

{ε2} is a fundamental system of units of k. It follows that q(k) = 1 and

(1) h2(k) =
1

2
h2(2d)h2(d).

We discuss each case of d appearing in the previous proposition. Recall that for

any prime p′ we have (2/p′) = −1 if and only if p′ ≡ 3 (mod 8) or p′ ≡ 5 (mod 8).

⊲ Suppose that d takes the first form of Proposition 2.1. We have that h2(−2p) and

h2(−p) are divisible by 4 (see [13]), so by the formula (1), h2(k) is divisible by 8.

Hence this case is eliminated.
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⊲ The second item of Proposition 2.1 is equivalent to the statement: d = −pq with

p ≡ q ≡ 3 (mod 8) or p ≡ q ≡ 5 (mod 8). If p ≡ q ≡ 3 (mod 8), then by [14],

pages 354 and 356, h2(−pq) and h2(−2pq) are divisible by 4 and 8, respectively.

If p ≡ q ≡ 5 (mod 8), then by [14], pages 348–350, h2(−pq) and h2(−2pq) are

divisible by 8 and 4, respectively. It follows by the formula (1) that h2(k) is

divisible by 16. Hence this case is eliminated.

⊲ The third item of Proposition 2.1 is equivalent to the statement: d = −pq with

[p ≡ 5 (mod 8) and q ≡ 7 (mod 8)] or [p ≡ 1 (mod 8) and q ≡ 3 (mod 8)].

Suppose that, d = −pq with p ≡ 1 (mod 8) and q ≡ 3 (mod 8). If (p/q) =

−1, then by [14], pages 353 and [8], Corollary 19.6, we have h2(−2pq) = 4 and

h2(−pq) = 2, so by the formula (1), h2(k) = 4. If (p/q) = 1, then again by [14],

page 353 and [8], Corollary 19.6, h2(−2pq) and h2(−pq) are divisible by 8 and 4,

respectively. Thus, by formula (1), h2(k) is divisible by 16. Similarly, we show

that if d = −pq with p ≡ 5 (mod 8) and q ≡ 7 (mod 8), then Cl2(k) ≃ (2, 2) if

and only if (p/q) = −1.

⊲ The fourth item of Proposition 2.1 is equivalent to the statement: d = −p1p2q with

p1 ≡ p2 ≡ 5 (mod 8) and q ≡ 3 (mod 8). Thus h2(k) =
1
2h2(−2p1p2q)h2(−p1p2q).

So by the genus theory of quadratic number fields (see e.g. [14], page 315) h2(k)

is divisible by 16.

⊲ Again by the genus theory of quadratic number fields we eliminate the fifth item of

Proposition 2.1 and show that h2(k) is divisible by 16. This completes the proof.

�

By the previous proof we deduce the following corollary.

Corollary 2.3. Let d 6= −1 be an odd negative square free integer and k =

Q
(√

2,
√
d
)

. Then Ek = 〈−1, ε2〉 if d < −3 and Ek = 〈ζ6, ε2〉 if d = −3. Thus

q(k) = Qk = 1.

By [12], one deduces easily the following result.

Proposition 2.4. Let d be an odd negative square free integer. If p1, . . . , pr are

the prime divisors of d, then the genus field of k = Q
(√

2,
√
d
)

is

k
∗ = k

(
√

p∗1, . . . ,
√

p∗r
)

with p∗i = (−1)(pi−1)/2pi. In particular, if d takes one of the forms of Theorem 2.2,

we infer that k∗ = k
(√

p,
√−q

)

= Q
(√

2,
√
p,
√−q

)

.
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3. Main results

Let us begin by recalling some points that are necessary for what follows.

Let Qm, Dm, and Sm denote the quaternion, dihedral and semidihedral groups

of order 2m, respectively, where m > 3 and m > 4 for Sm. In addition, let A denote

the Klein four-group. Each of these groups is generated by two elements x and y,

and admits a representation by generators and relations as follows:

A = {x, y : x2 = y2 = 1, y−1xy = x},
Qm = {x, y : x2m−2

= y2 = a, a2 = 1, y−1xy = x−1},
Dm = {x, y : x2m−1

= y2 = 1, y−1xy = x−1},
Sm = {x, y : x2m−1

= y2 = 1, y−1xy = x2m−2−1}.

We recall some well known properties of 2-groups G such that G/G′ is of type (2, 2),

where G′ denotes the commutator subgroup of G (see for more details [15],

pages 272–273 and [9], Chapter 5).

Let k be an algebraic number field and Cl2(k) the 2-Sylow subgroup of its ideal

class group Cl(k). Let k
(1)
2 (or k

(2)
2 ) be the first (or second) Hilbert 2-class field

of k, respectively. Put G = Gal(k
(2)
2 /k), then if G′ denotes the commutator sub-

group of G, we have by the class field theory G′ ≃ Gal(k
(2)
2 /k

(1)
2 ) and G/G′ ≃

Gal(k
(1)
2 /k) ≃ Cl2(k). Assume in all what follows that Cl2(k) is of type (2, 2), then

it is known that G is isomorphic to A, Qm, Dm or Sm.

Let x and y be as above. Note that the commutator subgroup G′ of G is always

cyclic and G′ = 〈x2〉. The group G possesses exactly three subgroups of index 2

which are

H1 = 〈x〉, H2 = 〈x2, y〉, H3 = 〈x2, xy〉.

Furthermore, if G is isomorphic to A (or Q3), then the subgroups Hi are cyclic of

order 2 (or 4), respectively. If G is isomorphic to Qm withm > 3, Dm or Sm, then H1

is cyclic and Hi/H
′
i is of type (2, 2) for i ∈ {2, 3}, where H ′

i is the commutator

subgroup of Hi.

Let Fi be the subfield of k
(2)
2 fixed by Hi, where i ∈ {1, 2, 3}. It is clear that F1

has a cyclic 2-class group and k
(2)
2 is exactly the Hilbert 2-class field of F1 (see the

proof of Corollary 3.8 below). If k
(2)
2 6= k

(1)
2 , 〈x4〉 is the unique subgroup of G′ of

index 2. Let L (L is defined only if k
(2)
2 6= k

(1)
2 ) be the subfield of k

(2)
2 fixed by 〈x4〉.

Then F1, F2 and F3 are the three quadratic subextensions of k
(1)
2 /k and L is the

unique subfield of k
(2)
2 such that L/k is a nonabelian Galois extension of degree 8.

We first recall the definition of Taussky’s conditions A and B, see [19].
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Definition 3.1. Let k′ be a cyclic unramified extension of a number field k

and let j denote the basic homomorphism: jk′/k : Cl(k) → Cl(k′), induced by the

extension of ideals from k to k′. Then:

(1) k′/k satisfies condition A if and only if | ker(jk′/k) ∩Nk′/k(Cl(k
′))| > 1.

(2) k′/k satisfies condition B if and only if | ker(jk′/k) ∩Nk′/k(Cl(k
′))| = 1.

Set jFi/k = ji, i = 1, 2, 3. Then we have:

Theorem 3.2 ([15], Theorem 2).

(1) If k
(1)
2 = k

(2)
2 , then Fi satisfy condition A, | ker(ji)| = 4 for i = 1, 2, 3 and G is

abelian of type (2, 2).

(2) If Gal(L/k) ≃ Q3, then Fi satisfy condition A and | ker(ji)| = 2 for i = 1, 2, 3

and G ≃ Q3.

(3) If Gal(L/k) ≃ D3, then F2, F3 satisfy condition B and | ker j2| = | ker j3| = 2.

Furthermore, if F1 satisfies condition B, then | ker j1| = 2 and G ≃ Sm; if F1

satisfies condition A and | ker j1| = 2 then G ≃ Qm. If F1 satisfies condition A

and | ker j1| = 4 then G ≃ Dm.

These results are summarized in the following table.

| ker j1|(A/B) | ker j2|(A/B) | ker j3|(A/B) G

4 4 4 (2, 2)

2A 2A 2A Q3

4 2B 2B Dm, m > 3

2A 2B 2B Qm, m > 3

2B 2B 2B Sm, m > 3

By Theorem 3.2 and group theoretic properties quoted in the beginning of this

section, one can easily deduce the following remark.

Remark 3.3. The 2-class groups of the three unramified quadratic extensions

of k are cyclic if and only if k(1) = k(2) or k(1) 6= k(2) and G ≃ Q3. In the other cases

the 2-class group of only one unramified quadratic extension is cyclic and the other

are of type (2, 2).

3.1. First case. In this subsection, we suppose that d takes the second form of

Theorem 2.2, i.e.,

d = −pq with p ≡ 1 (mod 8), q ≡ 3 (mod 8) and
(p

q

)

= −1.

Let k∗ be the genus field of k and k1, k2 two other unramified quadratic extensions

of k.
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Lemma 3.4. Let p ≡ 1 (mod 8), q ≡ 3 (mod 8) and k∗ = Q
(√

2,
√
p,
√−q

)

.

Then we have:

(1)
{

εp, ε2,
√
ε2p

}

is a fundamental system of units of k∗ if and only if the norm

of ε2p is 1.

(2)
{

ε2p, ε2,
√
εpε2ε2p

}

is a fundamental system of units of k∗ if and only if the
norm of ε2p is −1.

P r o o f. Note that the norms of ε2 and εp equal −1. If the norm of ε2p

equals 1, then by [7], Théorème 3,
{

εp, ε2,
√
ε2p

}

is a fundamental system of units

of Q
(√

2,
√
p
)

. It follows by [2], Proposition 20, that
{

εp, ε2,
√
ε2p

}

is a fun-

damental system of units of k∗. Similarly, if the norm of ε2p equals −1, then
{√

εpε2ε2p, ε2, ε2p
}

is a fundamental system of units of Q
(√

2,
√
p
)

and by [2],

Proposition 22,
{√

εpε2ε2p, ε2, ε2p
}

is a fundamental system of units of k∗. �

Lemma 3.5. Let d = −pq with p ≡ 1 (mod 8) and q ≡ 3 (mod 8). We have:

Nk∗/k

(√
εpε2ε2p

)

= ±ε2 if N(ε2p) = −1 and Nk∗/k

(√
ε2p

)

= ±1 if N(ε2p) = 1.

P r o o f. We have NQ(
√
p)/Q(εp) = −1. If N(ε2p) = −1, then:

Nk∗/k(εpε2ε2p) = Nk∗/k(εp)Nk∗/k(ε2)Nk∗/k(ε2p)

= ε22NQ(
√
p)/Q(εp)NQ(

√
2p)/Q(ε2p) = ε22.

Thus Nk∗/k

(√
εpε2ε2p

)

= ±ε2. Similarly, if N(ε2p) = 1 then Nk∗/k

(√
ε2p

)

= ±1. �

Proposition 3.6. Let d = −pq be such that p ≡ 1 (mod 8), q ≡ 3 (mod 8)

and (p/q) = −1. Let P1 and P2 be two prime ideals of k = Q
(√

2,
√
d
)

lying over p.

Then Cl2(k) is generated by [P1] and [P2]. Furthermore:

(1) If the norm of ε2p is −1, then only [1] and [P1P2] capitulate in k∗.

(2) If the norm of ε2p is 1, then all the classes of Cl2(k) capitulate in k∗.

P r o o f. Let p be the prime ideal of Q
(√−pq

)

lying over p. We claim that p is

not principal, as otherwise, with some α = x + y
√−pq ∈ OQ(

√
−pq), we would get

p = (α) =
(

x+y
√−pq

)

, so N(p) = (x2+y2pq), yielding that ±p = x2+y2pq. Thus p

divides x, hence ±1 = a2p+ y2q, where x = pa. We deduce that (q/p) = (p/q) = 1,

which contradicts the fact that (p/q) = −1.

On the other hand, as Nk/Q(
√
−pq)(Pi) = p, so the class [Pi] is not trivial. To

make sure that P1 and P2 are not in the same coset, it suffices to prove that P1P2

is not principal. Suppose that P1P2 is principal, i.e., there exists β ∈ k such that

P1P2 = βOk. So pOk = P2
1P2

2 = β2Ok. Thus, after modifying the chosen β by

the square of unit we get pεe2 = ±β2 for some e ∈ {0, 1}. Set β = β1 + β2

√
2,

β1, β2 ∈ Q
(√−pq

)

. So pεe2 = ±
(

β2
1 + 2β2

2 + 2β1β2

√
2
)

= ±β2
1 ± 2β2

2 ± 2β1β2

√
2.
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If e = 0, then p = ±β2
1 ± 2β2

2 ± 2β1β2

√
2 and β1 = 0 or β2 = 0. It follows that

p = ±β2
1 or p = ±2β2

2 , which is impossible. If e = 1, then p
(

1 +
√
2
)

= p + p
√
2 =

±β2
1±2β2

2±2β1β2

√
2, so ±p = 2β1β2 = β2

1+2β2
2 , this implies that (β1−β2)

2 = −β2
2 .

Thus
√
−1 = (β1 − β2)/β2 ∈ Q

(√−pq
)

, which is impossible, too. Hence P1P2 is not

principal. So [P1] and [P2] generate Cl2(k).

Since
√
p ∈ k∗ and p =

√
p2, then P1P2 capitulates in k∗. As the number

of classes of Cl2(k) which capitulate in k∗ is exactly [k∗ : k][Ek : Nk∗/k(Ek∗)] =

2[Ek : Nk∗/k(Ek∗)] (see [11]), then there are two cases to distinguish:

⊲ If the norm of ε2p is −1, then by Corollary 2.3 and Lemmas 3.4, 3.5 there are

exactly 2 classes that capitulate in k∗. So the first item follows.

⊲ If the norm of ε2p is 1, then by Corollary 2.3 and Lemmas 3.4, 3.5 there are

4 classes of Cl2(k) that capitulate in k∗. So the second item follows.

�

In the following proposition, we characterize the structure of a 2-class of k∗. For

this recall, by the ambiguous class number formula (see e.g. [10]), that if F/k is

a quadratic extension of number fields such that k has an odd class number, then

the rank of the 2-class group F is given by t− 1− e, where e is defined as

[Ek : Ek ∩NF/k(F
∗)] = 2e

and t is the number of prime ideals of k ramified in F .

Proposition 3.7. Let d = −pq be such that p ≡ 1 (mod 8), q ≡ 3 (mod 8) and

(p/q) = −1. Set k∗ = Q
(√

2,
√
p,
√−q

)

. Then the 2-class group of k∗ is cyclic and

h2(k
∗) = h2(2p). Moreover:

(1) h2(k
∗) = 2 if and only if (2/p)4 = −(−1)(p−1)/8. In this case, N(ε2p) = 1.

(2) If (2/p)4 = (−1)(p−1)/8 = −1, then h2(k
∗) = 4 and N(ε2p) = −1.

(3) If (2/p)4 = (−1)(p−1)/8 = 1, then h2(k
∗) is divisible by 4 (and h2(k

∗) is divisible

by 8 whenever N(ε2p) = −1).

P r o o f. We have q(k∗) = 2 by Lemma 3.4, h2(−2pq) = 4 by [14], page 353,

h2(p) = h2(−q) = h2(2) = 1 by [8], Corollary 18.4 and h2(−2q) = h2(−pq) = 2

by [8], Corollary 19.6. Thus, by the class number formula (see [20]), we get

(2) h2(k
∗) =

1

25
q(k∗)h2(p)h2(2p)h2(−q)h2(−2q)h2(−pq)h2(−2pq)h2(2)

=
1

25
· 2 · 1 · h2(2p) · 1 · 2 · 2 · 4 · 1 = h2(2p).

Set k′ = Q
(√

2,
√−q

)

. As pOk′ = PP ′ in k′, then it is easy to see that these two

prime ideals are the only ramified primes of k∗/k′. We have h2(k
′) = 1, thus by
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Kuroda’s class number formula (see [17]), Corollary 2.3 and the above settings, we

get

h2(k
′) =

1

2
q(k′)h2(2)h2(−2q)h2(−q) = 1.

It follows that the rank of the 2-class group of k∗ is 2− 1− e = 1 − e, where e is

defined as above for F = k∗ and k = k′. Since h2(2p) is even by [8], Corollary 18.4,

then by the equality (2), we have that e = 0 and Cl2(k
∗) is cyclic. Hence, [16],

Theorem 2 completes the proof. �

Corollary 3.8. Let d = −pq be such that p ≡ 1 (mod 8), q ≡ 3 (mod 8) and

(p/q) = −1. Then |G| = 2 · h2(2p).

P r o o f. Since k
(1)
2 /k∗ is an unramified extension, then

k ⊂ k
∗ ⊂ k

(1)
2 ⊂ k

∗(1)
2 ⊂ k

(2)
2 ⊂ k

∗(2)
2 .

By Proposition 3.7, Cl2(k
∗) is cyclic. So the 2-class field tower of k∗ terminates at its

Hilbert 2-class field k∗
(1)
2 , i.e., k

∗(1)
2 = k∗

(2)
2 , thus k

∗ and k
(1)
2 have the same Hilbert

2-class field which is k
(2)
2 . It follows that |G| = 2 · h2(k

∗) = 2 · h2(2p). �

Now we are able to state our first main theorem.

Theorem 3.9. Let d = −pq be such that p ≡ 1 (mod 8), q ≡ 3 (mod 8) and

(p/q) = −1. Set k∗ = Q
(√

2,
√
p,
√−q

)

.

(1) If (2/p)4 6= (−1)(p−1)/8, then all the classes of Cl2(k) capitulate in the three

unramified quadratic extensions k∗, k1 and k2 of k, and G is abelian.

(2) If (2/p)4 = (−1)(p−1)/8 = −1, then N(ε2p) = −1 and in each field k∗, k1
and k2, there are exactly 2 classes of Cl2(k), which capitulate, and thus G is

the quaternion group of order 8.

(3) If (2/p)4 = (−1)(p−1)/8 = 1 and N(ε2p) = 1, then h2(2p) = 2m with m > 2

and all the classes of Cl2(k) capitulate in k∗, and only 2 classes capitulate in

each k1 and k2, and G is dihedral of order 2m+1.

(4) If (2/p)4 = (−1)(p−1)/8 = 1 and N(ε2p) = −1, then h2(2p) = 2m with m > 2

and in each field k∗, k1 and k2, there are exactly 2 classes of Cl2(k) which

capitulate and G is the quaternion group of order 2m+1.

P r o o f. (1) As (2/p)4 6= (−1)(p−1)/8, then by Proposition 3.7, h2(k
∗) = 2. Thus

by Corollary 3.8, |G| = 4. It follows that k(1) = k(2). Hence, G is abelian and the

four classes of Cl2(k) capitulate in k∗, k1 and k2.

(2) As the norm of ε2p equals −1, then by Proposition 3.6, P1P2 capitulates in k
∗.

Since P1 and P2 are inert in k∗, then by the Artin reciprocity law k∗/k satisfies
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condition A. It follows by Proposition 3.7, Corollary 3.8 and Theorem 3.2 that G is

a quaternion of order 8 and there are exactly 2 classes of Cl2(k) which capitulate in

the three unramified quadratic extensions of k.

(3) Since the norm of ε2p equals 1, then, by Proposition 3.6, all the classes capit-

ulate in k∗. Hence by Proposition 3.7, Corollary 3.8 and Theorem 3.2, G is dihedral

of order 2m+1 and there are exactly 2 classes of Cl2(k) which capitulate in the other

unramified quadratic extensions of k.

(4) The proof of the fourth item is similar to the second one. �

Remark 3.10. Let d = −pq be such that p ≡ 1 (mod 8), q ≡ 3 (mod 8) and

(p/q) = −1. By Remark 3.3, if p satisfies one of the conditions mentioned in

the first and second items of the previous theorem, then Cl2(k
∗) ≃ Z/h2(2p)Z,

Cl2(k1) and Cl2(k2) are cyclic, otherwise Cl2(k
∗) ≃ Z/h2(2p)Z and Cl2(k1) ≃

Cl2(k2) ≃ (2, 2).

3.2. Second case. In this subsection, we suppose that d takes the first form of

Theorem 2.2, i.e.,

d = −pq with p ≡ 5 (mod 8), q ≡ 7 (mod 8) and
(p

q

)

= −1.

Denote always by k∗ the genus field of k and by k1, k2 two other unramified quadratic

extensions of k.

Lemma 3.11. Let d = −pq with p ≡ 5 (mod 8), q ≡ 7 (mod 8) and k∗ =

Q
(√

2,
√
p,
√−q

)

. Then,
{

ε2, ε2p,
√
εpε2ε2p

}

is a fundamental system of units of k∗

and Nk∗/k

(√
εpε2ε2p

)

= ±ε2.

P r o o f. It is known that the norms of ε2, εp, ε2p equal −1. On the other hand,

since
{

ε2, ε2p,
√
εpε2ε2p

}

is a fundamental system of units of Q
(√

2,
√
p
)

(see [6],

Théorème 6), thus, by [2], Proposition 22,
{

ε2, ε2p,
√
εpε2ε2p

}

is a fundamental sys-

tem of units of k∗. �

Proposition 3.12. Let d = −pq with p ≡ 5 (mod 8), q ≡ 7 (mod 8) and

(p/q) = −1, Q1 and Q2 be two prime ideals of k lying over q. Then Cl2(k) is

generated by [Q1] and [Q2]. Furthermore, the classes of Cl2(k) which capitulate

in k∗ are [1] and [Q1Q2].

P r o o f. By considering q, the prime ideal of Q
(√−pq

)

lying over q, we proceed

as in Proposition 3.6 to prove that [Q1] and [Q2] generate Cl2(k). The number

of classes of Cl2(k) which capitulate in k∗ is exactly [k∗ : k][Ek : Nk∗/k(Ek∗)] =
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2[Ek : Nk∗/k(Ek∗)] (see [11]). As
√−q ∈ k∗ and −q =

√−q
2
, then Q1Q2 capitulates

in k∗. By Corollary 2.3 and Lemma 3.11, we have [k∗ : k][Ek : Nk∗/k(Ek∗)] = 2. So

the statemment holds. �

The following proposition gives the structure of the 2-class group of k∗.

Proposition 3.13. Let d = −pq with p ≡ 5 (mod 8), q ≡ 7 (mod 8) and

(p/q) = −1. Let k∗ = Q
(√

2,
√
p,
√−q

)

, then the 2-class group of k∗ is cyclic

and h2(k
∗) = h2(−2q). Furthermore, Cl2(k

∗) = Z/4Z if and only if q ≡ 7 (mod 16).

P r o o f. We have q(k∗) = 2, h2(2p) = 2, h2(−pq) = 2, h2(p) = h2(−q) = h2(2) = 1

and h2(−2pq) = 4 by Lemma 3.11, [8], Corollaries 19.8, 19.6, 18.4 and [14], page 353,

respectively. Then, the class number formula (see [20]) gives

h2(k
∗) =

1

25
q(k∗)h2(p)h2(2p)h2(−q)h2(−2q)h2(−pq)h2(−2pq)h2(2)

=
1

25
· 2 · 1 · 2 · 1 · h2(−2q) · 2 · 4 · 1 = h2(−2q).

As q decomposes into the product of two prime ideals of k′ = Q
(√

2,
√
p
)

and

h2(k
′) = 1 (see [8], Proposition 21.5), then by the ambiguous class number for-

mula (see [10]), the rank of the 2-class group of k∗ is 2−1−e = 1−e. Since h2(−2q)

is even (see [8], Corollary 18.4) then e = 0. Thus, Cl2(k
∗) is cyclic. We have that

h2(−2q) is divisible by 4 (see [8], Corollary 19.6) and h2(−2q) is divisible by 8 if and

only if q ≡ −1 (mod 16) (see [13], Théorème 4), so the result follows. �

In a way similar to Corollary 3.8 and Theorem 3.9, we prove our second main result.

Theorem 3.14. Let d = −pq be such that p ≡ 5 (mod 8), q ≡ 7 (mod 8) and

(p/q) = −1. Let k∗ = Q
(√

2,
√
p,
√−q

)

, k1 and k2 be the three quadratic unramified

extensions of k. Set h2(−2q) = 2m, m > 2, then in each field k∗, k1 and k2, there

are exactly two ideal classes of Cl2(k) which capitulate. Thus G is the quaternion

group of order 2m+1.

By Proposition 3.13, Theorem 3.14 and Remark 3.3, we easily deduce the following

remark.

Remark 3.15. Let d = −pq be such that p ≡ 5 (mod 8), q ≡ 7 (mod 8) and

(p/q) = −1. If q ≡ 7 (mod 16), then Cl2(k
∗) ≃ Z/4Z, Cl2(k1), and Cl2(k2) are

cyclic, otherwise Cl2(k
∗) ≃ Z/h2(−2q)Z and Cl2(k1) ≃ Cl2(k2) ≃ (2, 2).
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