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Abstract. Distributive lattices form an important, well-behaved class of lattices. They are
instances of two larger classes of lattices: congruence-uniform and semidistributive lattices.
Congruence-uniform lattices allow for a remarkable second order of their elements: the core
label order; semidistributive lattices naturally possess an associated flag simplicial complex:
the canonical join complex. In this article we present a characterization of finite distributive
lattices in terms of the core label order and the canonical join complex, and we show that
the core label order of a finite distributive lattice is always a meet-semilattice.
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1. Introduction

A finite lattice L is congruence uniform if for both L and its dual there is a bijec-

tion between the set of join-irreducible elements of L and the set of join-irreducible

congruences of L. Congruence-uniform lattices play an important role in the theory

of free lattices, because they are precisely the finite lattices that can be realized as

bounded-homomorphic images of free lattices (see [7], Theorem 5.1).

Motivated by his research on the characterization of congruence-uniform lattices

of regions of simplicial hyperplane arrangements, Reading observed that there is a

natural way to order the elements of a congruence-uniform lattice L in a second way.

This order has been dubbed the core label order in [15], denoted by CLO(L), and it

has interesting combinatorial properties. In certain special cases the core label order

was investigated in [1], [5], [11], [12], [14], [16], [17]. A general study of the core label

order of a congruence-uniform lattice was carried out in [15].

It follows from the results of Day that a finite lattice is congruence uniform if and

only if it can be obtained from the singleton lattice by a finite sequence of interval
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doublings (see [7], Theorem 5.1). It was shown in [9] that finite distributive lattices

can be obtained from the singleton lattice by the successive doubling of principal

order ideals, which implies in particular that they are congruence uniform. In this

article we investigate the core label order of finite distributive lattices.

In his solution of the word problem of free lattices, Whitman (see [20], [21]) showed

that every element of a free lattice admits a canonical join and a canonical meet

representation. It can be shown that lattices, in which every element admits these

canonical forms, are semidistributive, which is a weaker form of distributivity. More-

over, a finite lattice is semidistributive if and only if every element admits a canonical

join and a canonical meet representation. It is straightforward to show that every

subset of a canonical representation is itself a canonical representation. This gives

rise to the definition of the canonical join complex of a semidistributive lattice. In

this complex, the faces are therefore indexed by the elements of the lattice. The

canonical join complex was thoroughly studied in [2].

It turns out that we can use the core label order and the canonical join complex

to characterize distributive lattices.

Theorem 1.1. A finite congruence-uniform lattice L is distributive if and only if

CLO(L) is the face poset of the canonical join complex of L.

We want to point out that we can also use the core label order to characterize

finite Boolean lattices. They are precisely the congruence-uniform lattices that are

isomorphic to their own core label order (see [15], Theorem 1.5). Consequently, the

canonical join complex of a finite Boolean lattice is a simplex.

In [19], Problem 9.5, Reading asked under what conditions the core label order

is again a lattice. In [15], Section 4.2 we found one such property, which we call

the intersection property. This property can be used to characterize the congruence-

uniform lattices whose core label orders are meet-semilattices (see [15], Theorem 4.8).

We conclude this article with the observation that every distributive lattice has the

intersection property.

Theorem 1.2. Every finite distributive lattice L has the intersection property.

Consequently, CLO(L) is a meet-semilattice, and it is a lattice if and only if L is

isomorphic to a Boolean lattice.

We first recall the necessary basic notions in Section 2. After that we define the

core label order of a congruence-uniform lattice in Section 3.1 and the canonical join

complex of a semidistributive lattice in Section 3.2, where we also prove Theorem 1.1.

In Section 3.3 we define the intersection property for congruence-uniform lattices and

prove Theorem 1.2.
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2. Distributive lattices

2.1. Basic notions. Let P = (P,6) be a partially ordered set (poset for short).

The dual poset of P is P∗ def
= (P,>).

An element x ∈ P is minimal in P if y 6 x implies y = x for all y ∈ P . Dually,

x ∈ P is maximal in P if it is minimal in P∗.

An order ideal of P is a set X ⊆ P that is downwards closed, i.e. if x ∈ X and

y 6 x, then y ∈ X . Dually, X ⊆ P is an order filter of P if it is an order ideal of P∗.

Every subset X ⊆ P generates the order ideal

P6X
def
= {y ∈ P : y 6 x for some x ∈ X}.

If |X | = 1, then we call P6X a principal order ideal . We denote by P>X the order

filter of P generated by X . Moreover, we denote the (po)set of all order ideals of P

by I(P).

A cover relation of P is a pair (x, y) such that x < y and there is no z ∈ P such

that x < z < y. We usually write x ⋖ y for a cover relation and we denote the set

of all cover relations of P by E(P). Moreover, if x ⋖ y, then we call x a lower cover

of y, and y an upper cover of x.

A chain of P is a totally ordered subset of P and it is saturated if it can be

written as a sequence of cover relations. A saturated chain is maximal if it contains

a minimal and a maximal element of P .

We say that P is a lattice if for every two elements x, y ∈ P there exists a greatest

lower bound x ∧ y (the meet) and a least upper bound x ∨ y (the join). Observe

that every finite lattice has a unique minimal element (denoted by 0̂) and a unique

maximal element (denoted by 1̂).

2.2. Characterizations of finite distributive lattices. A lattice L = (L,6)

is distributive if for every three elements x, y, z ∈ L the following two identities hold:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Finite distributive lattices admit a nice representation as ordered families of sets

which was first observed by Birkhoff (see [4]). To that end recall that an element

j ∈ L is join irreducible if for every x, y ∈ L with j = x ∨ y we have j ∈ {x, y}. Let

J (L) denote the (po)set of join-irreducible elements of L. We remark that in a finite

lattice every join-irreducible element j has a unique lower cover, which we denote

by j∗.

Theorem 2.1 ([13], Theorem II.1.9). A finite lattice L is distributive if and only

if L ∼= I
(

J (L)
)

.
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Figure 1 (a) shows a distributive lattice with its set of join-irreducible elements

highlighted. Figure 1 (b) shows the corresponding lattice of order ideals of the poset

of join-irreducibles.

1 2

2 1 3 4

3
4 1

41
3

4 3 1 5

6 5 1

5 6

(a) (b)

Figure 1. An illustration of Theorem 2.1: (a) A distributive lattice. The cover relations
are labeled by the map (2.2); (b) The lattice of order ideals of the poset of join-
irreducible elements of the lattice in Figure 1 (a).

As a consequence of Theorem 2.1 we may view a distributive lattice as a family of

sets ordered by inclusion, where joins and meets are given by the set union and set

intersection, respectively. If L = (L,6) is distributive, then we use the bijection

(2.1) ι : L → I
(

J (L)
)

, x 7→ L6{x} ∩ J (L),

to switch between elements of a distributive lattice and their representing order ideals

of join-irreducible elements.

Another consequence of Theorem 2.1 is that distributive lattices are graded , i.e. ev-

ery maximal chain has the same cardinality. This can be quickly seen as follows: let

x ∈ L \ {1̂} and let j ∈ J (L) be a minimal element of J (L) \ ι(x). Then, ι(x) ∪ {j}

is an order ideal of J (L) which therefore represents an element x′ ∈ L, and we have

x ⋖ x′. We thus obtain a natural map

(2.2) λ : E(L) → J (L), (x, y) 7→ ι(y) \ ι(x).
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(a) The lattice N5. (b) The lattice M3.

Figure 2. The two forbidden sublattices of a distributive lattice.

There is another characterization of finite distributive lattices due to Birkhoff,

first described in [3], that will be useful later. Let N5 denote the lattice shown in

Figure 2 (a) and let M3 denote the lattice shown in Figure 2 (b).

Theorem 2.2 ([13], Theorem II.1.1). A finite lattice is distributive if and only if

it does not have a sublattice isomorphic to N5 or M3.

2.3. Canonical join representations. Let L = (L,6) be a lattice. A join

representation of x ∈ L is a set X ⊆ L with x =
∨

X . A join representation X of x

is irredundant if no proper subset of X joins to x, and it is canonical if L6X ⊆ L6Y

for every join representation Y of x. We denote the canonical join representation of

x ∈ L by Γ(x) (if it exists).

It turns out that the finite lattices in which every element admits a canonical join

representation can be characterized algebraically. We say that L is join semidistribu-

tive if for every x, y, z ∈ L with x ∨ y = x ∨ z it holds that x ∨ y = x ∨ (y ∧ z). The

lattice L is meet semidistributive if L∗ is join semidistributive. It is semidistributive

if it is both join and meet semidistributive.

Theorem 2.3 ([10], Theorem 2.24). A finite lattice is join semidistributive if and

only if every element admits a canonical join representation.

2.4. Interval doubling. Day introduced a way of constructing bigger lattices

from smaller ones by the so-called doubling (see [7]). Let 2 denote the unique lattice

with two elements 0 and 1. Moreover, let P = (P,6) be a poset and let X ⊆ P . The

doubling of P by X is the subposet P [X ] of the direct product P × 2 given by the

ground set

(P6X × {0}) ⊎ (((P \ P6X) ∪X)× {1}).

Here, ⊎ denotes the disjoint set union. We can use this doubling construction to

characterize finite distributive lattices.

11



Theorem 2.4 ([9], Theorem 3). A finite lattice is distributive if and only if it can

be obtained from the singleton lattice by a finite sequence of doublings by principal

order filters.

Recall from [7], Theorem 5.1 that a lattice is congruence uniform if and only if

it can be constructed from the singleton lattice by a finite sequence of doublings

by intervals. See also [8]. Since every principal order filter in a finite lattice is

an interval, Theorem 2.4 implies that every finite distributive lattice is congruence

uniform. But we have more than that.

Theorem 2.5 ([7], Theorem 4.2). Every congruence-uniform lattice is semidis-

tributive.

Let L = (L,6) be a finite congruence-uniform lattice. As a consequence of Theo-

rems 2.3 and 2.5, every x ∈ L admits a canonical join representation. This canonical

join representation is determined completely by the lower covers of x. To see how

that works, let us say that two cover relations (x, y), (u, v) ∈ E(L) are perspective if

either v ∨ x = y and v ∧ x = u or u ∨ y = v and u ∧ y = x. Let us consider the map

(2.3) γ : E(L) → J (L), (x, y) 7→ j,

where j is the unique join-irreducible element of L such that (x, y) and (j∗, j) are

perspective. It follows from [10], Theorem 2.30 and [12], Lemma 2.6 that this map

is well defined.

Proposition 2.6 ([12], Proposition 2.9). Let L = (L,6) be a finite congruence-

uniform lattice. For x ∈ L we have

Γ(x) = {γ(y, x) : y ⋖ x}.

3. A new characterization of distributive lattices

3.1. The core label order of a distributive lattice. Motivated by the study

of the poset of regions of real hyperplane arrangements, Reading introduced an al-

ternate way to order the elements of a congruence-uniform lattice (see [19], Sec-

tion 9, 7.4). For x ∈ L, let us define the nucleus of x by

x↓
def
=

∧

y∈L : y⋖x

y.

We call the interval [x↓, x] the core of x. This definition enables us to define the set
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of core labels of x by

Ψ(x)
def
= {γ(u, v) : x↓ 6 u ⋖ v 6 x}.

The core label order of L is defined by x ⊑ y if Ψ(x) ⊆ Ψ(y), and we usually write

CLO(L)
def
= (L,⊑).

In this section we investigate this core label order of a distributive lattice. We start

by observing that the two maps (2.2) and (2.3) coincide for distributive lattices.

Lemma 3.1. In a finite distributive lattice the maps λ and γ coincide.

P r o o f. Let (x, y) ∈ E(L) and let j = λ(x, y). By definition we have ι(y) \

ι(x) = j, which implies that ι(x)∪ι(j) = ι(y) and ι(x)∩ι(j) = ι(j)\{j} = ι(j∗). This

means that (j∗, j) and (x, y) are perspective, and by definition we obtain γ(x, y) = j.

�

Proposition 3.2. Let L = (L,6) be a finite distributive lattice. For every x ∈ L

we have

Γ(x) = ι(x) \ ι(x↓).

P r o o f. In view of Proposition 2.6 and Lemma 3.1 we conclude for x ∈ L:

Γ(x) =
⋃

y∈L : y⋖x

γ(y, x) =
⋃

y∈L : y⋖x

λ(y, x) =
⋃

y∈L : y⋖x

(ι(x) \ ι(y))

= ι(x) \
⋂

y∈L : y⋖x

ι(y) = ι(x) \ ι

(

∧

y∈L : y⋖x

y

)

= ι(x) \ ι(x↓).

�

Recall that a finite Boolean lattice is a lattice, which is isomorphic to the power

set of a finite set ordered by inclusion. We write Bool(k) for the Boolean lattice

with 2k elements. Let us recall the following result.

Proposition 3.3 ([15], Proposition 4.2). Let L = (L,6) be a finite congruence-

uniform lattice and let x ∈ L. We have Γ(x) = Ψ(x) if and only if [x↓, x] ∼= Bool(k),

where k = |Γ(x)|.

Proposition 3.4. Let L = (L,6) be a finite distributive lattice. For x ∈ L we

have Ψ(x) = Γ(x).
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P r o o f. Let us first prove that the core of x is isomorphic to Bool(k), where k

denotes the number of lower covers of x. This is trivially true if k 6 1. Now suppose

that k = 2. Let y1, y2 denote the lower covers of x and let x
′ = y1 ∧ y2. Pick z ∈ L

with x↓ < z 6 y1. We obtain

z = x′ ∨ z = (y1 ∧ y2) ∨ (y1 ∧ z) = y1 ∧ (y2 ∨ z) = y1 ∧ x = y1

and we may thus conclude that x↓ is a lower cover of both y1 and y2, which establishes

the claim.

Now suppose that x has k lower covers y1, y2, . . . , yk and let x
′ = y1∧y2∧. . .∧yk−1.

By induction, the interval [x′, x] is isomorphic to Bool(k − 1). Analogously to the

reasoning in the first paragraph we may show that x↓ ⋖ x′, which implies that

yk ∧ x′ ∈ {x′, x↓}. We may then show inductively that

x = (y1 ∨ yk) ∧ (y2 ∨ yk) ∧ . . . ∧ (yk−1 ∨ yk) = (y1 ∧ y2 ∧ . . . ∧ yk−1) ∨ yk = x′ ∨ yk,

which implies x′ 66 yk, since x
′ < x. Therefore, x′ ∧ yk = x↓ must hold. Analogously

we see that for every z ∈ [x′, x] the element z∧yk is a lower cover of z. Therefore, the

interval [x↓, x] is isomorphic to Bool(k). Proposition 3.3 implies that Ψ(x) = Γ(x).

�

Proposition 3.5. Let L = (L,6) be a finite congruence-uniform lattice. If for

every x ∈ L we have Γ(x) = Ψ(x), then L is distributive.

P r o o f. We proceed by contraposition and assume that L is not distributive. By

Theorem 2.2 we conclude that it contains a sublattice isomorphic to N5 or M3. We

know from [6] that M3 is not semidistributive, and in view of Theorem 2.5 it cannot

appear as a sublattice of a congruence-uniform lattice.

We conclude that L contains a sublattice K isomorphic to N5. Let x and y denote

the least and greatest element of K. Define the length of a lattice to be the maximal

size of a maximal chain. We choose K minimal in such a way that every sublattice

of the interval [x, y] in L, whose length is strictly smaller than the length of K, is

distributive. We say that a set X ⊆ L contradicts the choice of K if X induces a

proper sublattice of the interval [x, y] that is isomorphic to N5 and has smaller length

than K.

We will show that Γ(x) ( Ψ(x) in L. Since intervals of congruence-uniform lattices

are congruence uniform again (see [7], Theorem 4.3), we may assume without loss

of generality that x = 0̂ and y = 1̂. (Here 0̂ and 1̂ denote the least and greatest

elements of L.)

In other words, there are three elements b, c, d ∈ L such that b < c and b ∧ d =

0̂ = c ∧ d and b ∨ d = 1̂ = c ∨ d.
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We may choose b and c such that they form a cover relation in L. (Observe that

for every z ∈ L with b 6 z 6 c we have 1̂ = b∨d 6 z∨d and 0̂ = c∧d > z∧d, which

implies z ∧ d = 0̂ and z ∨ d = 1̂.)

We may as well choose b in such a way that it covers 0̂. (Observe that if there

is some z ∈ L with 0̂ < z < b such that z ∨ d < 1̂, then the set {z, b, c, z ∨ d, 1̂}

contradicts the choice of K.)

Since K is finite we can find elements y1, y2 such that c 6 y1 ⋖ 1̂ and d 6 y2 ⋖ 1̂.

If y1 = y2, then the set {0̂, b, c, d, y1} contradicts the choice of K. We thus have

y1 6= y2. Since b ∨ d = 1̂, we conclude that b 66 y2 and the same is true for c.

Let z = y1 ∧ y2. Suppose that 0̂ < z. Since 0̂ ⋖ b, we conclude that b∧ z = 0̂. We

also have c ∧ z = 0̂, since otherwise {c ∧ z, c, y1, y2, 1̂} contradicts the choice of K.

Moreover, we have b ∨ z = y1, since otherwise {z, b ∨ z, y1, y2, 1̂} contradicts the

choice of K. The analogous argument shows that c ∨ z = y1. Then, however,

{0̂, b, c, z, y1} contradicts the choice of K.

We thus conclude that y1 ∧ y2 = 0̂. The dual of Proposition 2.9 in [15] implies

that y1 and y2 are the only lower covers of 1̂. However, L has cardinality > 5, which

implies that it is not isomorphic to Bool(2). Proposition 3.3 implies that Ψ(1̂) 6= Γ(1̂)

and we are done. �

Recall from [15] that the Boolean defect of a congruence-uniform lattice L =

(L,6) is

bdef(L)
def
=

∑

x∈L

|Ψ(x) \ Γ(x)|.

We obtain the following result, which strengthens Proposition 5.2 of [15].

Proposition 3.6. A finite congruence-uniform lattice L satisfies bdef(L) = 0 if

and only if L is distributive.

P r o o f. This follows from Propositions 3.4 and 3.5. �

3.2. The canonical join complex of a distributive lattice. Given a finite

set M , a simplicial complex on M is a family ∆(M) of subsets of M such that for

every F ∈ ∆(M) and every F ′ ⊆ F we have F ′ ∈ ∆(M). The members of ∆(M)

are faces . The face poset of ∆(M) is the poset (∆(M),⊆).

Reading observed in [18], Proposition 2.2 that the set of canonical join representa-

tions of a lattice is closed under taking subsets. In other words, it forms a simplicial

complex; the canonical join complex of L, denoted by Can(L).

We are now ready to prove Theorem 1.1.
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P r o o f of Theorem 1.1. Let L = (L,6) be a finite congruence-uniform lattice.

By definition, the face poset of Can(L) is precisely ({Γ(x) : x ∈ L},⊆) and the core

label order of L is ({Ψ(x) : x ∈ L},⊆). Propositions 3.4 and 3.5 now imply that the

sets {Γ(x) : x ∈ L} and {Ψ(x) : x ∈ L} are equal if and only if L is distributive. �

Figure 3 (a) shows the core label order of the lattice from Figure 1 (a) and Fig-

ure 3 (b) shows the canonical join complex of the lattice in Figure 1 (a). It is quickly

verified that Theorem 1.1 holds.

∅

{2} {1}{3} {4}{5} {6}

{1, 2}{1, 3} {1, 4}{3, 4} {1, 5} {5, 6}

{1, 3, 4}

(a)

3 4

1

2 5 6

(b)

Figure 3. An illustration of Theorem 1.1: (a) The core label order of the lattice in Fig-
ure 1 (a); (b) The canonical join complex of the lattice in Figure 1 (a). The
highlighted region indicates a two-dimensional face.

3.3. The intersection property. Reading asked in [19], Problem 9.5 for condi-

tions on a congruence-uniform lattice L which would imply that CLO(L) is a lattice,

too. We gave one such property in [15], Section 4.2: a finite congruence-uniform

lattice L = (L,6) has the intersection property if for all x, y ∈ L there exists z ∈ L

such that Ψ(x) ∩Ψ(y) = Ψ(z).

Theorem 3.7 ([15], Theorems 1.3 and 4.7). Let L be a finite congruence-uniform

lattice. The core label order CLO(L) is a meet-semilattice if and only if L has the

intersection property. It is a lattice if and only if 1̂↓ = 0̂.

We conclude this article with the proof of Theorem 1.2.

P r o o f of Theorem 1.2. Let L = (L,6) be a finite distributive lattice. For

x, y ∈ L we conclude from Proposition 3.4 that Ψ(x) = Γ(x) and Ψ(y) = Γ(y). It

follows that Z = Γ(x) ∩ Γ(y) is a face of Can(L), which means that there exists

z ∈ L with Z = Γ(z) = Ψ(z). We have thus established that L has the intersection

property.

Lemma 3.9 of [15] states that CLO(L) has a greatest element if and only if 1̂↓ = 0̂,

which in view of Proposition 3.3 is the case precisely when L is isomorphic to a

Boolean lattice.

The claims then follow from Theorem 3.7. �
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