Czechoslovak Mathematical Journal

Mohamed Mahmoud Chems-Eddin; Abdelmalek Azizi; Abdelkader Zekhnini; Idriss Jerrari
On the Hilbert 2-class field tower of some imaginary biquadratic number fields

Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 1, 269-281
Persistent URL: http://dml.cz/dmlcz/148739

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE HILBERT 2-CLASS FIELD TOWER OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Oujda, Abdelkader Zekhnini, Nador, Idriss Jerrari, Oujda

Received July 27, 2019. Published online October 27, 2020.

Abstract. Let $\mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$ be an imaginary bicyclic biquadratic number field, where d is an odd negative square-free integer and $\mathbb{k}_{2}^{(2)}$ its second Hilbert 2-class field. Denote by $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ the Galois group of $\mathbb{k}_{2}^{(2)} / \mathbb{k}$. The purpose of this note is to investigate the Hilbert 2-class field tower of \mathfrak{k} and then deduce the structure of G.

Keywords: 2-class group; imaginary biquadratic number field; capitulation; Hilbert 2class field

MSC 2020: 11R11, 11R27, 11R29, 11R37

1. Introduction

Let k be an algebraic number field. For a prime number p, let $\mathrm{Cl}_{p}(k)$ be the p-Sylow subgroup of the ideal class group $\mathrm{Cl}(k)$ of k. Let $k_{p}^{(1)}$ be the Hilbert p-class field of k, that is the maximal unramified (including the infinite primes) abelian field extension of k whose degree over k is a p-power. Put $k_{p}^{(0)}=k$ and let $k_{p}^{(i)}$ denote the Hilbert p-class field of $k_{p}^{(i-1)}$ for any integer $i \geqslant 1$. Then the sequence of fields

$$
k=k_{p}^{(0)} \subset k_{p}^{(1)} \subset k_{p}^{(2)} \subset \ldots \subset k_{p}^{(i)} \ldots
$$

is called the p-class field tower of k. If $k_{p}^{(i)} \neq k_{p}^{(i-1)}$ for all $i \geqslant 1$ the tower is said to be infinite, otherwise the tower is said to be finite, and the minimal integer i satisfying the condition $k_{p}^{(i)}=k_{p}^{(i-1)}$ is called the length of the tower.

One of the most important and difficult problems in algebraic number theory is to decide whether a p-class field tower of a number field is finite or not. Furthermore,
the study of structure of the Galois group of the tower is an open problem. However, for $p=2$ and $\mathrm{Cl}_{p}(k)$ being isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, the Hilbert 2 -class field tower of k terminates in at most two steps and the structure of the Galois group $G=\operatorname{Gal}\left(k_{2}^{(2)} / k\right)$ is closely related to the capitulation problem in the unramified quadratic extensions of k, see [15]. Our contribution in this paper is to investigate the Hilbert 2-class field tower of some families of imaginary bicyclic biquadratic number fields $\mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$, where d is an odd negative square free integer, and to determine the structure of G involving the capitulation problem.

Note that we are looking forward to make a detailed study of some imaginary triquadratic number fields of the form $\mathbb{Q}\left(\zeta_{8}, \sqrt{d}\right)$ for which the 2-class group is related to the one of \mathfrak{k} in many cases (see for example [4], Theorem 5.17). Note also that there are many works interested in such question for the fields $\mathbb{Q}(\sqrt{-2}, \sqrt{-d}), \mathbb{Q}(\sqrt{2}, \sqrt{-d})$ and $\mathbb{Q}(\sqrt{-1}, \sqrt{d}), d$ always being an odd negative square free integer (see for example [3], [5], [7]), which are all subfields of $\mathbb{Q}\left(\zeta_{8}, \sqrt{d}\right)$.

2. Notations and preliminary results

Let k be a number field. Along this paper, we adopt the following notations:
$\triangleright d$: a negative odd square free integer,
$\triangleright \mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$,
$\triangleright k^{*}$: the absolute genus field of k,
$\triangleright \mathcal{O}_{k}$: the ring of integers of k,
$\triangleright k_{2}^{(1)}$: the Hilbert 2-class field of k,
$\triangleright k_{2}^{(2)}$: the Hilbert 2-class field of $k_{2}^{(1)}$,
$\triangleright G$: the Galois group of $\mathbb{k}_{2}^{(2)} / \mathbb{k}$,
$\triangleright[\mathfrak{a}]$: the class of an ideal \mathfrak{a} in \mathcal{O}_{k},
$\triangleright \mathrm{Cl}(k)$: the class group of k,
$\triangleright \mathrm{Cl}_{2}(k)$: the 2-class group of k,
$\triangleright h_{2}(k)$: the 2-class number of k,
$\triangleright h_{2}(m)$: the 2-class number of a quadratic field $\mathbb{Q}(\sqrt{m})$,
$\triangleright N_{k^{\prime} / k}$: the norm map of some extension k^{\prime} / k,
$\triangleright N$: the absolute norm of a quadratic extension over \mathbb{Q},
$\triangleright E_{k}$: the unit group of \mathcal{O}_{k},
$\triangleright \varepsilon_{m}$: the fundamental unit of $\mathbb{Q}(\sqrt{m})$, if $m>1$ is a square-free integer,
$\triangleright(a / p)_{4}$: the biquadratic residue symbol,
$\triangleright k^{+}$: the maximal real subfield of k, if k is a CM-field,
$\triangleright W_{k}$: the group of roots of unity contained in k,
$\triangleright Q_{k}=\left(E_{k}: W_{k} E_{k^{+}}\right)$is Hasse's unit index, if k is a CM-field,
$\triangleright q(k)=\left(E_{k}: \prod_{i} E_{k_{i}}\right)$ is the unit index of k, if k is multiquadratic, and k_{i} are the quadratic subfields of k.
Let us start by determining fields $\mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$ satisfying the condition that $\mathrm{Cl}_{2}(\mathbb{k})$ is of type $(2,2)$ (i.e., isomorphic to $\left.\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}\right)$. We will also deduce the group of units of \mathfrak{k}. From [18], Proposition 4 we get the following results.

Proposition 2.1. Let d be an odd negative square free integer. Then the rank of $\mathrm{Cl}_{2}(\mathbb{k})$ equals 2 if and only if d takes one of the following forms:
(1) $d=-p$ for a prime $p \equiv 1(\bmod 8)$,
(2) $d=-p q \equiv 3(\bmod 4)$ for primes p and q such that $(2 / p)=(2 / q)=-1$,
(3) $d=-p q \equiv 1(\bmod 4)$ for primes p and q such that $(2 / p) \neq(2 / q)$,
(4) $d=-p_{1} p_{2} q$ for primes $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ and $q \equiv 3(\bmod 8)$,
(5) $d=-q_{1} q_{2} q_{3}$ for primes $q_{1} \equiv q_{2} \equiv q_{3} \equiv 3(\bmod 8)$.

The third assertion of the above proposition implies the following theorem which gives conditions to have $\mathrm{Cl}_{2}(\mathbb{k})$ of type $(2,2)$.

Theorem 2.2. Let d be an odd negative square free integer. Then $\mathrm{Cl}_{2}(\mathbb{k})$ is of type $(2,2)$ if and only if d takes one of the following forms:
(1) $d=-p q$ for primes $p \equiv 5(\bmod 8)$ and $q \equiv 7(\bmod 8)$ satisfying $(p / q)=-1$,
(2) $d=-p q$ for primes $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$ satisfying $(p / q)=-1$.

Proof. Let d be an odd negative square free integer such that $d \neq-1$. By the class number formula (see [20]), we have:

$$
h_{2}(\mathbb{k})=\frac{1}{2} q(\mathbb{k}) h_{2}(2) h_{2}(2 d) h_{2}(d)=\frac{1}{2} q(\mathbb{k}) h_{2}(2 d) h_{2}(d) .
$$

We have that $-d \varepsilon_{2}$ is not a square in $\mathbb{Q}(\sqrt{2})$. In fact, if $-d \varepsilon_{2}=\alpha^{2}$ for some α in $\mathbb{Q}(\sqrt{2})$ then $N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q}}\left(-d \varepsilon_{2}\right)=-d^{2}=N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q}}(\alpha)^{2}$. So, by [1], Proposition 3, $\left\{\varepsilon_{2}\right\}$ is a fundamental system of units of \mathfrak{k}. It follows that $q(\mathbb{k})=1$ and

$$
\begin{equation*}
h_{2}(\mathbb{K})=\frac{1}{2} h_{2}(2 d) h_{2}(d) . \tag{1}
\end{equation*}
$$

We discuss each case of d appearing in the previous proposition. Recall that for any prime p^{\prime} we have $\left(2 / p^{\prime}\right)=-1$ if and only if $p^{\prime} \equiv 3(\bmod 8)$ or $p^{\prime} \equiv 5(\bmod 8)$.
\triangleright Suppose that d takes the first form of Proposition 2.1. We have that $h_{2}(-2 p)$ and $h_{2}(-p)$ are divisible by 4 (see [13]), so by the formula (1), $h_{2}(\mathbb{k})$ is divisible by 8 . Hence this case is eliminated.
\triangleright The second item of Proposition 2.1 is equivalent to the statement: $d=-p q$ with $p \equiv q \equiv 3(\bmod 8)$ or $p \equiv q \equiv 5(\bmod 8)$. If $p \equiv q \equiv 3(\bmod 8)$, then by [14], pages 354 and $356, h_{2}(-p q)$ and $h_{2}(-2 p q)$ are divisible by 4 and 8 , respectively. If $p \equiv q \equiv 5(\bmod 8)$, then by [14], pages $348-350, h_{2}(-p q)$ and $h_{2}(-2 p q)$ are divisible by 8 and 4 , respectively. It follows by the formula (1) that $h_{2}(\mathbb{K})$ is divisible by 16. Hence this case is eliminated.
\triangleright The third item of Proposition 2.1 is equivalent to the statement: $d=-p q$ with $[p \equiv 5(\bmod 8)$ and $q \equiv 7(\bmod 8)]$ or $[p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)]$.

Suppose that, $d=-p q$ with $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$. If $(p / q)=$ -1 , then by [14], pages 353 and [8], Corollary 19.6, we have $h_{2}(-2 p q)=4$ and $h_{2}(-p q)=2$, so by the formula $(1), h_{2}(\mathbb{k})=4$. If $(p / q)=1$, then again by [14], page 353 and [8], Corollary 19.6, $h_{2}(-2 p q)$ and $h_{2}(-p q)$ are divisible by 8 and 4 , respectively. Thus, by formula (1), $h_{2}(\mathbb{k})$ is divisible by 16 . Similarly, we show that if $d=-p q$ with $p \equiv 5(\bmod 8)$ and $q \equiv 7(\bmod 8)$, then $\mathrm{Cl}_{2}(\mathbb{k}) \simeq(2,2)$ if and only if $(p / q)=-1$.
\triangleright The fourth item of Proposition 2.1 is equivalent to the statement: $d=-p_{1} p_{2} q$ with $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ and $q \equiv 3(\bmod 8)$. Thus $h_{2}(\mathbb{K})=\frac{1}{2} h_{2}\left(-2 p_{1} p_{2} q\right) h_{2}\left(-p_{1} p_{2} q\right)$. So by the genus theory of quadratic number fields (see e.g. [14], page 315) $h_{2}(\mathbb{k})$ is divisible by 16 .
\triangleright Again by the genus theory of quadratic number fields we eliminate the fifth item of Proposition 2.1 and show that $h_{2}(\mathbb{k})$ is divisible by 16. This completes the proof.

By the previous proof we deduce the following corollary.

Corollary 2.3. Let $d \neq-1$ be an odd negative square free integer and $\mathbb{k}=$ $\mathbb{Q}(\sqrt{2}, \sqrt{d})$. Then $E_{\mathrm{k}}=\left\langle-1, \varepsilon_{2}\right\rangle$ if $d<-3$ and $E_{\mathrm{k}}=\left\langle\zeta_{6}, \varepsilon_{2}\right\rangle$ if $d=-3$. Thus $q(\mathbb{k})=Q_{\mathrm{k}}=1$.

By [12], one deduces easily the following result.
Proposition 2.4. Let d be an odd negative square free integer. If p_{1}, \ldots, p_{r} are the prime divisors of d, then the genus field of $\mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$ is

$$
\mathbb{k}^{*}=\mathbb{k}\left(\sqrt{p_{1}^{*}}, \ldots, \sqrt{p_{r}^{*}}\right)
$$

with $p_{i}^{*}=(-1)^{\left(p_{i}-1\right) / 2} p_{i}$. In particular, if d takes one of the forms of Theorem 2.2, we infer that $\mathbb{k}^{*}=\mathbb{k}(\sqrt{p}, \sqrt{-q})=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$.

3. Main results

Let us begin by recalling some points that are necessary for what follows. Let Q_{m}, D_{m}, and S_{m} denote the quaternion, dihedral and semidihedral groups of order 2^{m}, respectively, where $m \geqslant 3$ and $m \geqslant 4$ for S_{m}. In addition, let A denote the Klein four-group. Each of these groups is generated by two elements x and y, and admits a representation by generators and relations as follows:

$$
\begin{aligned}
A & =\left\{x, y: x^{2}=y^{2}=1, y^{-1} x y=x\right\}, \\
Q_{m} & =\left\{x, y: x^{2^{m-2}}=y^{2}=a, a^{2}=1, y^{-1} x y=x^{-1}\right\}, \\
D_{m} & =\left\{x, y: x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{-1}\right\}, \\
S_{m} & =\left\{x, y: x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{2^{m-2}-1}\right\} .
\end{aligned}
$$

We recall some well known properties of 2-groups G such that G / G^{\prime} is of type (2, 2), where G^{\prime} denotes the commutator subgroup of G (see for more details [15], pages 272-273 and [9], Chapter 5).

Let k be an algebraic number field and $\mathrm{Cl}_{2}(k)$ the 2-Sylow subgroup of its ideal class group $\mathrm{Cl}(k)$. Let $k_{2}^{(1)}$ (or $k_{2}^{(2)}$) be the first (or second) Hilbert 2-class field of k, respectively. Put $G=\operatorname{Gal}\left(k_{2}^{(2)} / k\right)$, then if G^{\prime} denotes the commutator subgroup of G, we have by the class field theory $G^{\prime} \simeq \operatorname{Gal}\left(k_{2}^{(2)} / k_{2}^{(1)}\right)$ and $G / G^{\prime} \simeq$ $\operatorname{Gal}\left(k_{2}^{(1)} / k\right) \simeq \mathrm{Cl}_{2}(k)$. Assume in all what follows that $\mathrm{Cl}_{2}(k)$ is of type $(2,2)$, then it is known that G is isomorphic to A, Q_{m}, D_{m} or S_{m}.

Let x and y be as above. Note that the commutator subgroup G^{\prime} of G is always cyclic and $G^{\prime}=\left\langle x^{2}\right\rangle$. The group G possesses exactly three subgroups of index 2 which are

$$
H_{1}=\langle x\rangle, \quad H_{2}=\left\langle x^{2}, y\right\rangle, \quad H_{3}=\left\langle x^{2}, x y\right\rangle .
$$

Furthermore, if G is isomorphic to A (or Q_{3}), then the subgroups H_{i} are cyclic of order 2 (or 4), respectively. If G is isomorphic to Q_{m} with $m>3, D_{m}$ or S_{m}, then H_{1} is cyclic and H_{i} / H_{i}^{\prime} is of type $(2,2)$ for $i \in\{2,3\}$, where H_{i}^{\prime} is the commutator subgroup of H_{i}.

Let F_{i} be the subfield of $k_{2}^{(2)}$ fixed by H_{i}, where $i \in\{1,2,3\}$. It is clear that F_{1} has a cyclic 2-class group and $k_{2}^{(2)}$ is exactly the Hilbert 2-class field of F_{1} (see the proof of Corollary 3.8 below). If $k_{2}^{(2)} \neq k_{2}^{(1)},\left\langle x^{4}\right\rangle$ is the unique subgroup of G^{\prime} of index 2. Let $L\left(L\right.$ is defined only if $\left.k_{2}^{(2)} \neq k_{2}^{(1)}\right)$ be the subfield of $k_{2}^{(2)}$ fixed by $\left\langle x^{4}\right\rangle$. Then F_{1}, F_{2} and F_{3} are the three quadratic subextensions of $k_{2}^{(1)} / k$ and L is the unique subfield of $k_{2}^{(2)}$ such that L / k is a nonabelian Galois extension of degree 8 . We first recall the definition of Taussky's conditions A and B, see [19].

Definition 3.1. Let k^{\prime} be a cyclic unramified extension of a number field k and let j denote the basic homomorphism: $j_{k^{\prime} / k}: \mathrm{Cl}(k) \rightarrow \mathrm{Cl}\left(k^{\prime}\right)$, induced by the extension of ideals from k to k^{\prime}. Then:
(1) k^{\prime} / k satisfies condition A if and only if $\left|\operatorname{ker}\left(j_{k^{\prime} / k}\right) \cap N_{k^{\prime} / k}\left(\mathrm{Cl}\left(k^{\prime}\right)\right)\right|>1$.
(2) k^{\prime} / k satisfies condition B if and only if $\left|\operatorname{ker}\left(j_{k^{\prime} / k}\right) \cap N_{k^{\prime} / k}\left(\mathrm{Cl}\left(k^{\prime}\right)\right)\right|=1$.

Set $j_{F_{i} / k}=j_{i}, i=1,2,3$. Then we have:
Theorem 3.2 ([15], Theorem 2).
(1) If $k_{2}^{(1)}=k_{2}^{(2)}$, then F_{i} satisfy condition $A,\left|\operatorname{ker}\left(j_{i}\right)\right|=4$ for $i=1,2,3$ and G is abelian of type $(2,2)$.
(2) If $\operatorname{Gal}(L / k) \simeq Q_{3}$, then F_{i} satisfy condition A and $\left|\operatorname{ker}\left(j_{i}\right)\right|=2$ for $i=1,2,3$ and $G \simeq Q_{3}$.
(3) If $\operatorname{Gal}(L / k) \simeq D_{3}$, then F_{2}, F_{3} satisfy condition B and $\left|\operatorname{ker} j_{2}\right|=\left|\operatorname{ker} j_{3}\right|=2$. Furthermore, if F_{1} satisfies condition B, then $\left|\operatorname{ker} j_{1}\right|=2$ and $G \simeq S_{m}$; if F_{1} satisfies condition A and $\left|\operatorname{ker} j_{1}\right|=2$ then $G \simeq Q_{m}$. If F_{1} satisfies condition A and $\left|\operatorname{ker} j_{1}\right|=4$ then $G \simeq D_{m}$.
These results are summarized in the following table.

$\left\|\operatorname{ker} j_{1}\right\|(A / B)$	$\left\|\operatorname{ker} j_{2}\right\|(A / B)$	$\left\|\operatorname{ker} j_{3}\right\|(A / B)$	G
4	4	4	$(2,2)$
$2 A$	$2 A$	$2 A$	Q_{3}
4	$2 B$	$2 B$	$D_{m}, m \geqslant 3$
$2 A$	$2 B$	$2 B$	$Q_{m}, m>3$
$2 B$	$2 B$	$2 B$	$S_{m}, m>3$

By Theorem 3.2 and group theoretic properties quoted in the beginning of this section, one can easily deduce the following remark.

Remark 3.3. The 2-class groups of the three unramified quadratic extensions of k are cyclic if and only if $k^{(1)}=k^{(2)}$ or $k^{(1)} \neq k^{(2)}$ and $G \simeq Q_{3}$. In the other cases the 2 -class group of only one unramified quadratic extension is cyclic and the other are of type $(2,2)$.
3.1. First case. In this subsection, we suppose that d takes the second form of Theorem 2.2, i.e.,

$$
d=-p q \quad \text { with } \quad p \equiv 1(\bmod 8), \quad q \equiv 3(\bmod 8) \quad \text { and } \quad\left(\frac{p}{q}\right)=-1
$$

Let \mathbb{k}^{*} be the genus field of \mathfrak{k} and k_{1}, k_{2} two other unramified quadratic extensions of k.

Lemma 3.4. Let $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $\mathbb{k}^{*}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$. Then we have:
(1) $\left\{\varepsilon_{p}, \varepsilon_{2}, \sqrt{\varepsilon_{2 p}}\right\}$ is a fundamental system of units of \mathbb{k}^{*} if and only if the norm of $\varepsilon_{2 p}$ is 1 .
(2) $\left\{\varepsilon_{2 p}, \varepsilon_{2}, \sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right\}$ is a fundamental system of units of $\mathbb{k} *$ if and only if the norm of $\varepsilon_{2 p}$ is -1 .

Proof. Note that the norms of ε_{2} and ε_{p} equal -1 . If the norm of $\varepsilon_{2 p}$ equals 1 , then by $[7]$, Théorème $3,\left\{\varepsilon_{p}, \varepsilon_{2}, \sqrt{\varepsilon_{2 p}}\right\}$ is a fundamental system of units of $\mathbb{Q}(\sqrt{2}, \sqrt{p})$. It follows by [2], Proposition 20 , that $\left\{\varepsilon_{p}, \varepsilon_{2}, \sqrt{\varepsilon_{2 p}}\right\}$ is a fundamental system of units of \mathbb{k}^{*}. Similarly, if the norm of $\varepsilon_{2 p}$ equals -1 , then $\left\{\sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}, \varepsilon_{2}, \varepsilon_{2 p}\right\}$ is a fundamental system of units of $\mathbb{Q}(\sqrt{2}, \sqrt{p})$ and by [2], Proposition 22, $\left\{\sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}, \varepsilon_{2}, \varepsilon_{2 p}\right\}$ is a fundamental system of units of \mathbb{k}^{*}.

Lemma 3.5. Let $d=-p q$ with $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$. We have: $N_{\mathrm{k}^{*} / \mathrm{k}}\left(\sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right)= \pm \varepsilon_{2}$ if $N\left(\varepsilon_{2 p}\right)=-1$ and $N_{\mathrm{k}^{*} / \mathrm{k}}\left(\sqrt{\varepsilon_{2 p}}\right)= \pm 1$ if $N\left(\varepsilon_{2 p}\right)=1$.

Proof. We have $N_{\mathbb{Q}(\sqrt{p}) / \mathbb{Q}}\left(\varepsilon_{p}\right)=-1$. If $N\left(\varepsilon_{2 p}\right)=-1$, then:

$$
\begin{aligned}
N_{\mathrm{k}^{*} / \mathfrak{k}}\left(\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}\right) & =N_{\mathrm{k}^{*} / \mathrm{k}}\left(\varepsilon_{p}\right) N_{\mathrm{k}^{*} / \mathrm{k}}\left(\varepsilon_{2}\right) N_{\mathrm{k}^{*} / \mathfrak{k}}\left(\varepsilon_{2 p}\right) \\
& =\varepsilon_{2}^{2} N_{\mathbb{Q}(\sqrt{p}) / \mathbb{Q}}\left(\varepsilon_{p}\right) N_{\mathbb{Q}(\sqrt{2 p}) / \mathbb{Q}}\left(\varepsilon_{2 p}\right)=\varepsilon_{2}^{2} .
\end{aligned}
$$

Thus $N_{\mathrm{k}^{*} / \mathrm{k}}\left(\sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right)= \pm \varepsilon_{2}$. Similarly, if $N\left(\varepsilon_{2 p}\right)=1$ then $N_{\mathrm{k}^{*} / \mathrm{k}}\left(\sqrt{\varepsilon_{2 p}}\right)= \pm 1$.
Proposition 3.6. Let $d=-p q$ be such that $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $(p / q)=-1$. Let \mathcal{P}_{1} and \mathcal{P}_{2} be two prime ideals of $\mathbb{k}=\mathbb{Q}(\sqrt{2}, \sqrt{d})$ lying over p. Then $\mathrm{Cl}_{2}(\mathbb{k})$ is generated by $\left[\mathcal{P}_{1}\right]$ and $\left[\mathcal{P}_{2}\right]$. Furthermore:
(1) If the norm of $\varepsilon_{2 p}$ is -1 , then only [1] and $\left[\mathcal{P}_{1} \mathcal{P}_{2}\right]$ capitulate in \mathbb{k}^{*}.
(2) If the norm of $\varepsilon_{2 p}$ is 1 , then all the classes of $\mathrm{Cl}_{2}(\mathbb{k})$ capitulate in \mathbb{k}^{*}.

Proof. Let \mathfrak{p} be the prime ideal of $\mathbb{Q}(\sqrt{-p q})$ lying over p. We claim that \mathfrak{p} is not principal, as otherwise, with some $\alpha=x+y \sqrt{-p q} \in \mathcal{O}_{\mathbb{Q}(\sqrt{-p q})}$, we would get $\mathfrak{p}=(\alpha)=(x+y \sqrt{-p q})$, so $N(\mathfrak{p})=\left(x^{2}+y^{2} p q\right)$, yielding that $\pm p=x^{2}+y^{2} p q$. Thus p divides x, hence $\pm 1=a^{2} p+y^{2} q$, where $x=p a$. We deduce that $(q / p)=(p / q)=1$, which contradicts the fact that $(p / q)=-1$.

On the other hand, as $N_{\mathfrak{k} / \mathbb{Q}(\sqrt{-p q})}\left(\mathcal{P}_{i}\right)=\mathfrak{p}$, so the class $\left[\mathcal{P}_{i}\right]$ is not trivial. To make sure that \mathcal{P}_{1} and \mathcal{P}_{2} are not in the same coset, it suffices to prove that $\mathcal{P}_{1} \mathcal{P}_{2}$ is not principal. Suppose that $\mathcal{P}_{1} \mathcal{P}_{2}$ is principal, i.e., there exists $\beta \in \mathbb{k}$ such that $\mathcal{P}_{1} \mathcal{P}_{2}=\beta \mathcal{O}_{k}$. So $p \mathcal{O}_{k}=\mathcal{P}_{1}^{2} \mathcal{P}_{2}^{2}=\beta^{2} \mathcal{O}_{k}$. Thus, after modifying the chosen β by the square of unit we get $p \varepsilon_{2}^{e}= \pm \beta^{2}$ for some $e \in\{0,1\}$. Set $\beta=\beta_{1}+\beta_{2} \sqrt{2}$, $\beta_{1}, \beta_{2} \in \mathbb{Q}(\sqrt{-p q})$. So $p \varepsilon_{2}^{e}= \pm\left(\beta_{1}^{2}+2 \beta_{2}^{2}+2 \beta_{1} \beta_{2} \sqrt{2}\right)= \pm \beta_{1}^{2} \pm 2 \beta_{2}^{2} \pm 2 \beta_{1} \beta_{2} \sqrt{2}$.

If $e=0$, then $p= \pm \beta_{1}^{2} \pm 2 \beta_{2}^{2} \pm 2 \beta_{1} \beta_{2} \sqrt{2}$ and $\beta_{1}=0$ or $\beta_{2}=0$. It follows that $p= \pm \beta_{1}^{2}$ or $p= \pm 2 \beta_{2}^{2}$, which is impossible. If $e=1$, then $p(1+\sqrt{2})=p+p \sqrt{2}=$ $\pm \beta_{1}^{2} \pm 2 \beta_{2}^{2} \pm 2 \beta_{1} \beta_{2} \sqrt{2}$, so $\pm p=2 \beta_{1} \beta_{2}=\beta_{1}^{2}+2 \beta_{2}^{2}$, this implies that $\left(\beta_{1}-\beta_{2}\right)^{2}=-\beta_{2}^{2}$. Thus $\sqrt{-1}=\left(\beta_{1}-\beta_{2}\right) / \beta_{2} \in \mathbb{Q}(\sqrt{-p q})$, which is impossible, too. Hence $\mathcal{P}_{1} \mathcal{P}_{2}$ is not principal. So $\left[\mathcal{P}_{1}\right]$ and $\left[\mathcal{P}_{2}\right]$ generate $\mathrm{Cl}_{2}(\mathbb{k})$.

Since $\sqrt{p} \in \mathbb{k}^{*}$ and $p=\sqrt{p}^{2}$, then $\mathcal{P}_{1} \mathcal{P}_{2}$ capitulates in \mathbb{k}^{*}. As the number of classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate in \mathbb{k}^{*} is exactly $\left[\mathfrak{k}^{*}: \mathbb{k}\right]\left[E_{\mathrm{k}}: N_{\mathrm{k}^{*} / \mathfrak{k}}\left(E_{\mathrm{k}^{*}}\right)\right]=$ $2\left[E_{\mathrm{k}}: N_{\mathrm{k}^{*} / \mathrm{k}}\left(E_{\mathrm{k}^{*}}\right)\right]$ (see [11]), then there are two cases to distinguish:
\triangleright If the norm of $\varepsilon_{2 p}$ is -1 , then by Corollary 2.3 and Lemmas 3.4, 3.5 there are exactly 2 classes that capitulate in \mathbb{k}^{*}. So the first item follows.
\triangleright If the norm of $\varepsilon_{2 p}$ is 1 , then by Corollary 2.3 and Lemmas 3.4, 3.5 there are 4 classes of $\mathrm{Cl}_{2}(\mathbb{k})$ that capitulate in \mathbb{k}^{*}. So the second item follows.

In the following proposition, we characterize the structure of a 2 -class of \mathbb{k}^{*}. For this recall, by the ambiguous class number formula (see e.g. [10]), that if F / k is a quadratic extension of number fields such that k has an odd class number, then the rank of the 2-class group F is given by $t-1-e$, where e is defined as

$$
\left[E_{k}: E_{k} \cap N_{F / k}\left(F^{*}\right)\right]=2^{e}
$$

and t is the number of prime ideals of k ramified in F.
Proposition 3.7. Let $d=-p q$ be such that $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $(p / q)=-1$. Set $\mathbb{k}^{*}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$. Then the 2 -class group of \mathbb{k}^{*} is cyclic and $h_{2}\left(\mathbb{k}^{*}\right)=h_{2}(2 p)$. Moreover:
(1) $h_{2}\left(\mathbb{k}^{*}\right)=2$ if and only if $(2 / p)_{4}=-(-1)^{(p-1) / 8}$. In this case, $N\left(\varepsilon_{2 p}\right)=1$.
(2) If $(2 / p)_{4}=(-1)^{(p-1) / 8}=-1$, then $h_{2}\left(\mathbb{k}^{*}\right)=4$ and $N\left(\varepsilon_{2 p}\right)=-1$.
(3) If $(2 / p)_{4}=(-1)^{(p-1) / 8}=1$, then $h_{2}\left(\mathbb{k}^{*}\right)$ is divisible by 4 (and $h_{2}\left(\mathbb{k}^{*}\right)$ is divisible by 8 whenever $\left.N\left(\varepsilon_{2 p}\right)=-1\right)$.

Proof. We have $q\left(\mathbb{k}^{*}\right)=2$ by Lemma 3.4, $h_{2}(-2 p q)=4$ by [14], page 353, $h_{2}(p)=h_{2}(-q)=h_{2}(2)=1$ by [8], Corollary 18.4 and $h_{2}(-2 q)=h_{2}(-p q)=2$ by [8], Corollary 19.6. Thus, by the class number formula (see [20]), we get

$$
\begin{align*}
h_{2}\left(\mathbb{k}^{*}\right) & =\frac{1}{2^{5}} q\left(\mathbb{k}^{*}\right) h_{2}(p) h_{2}(2 p) h_{2}(-q) h_{2}(-2 q) h_{2}(-p q) h_{2}(-2 p q) h_{2}(2) \tag{2}\\
& =\frac{1}{2^{5}} \cdot 2 \cdot 1 \cdot h_{2}(2 p) \cdot 1 \cdot 2 \cdot 2 \cdot 4 \cdot 1=h_{2}(2 p) .
\end{align*}
$$

Set $k^{\prime}=\mathbb{Q}(\sqrt{2}, \sqrt{-q})$. As $p \mathcal{O}_{k^{\prime}}=\mathcal{P} \mathcal{P}^{\prime}$ in k^{\prime}, then it is easy to see that these two prime ideals are the only ramified primes of $\mathbb{k}^{*} / k^{\prime}$. We have $h_{2}\left(k^{\prime}\right)=1$, thus by

Kuroda's class number formula (see [17]), Corollary 2.3 and the above settings, we get

$$
h_{2}\left(k^{\prime}\right)=\frac{1}{2} q\left(k^{\prime}\right) h_{2}(2) h_{2}(-2 q) h_{2}(-q)=1 .
$$

It follows that the rank of the 2-class group of \mathbb{k}^{*} is $2-1-e=1-e$, where e is defined as above for $F=\mathbb{k}^{*}$ and $k=k^{\prime}$. Since $h_{2}(2 p)$ is even by [8], Corollary 18.4, then by the equality (2), we have that $e=0$ and $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right)$ is cyclic. Hence, [16], Theorem 2 completes the proof.

Corollary 3.8. Let $d=-p q$ be such that $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $(p / q)=-1$. Then $|G|=2 \cdot h_{2}(2 p)$.

Proof. Since $\mathbb{k}_{2}^{(1)} / \mathbb{k}^{*}$ is an unramified extension, then

$$
\mathbb{k} \subset \mathbb{k}^{*} \subset \mathbb{k}_{2}^{(1)} \subset \mathbb{k}_{2}^{*(1)} \subset \mathbb{k}_{2}^{(2)} \subset \mathbb{k}_{2}^{*(2)}
$$

By Proposition 3.7, $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right)$ is cyclic. So the 2-class field tower of \mathbb{k}^{*} terminates at its Hilbert 2-class field $\mathbb{k}_{2}^{*(1)}$, i.e., $\mathbb{k}_{2}^{*(1)}=\mathbb{k}_{2}^{*(2)}$, thus \mathbb{k}^{*} and $\mathbb{k}_{2}^{(1)}$ have the same Hilbert 2 -class field which is $\mathbb{k}_{2}^{(2)}$. It follows that $|G|=2 \cdot h_{2}\left(\mathbb{k}^{*}\right)=2 \cdot h_{2}(2 p)$.

Now we are able to state our first main theorem.

Theorem 3.9. Let $d=-p q$ be such that $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $(p / q)=-1$. Set $\mathbb{k}^{*}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$.
(1) If $(2 / p)_{4} \neq(-1)^{(p-1) / 8}$, then all the classes of $\mathrm{Cl}_{2}(\mathbb{k})$ capitulate in the three unramified quadratic extensions \mathbb{k}^{*}, k_{1} and k_{2} of \mathbb{k}, and G is abelian.
(2) If $(2 / p)_{4}=(-1)^{(p-1) / 8}=-1$, then $N\left(\varepsilon_{2 p}\right)=-1$ and in each field \mathbb{k}^{*}, k_{1} and k_{2}, there are exactly 2 classes of $\mathrm{Cl}_{2}(\mathbb{k})$, which capitulate, and thus G is the quaternion group of order 8.
(3) If $(2 / p)_{4}=(-1)^{(p-1) / 8}=1$ and $N\left(\varepsilon_{2 p}\right)=1$, then $h_{2}(2 p)=2^{m}$ with $m \geqslant 2$ and all the classes of $\mathrm{Cl}_{2}(\mathbb{k})$ capitulate in \mathbb{k}^{*}, and only 2 classes capitulate in each k_{1} and k_{2}, and G is dihedral of order 2^{m+1}.
(4) If $(2 / p)_{4}=(-1)^{(p-1) / 8}=1$ and $N\left(\varepsilon_{2 p}\right)=-1$, then $h_{2}(2 p)=2^{m}$ with $m>2$ and in each field \mathbb{k}^{*}, k_{1} and k_{2}, there are exactly 2 classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate and G is the quaternion group of order 2^{m+1}.

Proof. (1) As $(2 / p)_{4} \neq(-1)^{(p-1) / 8}$, then by Proposition 3.7, $h_{2}\left(\mathbb{k}^{*}\right)=2$. Thus by Corollary $3.8,|G|=4$. It follows that $\mathbb{k}^{(1)}=\mathfrak{k}^{(2)}$. Hence, G is abelian and the four classes of $\mathrm{Cl}_{2}(\mathbb{k})$ capitulate in \mathbb{k}^{*}, k_{1} and k_{2}.
(2) As the norm of $\varepsilon_{2 p}$ equals -1 , then by Proposition 3.6, $\mathcal{P}_{1} \mathcal{P}_{2}$ capitulates in \mathbb{k}^{*}. Since \mathcal{P}_{1} and \mathcal{P}_{2} are inert in \mathbb{k}^{*}, then by the Artin reciprocity law $\mathbb{k}^{*} / \mathbb{k}$ satisfies
condition A. It follows by Proposition 3.7, Corollary 3.8 and Theorem 3.2 that G is a quaternion of order 8 and there are exactly 2 classes of $\mathrm{Cl}_{2}(\mathbb{K})$ which capitulate in the three unramified quadratic extensions of \mathfrak{k}.
(3) Since the norm of $\varepsilon_{2 p}$ equals 1 , then, by Proposition 3.6, all the classes capitulate in \mathbb{k}^{*}. Hence by Proposition 3.7, Corollary 3.8 and Theorem $3.2, G$ is dihedral of order 2^{m+1} and there are exactly 2 classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate in the other unramified quadratic extensions of \mathfrak{k}.
(4) The proof of the fourth item is similar to the second one.

Remark 3.10. Let $d=-p q$ be such that $p \equiv 1(\bmod 8), q \equiv 3(\bmod 8)$ and $(p / q)=-1$. By Remark 3.3, if p satisfies one of the conditions mentioned in the first and second items of the previous theorem, then $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right) \simeq \mathbb{Z} / h_{2}(2 p) \mathbb{Z}$, $\mathrm{Cl}_{2}\left(k_{1}\right)$ and $\mathrm{Cl}_{2}\left(k_{2}\right)$ are cyclic, otherwise $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right) \simeq \mathbb{Z} / h_{2}(2 p) \mathbb{Z}$ and $\mathrm{Cl}_{2}\left(k_{1}\right) \simeq$ $\mathrm{Cl}_{2}\left(k_{2}\right) \simeq(2,2)$.
3.2. Second case. In this subsection, we suppose that d takes the first form of Theorem 2.2, i.e.,

$$
d=-p q \quad \text { with } \quad p \equiv 5(\bmod 8), \quad q \equiv 7(\bmod 8) \quad \text { and } \quad\left(\frac{p}{q}\right)=-1
$$

Denote always by \mathbb{k}^{*} the genus field of \mathbb{k} and by k_{1}, k_{2} two other unramified quadratic extensions of \mathfrak{k}.

Lemma 3.11. Let $d=-p q$ with $p \equiv 5(\bmod 8), q \equiv 7(\bmod 8)$ and $\mathbb{k}^{*}=$ $\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$. Then, $\left\{\varepsilon_{2}, \varepsilon_{2 p}, \sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right\}$ is a fundamental system of units of \mathbb{k}^{*} and $N_{\mathrm{k}^{*} / \mathrm{k}}\left(\sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right)= \pm \varepsilon_{2}$.

Proof. It is known that the norms of $\varepsilon_{2}, \varepsilon_{p}, \varepsilon_{2 p}$ equal -1 . On the other hand, since $\left\{\varepsilon_{2}, \varepsilon_{2 p}, \sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right\}$ is a fundamental system of units of $\mathbb{Q}(\sqrt{2}, \sqrt{p})$ (see [6], Théorème 6), thus, by [2], Proposition 22, $\left\{\varepsilon_{2}, \varepsilon_{2 p}, \sqrt{\varepsilon_{p} \varepsilon_{2} \varepsilon_{2 p}}\right\}$ is a fundamental system of units of \mathbb{k}^{*}.

Proposition 3.12. Let $d=-p q$ with $p \equiv 5(\bmod 8), q \equiv 7(\bmod 8)$ and $(p / q)=-1, \mathcal{Q}_{1}$ and \mathcal{Q}_{2} be two prime ideals of k lying over q. Then $\mathrm{Cl}_{2}(\mathbb{k})$ is generated by $\left[\mathcal{Q}_{1}\right]$ and $\left[\mathcal{Q}_{2}\right]$. Furthermore, the classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate in \mathbb{k}^{*} are $[1]$ and $\left[\mathcal{Q}_{1} \mathcal{Q}_{2}\right]$.

Proof. By considering \mathfrak{q}, the prime ideal of $\mathbb{Q}(\sqrt{-p q})$ lying over q, we proceed as in Proposition 3.6 to prove that $\left[\mathcal{Q}_{1}\right]$ and $\left[\mathcal{Q}_{2}\right]$ generate $\mathrm{Cl}_{2}(\mathbb{k})$. The number of classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate in \mathbb{k}^{*} is exactly $\left[\mathfrak{k}^{*}: \mathbb{k}\right]\left[E_{\mathfrak{k}}: N_{\mathrm{k}^{*} / \mathfrak{k}}\left(E_{\mathfrak{k}^{*}}\right)\right]=$
$2\left[E_{\mathrm{k}}: N_{\mathrm{k}^{*} / \mathfrak{k}}\left(E_{\mathrm{k}^{*}}\right)\right]$ (see [11]). As $\sqrt{-q} \in \mathbb{k}^{*}$ and $-q=\sqrt{-q}^{2}$, then $\mathcal{Q}_{1} \mathcal{Q}_{2}$ capitulates in \mathbb{k}^{*}. By Corollary 2.3 and Lemma 3.11 , we have $\left[\mathfrak{k}^{*}: \mathbb{k}\right]\left[E_{\mathfrak{k}}: N_{\mathfrak{k}^{*} / \mathfrak{k}}\left(E_{\mathfrak{k}^{*}}\right)\right]=2$. So the statemment holds.

The following proposition gives the structure of the 2-class group of \mathfrak{k}^{*}.

Proposition 3.13. Let $d=-p q$ with $p \equiv 5(\bmod 8), q \equiv 7(\bmod 8)$ and $(p / q)=-1$. Let $\mathbb{k}^{*}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q})$, then the 2-class group of \mathbb{k}^{*} is cyclic and $h_{2}\left(\mathbb{k}^{*}\right)=h_{2}(-2 q)$. Furthermore, $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right)=\mathbb{Z} / 4 \mathbb{Z}$ if and only if $q \equiv 7(\bmod 16)$.

Proof. We have $q\left(\mathbb{k}^{*}\right)=2, h_{2}(2 p)=2, h_{2}(-p q)=2, h_{2}(p)=h_{2}(-q)=h_{2}(2)=1$ and $h_{2}(-2 p q)=4$ by Lemma 3.11, [8], Corollaries 19.8, 19.6, 18.4 and [14], page 353, respectively. Then, the class number formula (see [20]) gives

$$
\begin{aligned}
h_{2}\left(\mathbb{k}^{*}\right) & =\frac{1}{2^{5}} q\left(\mathbb{k}^{*}\right) h_{2}(p) h_{2}(2 p) h_{2}(-q) h_{2}(-2 q) h_{2}(-p q) h_{2}(-2 p q) h_{2}(2) \\
& =\frac{1}{2^{5}} \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot h_{2}(-2 q) \cdot 2 \cdot 4 \cdot 1=h_{2}(-2 q) .
\end{aligned}
$$

As q decomposes into the product of two prime ideals of $k^{\prime}=\mathbb{Q}(\sqrt{2}, \sqrt{p})$ and $h_{2}\left(k^{\prime}\right)=1$ (see [8], Proposition 21.5), then by the ambiguous class number formula (see [10]), the rank of the 2 -class group of \mathbb{k}^{*} is $2-1-e=1-e$. Since $h_{2}(-2 q)$ is even (see [8], Corollary 18.4) then $e=0$. Thus, $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right)$ is cyclic. We have that $h_{2}(-2 q)$ is divisible by 4 (see [8], Corollary 19.6) and $h_{2}(-2 q)$ is divisible by 8 if and only if $q \equiv-1(\bmod 16)$ (see [13], Théorème 4$)$, so the result follows.

In a way similar to Corollary 3.8 and Theorem 3.9, we prove our second main result.
Theorem 3.14. Let $d=-p q$ be such that $p \equiv 5(\bmod 8), q \equiv 7(\bmod 8)$ and $(p / q)=-1$. Let $\mathbb{k}^{*}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{-q}), k_{1}$ and k_{2} be the three quadratic unramified extensions of \mathfrak{k}. Set $h_{2}(-2 q)=2^{m}, m \geqslant 2$, then in each field \mathbb{k}^{*}, k_{1} and k_{2}, there are exactly two ideal classes of $\mathrm{Cl}_{2}(\mathbb{k})$ which capitulate. Thus G is the quaternion group of order 2^{m+1}.

By Proposition 3.13, Theorem 3.14 and Remark 3.3, we easily deduce the following remark.

Remark 3.15. Let $d=-p q$ be such that $p \equiv 5(\bmod 8), q \equiv 7(\bmod 8)$ and $(p / q)=-1$. If $q \equiv 7(\bmod 16)$, then $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right) \simeq \mathbb{Z} / 4 \mathbb{Z}, \mathrm{Cl}_{2}\left(k_{1}\right)$, and $\mathrm{Cl}_{2}\left(k_{2}\right)$ are cyclic, otherwise $\mathrm{Cl}_{2}\left(\mathbb{k}^{*}\right) \simeq \mathbb{Z} / h_{2}(-2 q) \mathbb{Z}$ and $\mathrm{Cl}_{2}\left(k_{1}\right) \simeq \mathrm{Cl}_{2}\left(k_{2}\right) \simeq(2,2)$.

Acknowledgment. We would like to thank the unknown referee for his/her several helpful suggestions and for calling our attention to the missing details.

References

[1] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}. Ann. Sci. Math. Qué. 23 (1999), 15-21. (In French.)
[2] A. Azizi: Sur les unités de certains corps de nombres de degré 8 sur \mathbb{Q}. Ann. Sci. Math. Qué. 29 (2005), 111-129. (In French.)
zbl MR
[3] A. Azizi, I. Benhamza: Sur la capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, \sqrt{-2})$. Ann. Sci. Math. Qué. 29 (2005), 1-20. (In French.)
zbl MR
[4] A. Azizi, M. M. Chems-Eddin, A. Zekhnini: On the rank of the 2-class group of some imaginary triquadratic number fields. Available at https://arxiv.org/abs/1905. 01225 (2019), 21 pages.
[5] A. Azizi, A. Mouhib: Capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{2}, \sqrt{d})$ où d est un entier naturel sans facteurs carrés. Acta Arith. 109 (2003), 27-63. (In French.)
zbl MR doi
[6] A. Azizi, M. Talbi: Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques. Acta Arith. 127 (2007), 231-248. (In French.)
zbl MR doi
[7] A. Azizi, M. Taous: Capitulation des 2-classes d'idéaux de $k=\mathbb{Q}(\sqrt{2 p}, i)$. Acta Arith. 131 (2008), 103-123. (In French.)
zbl MR doi
[8] P. E. Conner, J. Hurrelbrink: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore, 1988.
zbl MR doi
[9] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York, 1968.
[10] G. Gras: Sur les ℓ-classes d'idéaux dans les extensions cycliques rélatives de degré premier ℓ. I. Ann. Inst. Fourier 23 (1973), 1-48. (In French.)
zbl MR doi
[11] F.-P. Heider, B. Schmithals: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25. (In German.)
zbl MR doi
[12] M. Ishida: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin, 1976.
zbl MR doi
[13] P. Kaplan: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan 25 (1973), 596-608. (In French.)
zbl MR doi
[14] P. Kaplan: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine. Angew. Math. 283-284 (1976), 313-363. (In French.)
zbl MR doi
[15] H. Kisilevsky: Number fields with class number congruent to $4(\bmod 8)$ and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279.
zbl MR doi
[16] R. Kučera: On the parity of the class number of a biquadratic field. J. Number Theory 52 (1995), 43-52.
zbl MR doi
[17] F. Lemmermeyer: Kuroda's class number formula. Acta Arith. 66 (1994), 245-260. \quad zbl MR doi
[18] T. M. McCall, C. J. Parry, R. R. Ranalli: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99.
zbl MR doi
[19] O. Taussky: A remark concerning Hilbert's Theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438.
zbl MR doi
[20] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209.

Authors' addresses: Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Mohammed First University, Mathematics Department, Sciences Faculty, Mohammed V Avenue, P.O.Box 524, Oujda 60000, Morocco, e-mail: 2m.chemseddin@ gmail.com, abdelmalekazizi@yahoo.fr; Abdelkader Zekhnini (corresponding author), Mohammed First University, Mathematics Department, Pluridisciplinary Faculty, B.P. 300, Selouane, Nador 62700, Morocco, e-mail: zekha1@yahoo.fr; Idriss Jerrari, Mohammed First University, Mathematics Department, Sciences Faculty, Mohammed V Avenue, P. O. Box 524, Oujda 60000, Morocco, e-mail: idriss_math@hotmail.fr.

