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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 57 (2021), 113–130

ON SOME DIOPHANTINE EQUATIONS INVOLVING
BALANCING NUMBERS

Euloge Tchammou and Alain Togbé

Abstract. In this paper, we find all the solutions of the Diophantine equation
Bp1 + 2Bp2 + · · ·+ kBp

k
= Bqn in positive integer variables (k, n), where Bi is

the ith balancing number if the exponents p, q are included in the set {1, 2}.

1. Introduction

In 1999, A. Behera, and G.K. Panda [2] studied balancing numbers n ∈ Z+ as
solutions of the Diophantine equation

(1.1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) ,

for some positive integer r, in which case the number r is called a balancer or a
cobalancing number. If n is a balancing number with balancer r, then n(n−1)

2 =
nr + r(r+1)

2 . This means that

(1.2) r = −(2n+ 1) +
√

8n2 + 1
2 and n = 2r + 1 +

√
8r2 + 8r + 1
2 .

Let Bn denote the nth balancing number and bn the nth cobalancing number. Then,

B1 = 1, B2 = 6 and Bn+1 = 6Bn −Bn−1 , for n ≥ 2 ,
b1 = 0, b2 = 2 and bn+1 = 6bn − bn−1 + 2 , for n ≥ 2 .

From (1.2), we see that Bn is a balancing number if and only if 8B2
n+ 1 is a perfect

square and bn is a cobalancing number if and only if 8b2
n + 8bn + 1 is a perfect

square. The numbers

Cn =
√

8B2
n + 1 and cn =

√
8b2
n + 8bn + 1

are then called the nth Lucas-balancing number and the nth Lucas-cobalancing
number, respectively. P.K. Ray [10] derived some nice results on balancing numbers
and Pell numbers which are given by

P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2 ,
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for n ≥ 2. More generally, for n ≥ 0, P−n = (−1)n+1Pn (extension of the sequence
for negative subscripts). Since an integer x is a balancing number if and only if
8x2 + 1 is a square, we set 8x2 + 1 = y2, so that y2 − 8x2 = 1, for some integer
y 6= 0, which is a Pell’s equation. The fundamental solution is (x1, y1) = (1, 3).
So yn + xn

√
8 = (3 +

√
8)n for n ≥ 1 and hence yn − xn

√
8 = (3 −

√
8)n. Put

γ = 3 +
√

8 and δ = 3−
√

8. The Binet’s formula for balancing numbers is

(1.3) Bn = γn − δn

γ − δ
, for n ≥ 1 .

Putting α = 1 +
√

2 and β = 1 −
√

2, the roots of the characteristic quadratic
equation x2 − 2x− 1 = 0 of the Pell’s sequence (Pn)n≥0, the Binet’s formula for
Pn is

Pn = αn − βn

2
√

2
, for n ∈ Z .

This easily implies that the inequalities
(1.4) αn−2 ≤ Pn ≤ αn−1

hold, for n ≥ 1. Since α2 = γ and β2 = δ, we easily get that Bn = α2n − β2n

4
√

2
for n ≥ 1. Thus, there is a correspondence between balancing numbers and Pell
numbers. More precisely, we have that Bn = P2n

2 . See [7], [8] and [9] for further
details.

The Diophantine equation
k∑
j=1

jF pj = F qn

has been studied in 2018 by G. Soydan, L. Németh, and L. Szalay [11], where Fi is
the ith Fibonacci number. They solved this equation for (p, q) ∈ {(1, 1), (1, 2), (2, 1),
(2, 2)}. Further, they conjectured that the only non-trivial solutions are given by:
F 2

4 = 9 = F1+2F2+3F3, F8 = 21 = F1+2F2+3F3+4F4, F
3
4 = 27 = F 3

1 +2F 3
2 +3F 3

3 .

Later in 2019, K. Gueth, F. Luca and L. Szalay [4] confirmed the conjecture, for
max{p, q} ≤ 10. This result is again improved by Altassan and Luca [1] who proved
that if such equation is satisfied, then max{k, n, p, q} ≤ 102500. The authors of this
paper studied a similar equation where the Fibonacci sequence is replaced by the
Pell sequence. See [12].

A question is what will happen if Fibonacci numbers are replaced by balancing
numbers. Therefore, in this paper, we investigate the Diophantine equation
(1.5) Bp1 + 2Bp2 + · · ·+ kBpk = Bqn,

in positive integers k and n, where p and q are fixed in {1, 2}. We consider
Bp1 = 1 = Bq1 as a trivial solution to (1.5). The main results proved in this paper
are described as follows.

Theorem 1. The Diophantine equation
(1.6) B1 + 2B2 + · · ·+ kBk = Bn
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has only the trivial solution (k, n) = (1, 1).

Theorem 2. The Diophantine equation
(1.7) B2

1 + 2B2
2 + · · ·+ kB2

k = B2
n

possesses only the trivial solution (k, n) = (1, 1).

Theorem 3. The Diophantine equation
(1.8) B1 + 2B2 + · · ·+ kBk = B2

n

possesses only the trivial solution (k, n) = (1, 1).

Theorem 4. The Diophantine equation
(1.9) B2

1 + 2B2
2 + · · ·+ kB2

k = Bn

possesses only the trivial solution (k, n) = (1, 1).

We will prove our main results using modular arithmetic. We organize this paper
as follows. In Section 2, we will recall some known properties and prove key lemmas.
Our main results will be proved in Sections 3–6.

2. Some useful lemmas

In this section, we present some useful lemmas. Some of them are a few
well-known results and we also prove some preliminary results. We start by recalling
Euler’s totient function, denoted ϕ, which is defined for each positive integer n
by the number of integers k in the range 1 ≤ k ≤ n such that gcd(n, k) = 1. The
following lemma is a well-known result. One can see Theorem 2.8 of [6].

Lemma 1 (Euler’s Totient Theorem). Let n be a positive integer. For each non-zero
integer a relatively prime to n,

aϕ(n) ≡ 1 (mod n).

The next lemma is a collection of well-known results. One can see for instance
Proposition 2.1, Proposition 2.2, Proposition 2.3, and Proposition 2.6 in [3] and [5].

Lemma 2. Let k and n be arbitrary positive integers.
(i) Bk+nBk−n − B2

k = −B2
n if k > n (Catalan’s identity). In particular,

Bn−1Bn+1 −B2
n = −1 (Cassini’s identity) and B2n+1 = B2

n+1 −B2
n.

(ii)
∑k
j=1 Bj = Bk+1−Bk−1

4 .
(iii) gcd(Bk, Bn) = Bgcd(k,n). In particular, Bk and Bn are coprime if and only

if k and n are coprime.
(iv) Pn−1Pn+1 − P 2

n = (−1)n.
(v) Pk+n = PkPn+1 + Pk−1Pn. In particular, P2n+1 = P 2

n + P 2
n+1.

Remark 5. Properties (iv) and (v) hold for any integers k and n, using the formula
of the extension to negative subscripts.

We will prove the following results.
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Lemma 3. Let k be a positive integer.
(i) 6BkBk−1 = B2

k +B2
k−1 − 1 and 33B2

k −B2
k−1 = B2k+1 − 2 if k ≥ 2.

(ii)
∑k
j=1 B

2
j = B2k+1−2k−1

32 .

(iii)
∑k
j=1 jBj = k(Bk+1−Bk)−Bk

4 .

(iv)
∑k
j=1 jB

2
j = kB2k+1−B2

k−k(k+1)
32 .

(v) Bk+n −Bk+1−n = (Bk+1 −Bk)(P2n−1 + P2n−2), for n ∈ {1, 2, . . . , k}. In
particular, Bk+n ≡ Bk+1−n (mod (Bk+1 −Bk)).

(vi) 4B2
k+1−n − 4B2

n + P4n−1 = P2k−4n+3 (Bk+1 −Bk), for n ∈ {1, 2, . . . , k}.
In particular, 4B2

k+1−n ≡ 4B2
n − P4n−1 (mod (Bk+1 −Bk)).

Proof.
• The property (i) can be obtained easily, using the recurrence formula of (Bn)n≥1
and Lemma 2 (i).

• We prove property (ii). It is obvious to see that the property is true for k = 1.
Assume that k ≥ 2. We have

(2.1)
k∑
j=1

B2
j =

k∑
j=1

(P2j

2

)2
= 1

4

k∑
j=1

P 2
2j .

Observe that
k∑
j=1

P 2
2j = 4 +

k∑
j=2

(2P2j−1 + P2j−2)2 = 4 +
k∑
j=2

(4P 2
2j−1 + P 2

2j−2 + 4P2j−1P2j−2)

= 4 +
k∑
j=2

(
4P 2

2j−1 − P 2
2j−2 + 2P2j−2P2j

)
= 4 +

k∑
j=2

(
6P 2

2j−1 − P 2
2j−2 − 2

)
= 4 +

k∑
j=2

(
6(6P 2

2j−2 − P 2
2j−3 + 2)− P 2

2j−2 − 2
)

= 4 +
k∑
j=2

(
35P 2

2j−2 − 6P 2
2j−3 + 10

)
= 4 +

k∑
j=2

(
34P 2

2j−2 + (P 2
2j−2 − 6P 2

2j−3 + 2) + 8
)

= 4 +
k∑
j=2

(
34P 2

2j−2 − P 2
2j−4 + 8

)
= 33

k∑
j=1

P 2
2j − 33P 2

2k + P 2
2k−2 + 8k − 4 .
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In the above chain, we used Lemma 2 (iv) to get P2j−2P2j = P 2
2j−1 − 1. So

(2.2)
k∑
j=1

P 2
2j =

33P 2
2k − P 2

2k−2 − 8k + 4
32 .

Now (2.1) and (2.2) imply that
k∑
j=1

B2
j =

33P 2
2k−P 2

2k−2− 8k+4
128 =

33B2
k−B2

k−1− 2k+ 1
32 = B2k+1− 2k−1

32 ,

where we used (i) to get 33B2
k −B2

k−1 = B2k+1 − 2. Then, property (ii) is proved.
• The next step is to prove (iii). We have
k∑
j=1

jBj = 13+
k∑
j=3

jBj = 13+
k∑
j=3

(6jBj−1−jBj−2) = 13+6
k∑
j=3

jBj−1−
k∑
j=3

jBj−2

= 13 + 6
k∑
j=3

[(j − 1)Bj−1 +Bj−1]−
k∑
j=3

[(j − 2)Bj−2 + 2Bj−2]

= 13 + 6
k−1∑
j=2

jBj + 6
k−1∑
j=2

Bj −
k−2∑
j=1

jBj − 2
k−2∑
j=1

Bj

= 1 + 5
k∑
j=1

jBj + 4
k∑
j=1

Bj − (5k + 4)Bk + (k + 1)Bk−1 .

So, we get
k∑
j=1

jBj =
(5k + 4)Bk − (k + 1)Bk−1 − 4

∑k
j=1 Bj − 1

4

= (5k + 5)Bk − (k + 1)Bk−1 −Bk+1

4

= (k + 1)(Bk+1 −Bk)−Bk+1

4 = k(Bk+1 −Bk)−Bk
4 ,

where we used Lemma 2 (ii). Then property (iii) is proved.
• Now, we will take care of (iv). One can easily see that the property is true for
k = 1. Assume that k ≥ 2.
k∑
j=1

jB2
j = B2

1 + 2B2
2 +

k∑
j=3

j(6Bj−1 −Bj−2)2

= 73+
k∑
j=3

j(36B2
j−1 −12Bj−1Bj−2 +B2

j−2)

= 73+
k∑
j=3

j(34B2
j−1 −B2

j−2 + 2) = 73 + 34
k∑
j=3

jB2
j−1 −

k∑
j=3

jB2
j−2 +2

k∑
j=3

j
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= 73 + 34
k∑
j=3

[
(j − 1)B2

j−1 +B2
j−1
]
−
k∑
j=3

[
(j − 2)B2

j−2 + 2B2
j−2
]

+2
k∑
j=3

j

= 67 + 34
k−1∑
j=2

jB2
j + 34

k−1∑
j=2

B2
j −

k−2∑
j=1

jB2
j − 2

k−2∑
j=1

B2
j + 2

k∑
j=1

j

= 33
k∑
j=1

jB2
j + 32

k∑
j=1

B2
j − 33kB2

k + (k + 1)B2
k−1 − 32B2

k + k(k + 1)− 1 ,

where we used Lemma 3 (i) to get that 12Bj−1Bj−2 = 2B2
j−2 + 2B2

j−1 − 2. Then,

32
k∑
j=1

jB2
j = 33kB2

k−(k+1)B2
k−1+32B2

k − k(k + 1)+1−32
k∑
j=1

B2
j

= k(33B2
k −B2

k−1)+33B2
k−B2

k−1−B2
k − k(k + 1) +1−B2k+1+ 2k + 1

= kB2k+1 −B2
k − k(k + 1) ,(2.3)

where we used (ii) and (i). Finally, (2.3) implies that
k∑
j=1

jB2
j = kB2k+1 −B2

k − k(k + 1)
32 ,

as expected.
• Next, we will prove (v). Let n be an element of {1, 2, . . . , k}. We have

(Bk+1 −Bk)(P2n−1 + P2n−2) =
(P2k+2 − P2k

2

)
(P2n−1 + P2n−2)

= P2k+1(P2n−1 + P2n−2) .(2.4)

On the other hand, using Lemma 2 (v), we obtain

P2n+2k =P2nP2k+1 + P2n−1P2k

=2P2k+1(P2n−1 + P2n−2)− P2n−2P2k+1 + P2n−1P2k .(2.5)

Then, we get

(2.6) P2k+1(P2n−1 + P2n−2) = 1
2(P2n+2k + P2n−2P2k+1 − P2n−1P2k).

Equations (2.4) and (2.6) imply that

(2.7) (Bk+1 −Bk)(P2n−1 + P2n−2) = 1
2(P2n+2k + P2n−2P2k+1 − P2n−1P2k).

Using again Lemma 2 (v), we have that

P2k+2−2n = P2−2n+2k = P2−2nP2k+1 + P1−2nP2k

= −P2n−2P2k+1 + P2n−1P2k ,(2.8)



ON SOME DIOPHANTINE EQUATIONS INVOLVING BALANCING NUMBERS 119

where we used formulas of the extension of the sequence of Pell numbers for negative
subscripts. Equation (2.8) implies that

(2.9) P2n−2P2k+1 − P2n−1P2k = −P2k+2−2n .

Now, equations (2.7) and (2.9) imply that

(Bk+1 −Bk)(P2n−1 + P2n−2) = 1
2(P2n+2k − P2k+2−2n) = Bk+n −Bk+1−n ,

and property (v) is proved.
• Finally, we will deal with property (vi). Let n be an element of {1, 2, . . . , k}.
Using the Binet’s formula for (Pn)n≥0, we obtain

P2k−4n+3(Bk+1 −Bk) = P2k−4n+3

(P2k+2 − P2k

2

)
= P2k−4n+3P2k+1

= 1
8
(
α4k−4n+4 + β4k−4n+4 − α2k−4n+3β2k+1 − α2k+1β2k−4n+3) .(2.10)

Observe that

−α2k−4n+3β2k+1 − α2k+1β2k−4n+3

=− α2k+1β2k+1α2α−4n− α2k+1β2k+1β2β−4n = α2α−4n+ β2β−4n

= α4n−2 + β4n−2 ,(2.11)

where we used the fact that α2k+1β2k+1 = (−1)2k+1 = −1. Then, equations (2.10)
and (2.11) imply that

(2.12) P2k−4n+3 (Bk+1 −Bk) = 1
8
(
α4k−4n+4 + β4k−4n+4 + α4n−2 + β4n−2) .

On the other hand, again using the Binet’s formula for (Pn)n≥0, we get that

4B2
k+1−n − 4B2

n + P4n−1 = P 2
2k+2−2n − P 2

2n + P 2
2n−1 + P 2

2n = P 2
2k+2−2n + P 2

2n−1

= 1
8
(
α4k−4n+4 + β4k−4n+4 + α4n−2 + β4n−2) ,(2.13)

where we used Lemma 2 (v) to get that P4n−1 = P 2
2n−1 + P 2

2n. From equations
(2.12) and (2.13), we conclude that

4B2
k+1−n − 4B2

n + P4n−1 = P2k−4n+3 (Bk+1 −Bk) ,

as expected. �

Lemma 4. Let (Un)n≥1 be the sequence defined by Un = B2n+1 −B2n−1 and k be
a positive integer.

(i) The sequence (Un)n≥1 satisfies U1 = 34, U2 = 1154 and Un = 34Un−1 −
Un−2, for n ≥ 3.

(ii) Uk+n − Uk+1−n = 32B2n−1B2k+1, for n ∈ {1, 2, . . . , k}. In particular,
Uk+n ≡ Uk+1−n (mod B2k+1), for n ∈ {1, 2, . . . , k}.
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Proof. One can check easily (i). We prove (ii). Let n ∈ {1, 2, . . . , k}. We have
(2.14) Uk+n − Uk+1−n = B2k+2n+1 −B2k+2n−1 − (B2k−2n+3 −B2k−2n+1) .
By, Lemma 3 (i), B2k+2n+1 = 33B2

k+n − B2
k+n−1 + 2 and by Lemma 2 (i),

B2k+2n−1 = B2
k+n − B2

k+n−1, so that B2k+2n+1 − B2k+2n−1 = 32B2
k+n + 2. Si-

milarly, B2k−2n+3 −B2k−2n+1 = 32B2
k−n+1 + 2. Then, equation (2.14) becomes

Uk+n − Uk+1−n = 32(B2
k+n −B2

k−n+1) = 32B2n−1B2k+1 ,

where we used Lemma 2 (i) to get that B2
k+n − B2

k−n+1 = B2n−1B2k+1. Then,
Uk+n − Uk+1−n = 32B2n−1B2k+1, as expected, completing the proof of (ii). �

Lemma 5. Let k be a positive integer. Then, we have

B
ϕ(B2k+1)−1
k ≡ Bk −Bk+2 (mod B2k+1) ,

where ϕ is Euler’s totient function.

Proof. We have
(2.15) Bk(Bk −Bk+2) = B2

k −BkBk+2 = B2
k −B2

k+1 + 1 ≡ 1 (mod B2k+1) ,
since by Lemma 2 (i) to get that BkBk+2 = B2

k+1 − 1 and B2
k −B2

k+1 = −B2k+1.
Multiplying both sides of (2.15) by Bϕ(B2k+1)−1

k , we get that

(2.16) (Bk −Bk+2)Bϕ(B2k+1)
k ≡ Bϕ(B2k+1)−1

k (mod B2k+1) .
Since k and 2k + 1 are coprime, Bk and B2k+1 are coprime (see Lemma 2 (iii)).
Then, by Lemma 1, Bϕ(B2k+1)

k ≡ 1 (mod B2k+1), so that (2.16) leads to

B
ϕ(B2k+1)−1
k ≡ Bk −Bk+2 (mod B2k+1) .

�

3. Proof of Theorem 1

For k = 1, 2, . . . , 5, one can easily find the solutions mentioned in the statement
of Theorem 1. So, we assume from now that k ≥ 6. Using Lemma 3 (iii), equation
(1.6) leads to

k = 4Bn +Bk
Bk+1 −Bk

∈ N .

This last equation implies that 4Bn + Bk ≡ 0 (mod (Bk+1 − Bk)). So, we study
the sequence (Bm)m≥1 modulo Bk+1 − Bk if k is fixed. Note that we just in-
dicate a suitable value congruent to Bm modulo Bk+1 − Bk, not always the
smallest non-negative remainders. Since Bk+i ≡ Bk+1−i (mod (Bk+1 −Bk)), for
i ∈ {1, 2, . . . , k} (see Lemma 3 (v)), the period having length 4k + 2 can be given
by

k︷ ︸︸ ︷
1, 6, 35, . . . , Bk,

k︷ ︸︸ ︷
Bk, Bk−1, Bk−2, . . . , 35, 6, 1,

k+1︷ ︸︸ ︷
0,−1,−6,−35, . . . ,−Bk,

k+1︷ ︸︸ ︷
−Bk,−Bk−1,−Bk−2, . . . ,−35,−6,−1, 0 .
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So either Bn ≡ 0 or ±Bi (mod (Bk+1 −Bk)), for some i ∈ {1, 2, . . . , k}. Hence,

4Bn +Bk ≡ Bk or ± 4Bi +Bk (mod (Bk+1 −Bk)) .

Assume that 4Bn +Bk ≡ Bk (mod (Bk+1 −Bk)). We have

0 < Bk < Bk+1 −Bk = 6Bk −Bk−1 −Bk = 5Bk −Bk−1,

so that Bk 6≡ 0 (mod (Bk+1 −Bk)). Thus 4Bn +Bk 6≡ 0 (mod (Bk+1 −Bk)).
Assume now that 4Bn +Bk ≡ ±4Bi +Bk (mod (Bk+1 −Bk)), i ∈ {1, 2, . . . , k}.
• If 1 ≤ i ≤ k − 1, then we get that

0 < −4Bk−1 +Bk ≤ ±4Bi +Bk ≤ 4Bk−1 +Bk < 5Bk −Bk−1 = Bk+1 −Bk .

So ±4Bi +Bk 6≡ 0 (mod (Bk+1 −Bk)).

• If i = k, then

4Bi +Bk = 5Bk = Bk+1 −Bk +Bk−1 ≡ Bk−1 (mod (Bk+1 −Bk)) .

But, since k ≥ 6, we have 0 < Bk−1 < 5Bk −Bk−1 = Bk+1 −Bk, so that

Bk−1 6≡ 0 (mod (Bk+1 −Bk)).

Then, −4Bi +Bk 6≡ 0 (mod (Bk+1 −Bk)). Similarly, −4Bi +Bk = −3Bk. Since

−5Bk +Bk−1 = −Bk+1 +Bk ≡ 0 (mod (Bk+1 −Bk)) ,

we get that −3Bk ≡ 2Bk − Bk−1 (mod (Bk+1 − Bk)). But 2Bk − Bk−1 6≡ 0
(mod (Bk+1 − Bk)) since 0 < 2Bk − Bk−1 < Bk+1 − Bk. Then, −4Bi + Bk 6≡ 0
(mod (Bk+1 −Bk)).

In conclusion, we get that

4Bn +Bk 6≡ 0 (mod (Bk+1 −Bk)) ,

for k ≥ 6. So equation (1.6) has no more solutions when k ≥ 6. The proof of
Theorem 1 is complete.

4. Proof of Theorem 2

When k = 1, 2, . . . , 5, one can easily find the solution given in Theorem 2. So,
we assume from now that k ≥ 6. Using Lemma 3 (iv), equation (1.7) implies that

(4.1) k = 32B2
n +B2

k + k(k + 1)
B2k+1

.

Observe that 32B2
n = 33B2

n − B2
n−1 − (B2

n − B2
n−1) = B2n+1 − 2 − B2n−1 (see

Lemma 3 (i) and Lemma 2 (i)), so that equation (4.1) becomes

(4.2) k = Un +B2
k + k(k + 1)− 2
B2k+1

∈ N ,

where (Um)m≥1 is the sequence defined by Um = B2m+1 − B2m−1. By Lemma
4 (i), U1 = 34, U2 = 1154 and Um = 34Um−1 − Um−2, for m ≥ 3. Equation
(4.2) implies that Un + B2

k + k(k + 1) − 2 ≡ 0 (mod B2k+1). So, we study the
sequence (Um)m≥1 modulo B2k+1, if k is fixed. Since Uk+i ≡ Uk+1−i (mod B2k+1),
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for i ∈ {1, 2, . . . , k} (see Lemma 4 (ii)), the period having length 2k + 1 can be
given by

k︷ ︸︸ ︷
34, 1154, . . . , Uk−1, Uk

k+1︷ ︸︸ ︷
Uk, Uk−1, . . . , 1154, 34, 2 .

So either Un ≡ 2 or Uj (mod B2k+1), for some j ∈ {1, 2, . . . , k}. Hence, we have

Un+B2
k + k(k+ 1)− 2 ≡ B2

k + k(k+ 1) or Uj +B2
k + k(k+ 1)− 2 (mod B2k+1) .

Assume that Un +B2
k + k(k+ 1)− 2 ≡ B2

k + k(k+ 1) (mod B2k+1). Using Lemma
3 (i), we have

B2k+1 = 33B2
k −B2

k−1 + 2 > 32B2
k = B2

k + 31P
2
2k
4

> B2
k + 7P 2

2k > B2
k + k(k + 1) ,

where we used the fact that 7P 2
2k ≥ 7α4(k−1) > k(k + 1), for k ≥ 1. Hence,

0 < B2
k + k(k+ 1) < B2k+1, so that B2

k + k(k+ 1) 6≡ 0 (mod B2k+1). Then, we get

Un +B2
k + k(k + 1)− 2 6≡ 0 (mod B2k+1) .

Assume now that

Un +B2
k + k(k + 1)− 2 ≡ Uj +B2

k + k(k + 1)− 2 (mod B2k+1) ,

for some j ∈ {1, 2, . . . , k}.

• If j = k, then we get that

Uk +B2
k + k(k + 1)− 2 = B2k+1 −B2k−1 +B2

k + k(k + 1)− 2
= B2k+1 +B2

k−1 + k(k + 1)− 2
≡ B2

k−1 + k(k + 1)− 2 (mod B2k+1) ,(4.3)

where, we used Lemma 2 (i) to get that B2k−1 = B2
k −B2

k−1. Using the previous
case, we have that

0 < B2
k−1 + k(k + 1)− 2 < B2

k + k(k + 1) < B2k+1 ,

so that

(4.4) B2
k−1 + k(k + 1)− 2 6≡ 0 (mod B2k+1) .

Congruences (4.3) and (4.4) imply that Uj +B2
k + k(k + 1)− 2 6≡ 0 (mod B2k+1),

• If 1 ≤ j ≤ k − 1, then we get that

Uj +B2
k + k(k + 1)− 2 ≤ Uk−1 +B2

k + k(k + 1)− 2
= B2k−1 −B2k−3 +B2

k + k(k + 1)− 2
= B2k−1 +B2

k−2 +B2k−1 + k(k + 1)− 2
= 2B2k−1 + k(k + 1) +B2

k−2 − 2 ,(4.5)
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where, we used Lemma 2 (i) to get that B2k−3 = B2
k−1 −B2

k−2 and B2
k −B2

k−1 =
B2k−1. On the other hand, we have

B2k+1 − 2B2k−1 − k(k + 1)−B2
k−2 + 2

= B2
k+1 −B2

k − 2(B2
k −B2

k−1)− k(k + 1)−B2
k−2 + 2

= 36B2
k − 12BkBk−1 +B2

k−1 − 3B2
k + 2B2

k−1 −B2
k−2 − k(k + 1) + 2(4.6)

= 31B2
k +B2

k−1 −B2
k−2 − k(k + 1) + 4

> 31B2
k − k(k + 1) + 4 = 31

4 P
2
2k − k(k + 1) + 4 > 0 .

In the above chain, we used Lemma 3 (i) to get that 12BkBk−1 = 2B2
k+ 2B2

k−1−2,
as well as the fact that 31

4 P
2
2k > 7α4(k−1) > k(k+ 1)− 4, for k ≥ 1. Inequality (4.6)

implies that
(4.7) 2B2k−1 + k(k + 1) +B2

k−2 − 2 < B2k+1 .

Now, inequalities (4.5) and (4.7) imply that Uj+B2
k+k(k+1)−2 < B2k+1. Finally,

we have 0 < Uj +B2
k + k(k + 1)− 2 < B2k+1, so that
Uj +B2

k + k(k + 1)− 2 6≡ 0 (mod B2k+1) .
In conclusion, we have

Uj +B2
k + k(k + 1)− 2 6≡ 0 (mod B2k+1) ,

for j ∈ {1, 2, . . . , k}. Therefore, equation (1.7) has no more solutions for k ≥ 6.
This completes the proof of Theorem 2.

5. Proof of Theorem 3

The proof of this theorem is similar to the proof of Theorem 1. For k = 1, 2, . . . , 5,
one can easily find the solution mentioned in the statement of Theorem 3. So, we
assume from now that k ≥ 6. By Lemma 3 (iii), equation (1.8) implies that

k = 4B2
n +Bk

Bk+1 −Bk
∈ N .

This last equation implies that 4B2
n + Bk ≡ 0 (mod (Bk+1 − Bk)). So, we study

here the sequence
(
B2
m

)
m≥1 modulo Bk+1 −Bk, if k is fixed. The period having

length 2k + 1 can be deduced from the range
k︷ ︸︸ ︷

12, 62, 352, . . . , B2
k,

k+1︷ ︸︸ ︷
B2
k, B

2
k−1, B

2
k−2, . . . , 352, 62, 12, 0 .

So we have B2
n ≡ 0 or B2

i (mod (Bk+1 −Bk)), for some i ∈ {1, 2, . . . , k}. Thus
4B2
n +Bk ≡ Bk or 4B2

i +Bk (mod (Bk+1 −Bk)) .

• Assume that 4B2
n+Bk ≡ Bk (mod (Bk+1−Bk)). We have 0 < Bk < Bk+1−Bk,

so that Bk 6≡ 0 (mod (Bk+1 −Bk)). So 4B2
n +Bk 6≡ 0 (mod (Bk+1 −Bk)).

• Assume that 4B2
n + Bk ≡ 4B2

i + Bk (mod (Bk+1 − Bk)), for some i ∈
{1, 2, . . . , k}.
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We put m = bk2 c. Suppose that 1 ≤ i ≤ m. Then, we have

(5.1) 4B2
i +Bk = P 2

2i +Bk ≤ P 2
2m +Bk ≤ P 2

k +Bk .

On the other hand, we get

Bk+1 −Bk = 4Bk −Bk−1 +Bk = 4P2k − P2k−2

2 +Bk

= 8P2k−1 + 3P2k−2

2 +Bk =
8P 2
k−1 + 8P 2

k + 3P2k−2

2 +Bk(5.2)

= 4P 2
k−1 + 4P 2

k + 3P2k−2

2 +Bk > P 2
k +Bk .

From (5.1) and (5.2), one can see that 4B2
i +Bk < Bk+1 −Bk. Thus we obtain

0 < 4B2
i +Bk < Bk+1 −Bk ,

so that 4B2
i +Bk 6≡ 0 (mod (Bk+1 −Bk)), for i ∈ {1, 2, . . . ,m}.

It remains to prove that for i ∈ {1, 2, . . . ,m+ 1},

4B2
k+1−i +Bk 6≡ 0 (mod (Bk+1 −Bk)) .

By Lemma 3 (vi), we have 4B2
k+1−i+Bk ≡ 4B2

i +Bk−P4i−1 (mod (Bk+1−Bk)),
for i ∈ {1, 2, . . . ,m+ 1}. So, it suffices to prove that for i ∈ {1, 2, . . . ,m+ 1},

4B2
i +Bk − P4i−1 6≡ 0 (mod (Bk+1 −Bk)) .

Let i be an element of the set {1, 2, . . . ,m+ 1}. From the previous argument, we
get 4B2

i +Bk < Bk+1 −Bk. Then, we deduce that

(5.3) 4B2
i +Bk − P4i−1 < Bk+1 −Bk .

We will prove that 4B2
i +Bk − P4i−1 > 0. We have

4B2
i +Bk − P4i−1 = P 2

2i + P2k

2 − P 2
2i−1 − P 2

2i = 2P2k−1 + P2k−2

2 − P 2
2i−1

≥
2P 2
k−1 + 2P 2

k + P2k−2

2 − P 2
2m+1

≥ P 2
k−1 + P 2

k − P 2
k+1 + P2k−2

2 > 0 .(5.4)

Now, from (5.3) and (5.4), we have 0 < 4B2
i + Bk − P4i−1 < Bk+1 − Bk, so that

4B2
i +Bk − P4i−1 6≡ 0 (mod (Bk+1 −Bk)). Hence, we obtain

4B2
k+1−i +Bk 6≡ 0 (mod (Bk+1 −Bk)) ,

for i ∈ {1, 2, . . . ,m+ 1}. This completes the proof of Theorem 3.

6. Proof of Theorem 4

For k = 1, 2, . . . , 5, one can easily find the solution mentioned in the statement
of Theorem 4. So, we assume that k ≥ 6. By Lemma 2 (i), one can see that



ON SOME DIOPHANTINE EQUATIONS INVOLVING BALANCING NUMBERS 125

B2
2k = B2k−1B2k+1 + 1 ≡ 1 (mod B2k+1). Using Lemma 3 (iv), equation (1.9)

implies that

(6.1) k = 32Bn +B2
k + k(k + 1)

B2k+1
.

Equation (6.1) implies particularly that 32Bn +B2
k + k(k + 1) ≡ 0 (mod B2k+1).

So, here we study the sequence (Bm)m≥1 modulo B2k+1 if k is fixed. The period
can be deduced from the range

2k+1︷ ︸︸ ︷
1, 6, 35, . . . , B2k, 0

2k+1︷ ︸︸ ︷
−B2k,−6B2k,−35B2k, . . . ,−B2k−1B2k,−B2

2k, 0
of length 4k + 2 since B2

2k ≡ 1 (mod B2k+1). So either Bn ≡ 0 (mod B2k+1) or
Bn ≡ Bj or −BjB2k (mod B2k+1), for some j ∈ {1, 2, . . . , 2k}. Hence, we have

32Bn +B2
k + k(k + 1) ≡ B2

k + k(k + 1) (mod B2k+1)

or

32Bi +B2
k + k(k + 1) ≡ 32Bj +B2

k + k(k + 1) (mod B2k+1)

or

32Bi +B2
k + k(k + 1) ≡ −32BjB2k +B2

k + k(k + 1) (mod B2k+1) ,
for some j ∈ {1, 2, . . . , 2k}. Therefore, we will distinguish three cases.

Case 1: 32Bn +B2
k + k(k + 1) ≡ B2

k + k(k + 1) (mod B2k+1). Using Lemma 3 (i),
we have

B2k+1 = 33B2
k −B2

k−1 + 2 > 32B2
k = B2

k + 31P
2
2k
4 > B2

k + k(k + 1) ,

since 31P
2
2k
4 > 7P 2

2k > 7α4(k−1) > k(k + 1). Hence, we obtain, 0 < B2
k + k(k + 1) <

B2k+1, so that B2
k + k(k + 1) 6≡ 0 (mod B2k+1). Then, we deduce that

32Bn +B2
k + k(k + 1) 6≡ 0 (mod B2k+1) .

Case 2: 32Bn + B2
k + k(k + 1) ≡ 32Bj + B2

k + k(k + 1) (mod B2k+1), for some
j ∈ {1, 2, . . . , 2k}.
• If j = 2k, then we get that
32B2k +B2

k + k(k + 1) = 5B2k+1 + 2B2k + 5B2k−1 +B2
k + k(k + 1)

≡ 2B2k + 5B2k−1 +B2
k + k(k + 1) (mod B2k+1) .(6.2)

We will check that
(6.3) 2B2k + 5B2k−1 +B2

k + k(k + 1) < B2k+1 .

Indeed, one can see that
5B2k−1 = B2k +B2k−2 −B2k−1 < B2k ,

so that
(6.4) 2B2k + 5B2k−1 +B2

k + k(k + 1) < 3B2k +B2
k + k(k + 1) .
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On the other hand, using B2k = B2k+1+B2k−1
6 and Lemma 2 (i), we get that

B2k+1 − 3B2k −B2
k − k(k + 1)

= 16B2
k +B2

k−1 − 6BkBk−1 − k(k + 1)(6.5)

= 15B2
k + 1− k(k + 1) = 15P

2
2k
4 + 1− k(k + 1) > 0 ,

where we used Lemma 3 (i) to get that 6BkBk−1 = B2
k + B2

k−1 − 1 and the fact
that 15P

2
2k
4 > 3α4(k−1) > k(k + 1), for k ≥ 1. Inequality (6.5) implies that

(6.6) 3B2k +B2
k + k(k + 1) < B2k+1 .

From (6.4) and (6.6), we get 2B2k+ 5B2k−1 +B2
k+k(k+ 1) < B2k+1. So inequality

(6.3) is proved and finally
(6.7) 0 < 2B2k + 5B2k−1 +B2

k + k(k + 1) < B2k+1 .

Now, (6.2) and (6.7) imply that
32Bj +B2

k + k(k + 1) 6≡ 0 (mod B2k+1) .

• If 1 ≤ j ≤ 2k − 1, then we have
(6.8) 32Bj +B2

k + k(k + 1) ≤ 32B2k−1 +B2
k + k(k + 1) .

Furthermore, using Lemma 2 (i) and the recurrence formula, we get
B2k+1 − 32B2k−1 −B2

k − k(k + 1)
= 2B2

k + 33B2
k−1 − 12BkBk−1 − k(k + 1)(6.9)

= 31B2
k−1 + 2− k(k + 1) > 0,

where we used again Lemma 3 (i), as well as the fact that 31B2
k−1 > 7P 2

2k−2 >

7α4(k−2) > k(k + 1), for k ≥ 1. Inequality (6.9) implies that
(6.10) 32B2k−1 +B2

k + k(k + 1) < B2k+1 .

Now, (6.8) and (6.10) imply that 32Bj +B2
k + k(k + 1) < B2k+1. Finally, we have

0 < 32Bj+B2
k+k(k+1) < B2k+1, so that 32Bj+B2

k+k(k+1) 6≡ 0 (mod B2k+1) .
In all subcases, we have 32Bj +B2

k + k(k + 1) 6≡ 0 (mod B2k+1). So, we obtain

32Bn +B2
k + k(k + 1) 6≡ 0 (mod B2k+1) .

Case 3: 32Bn+B2
k+k(k+1) ≡ −32BjB2k+B2

k+k(k+1) (mod B2k+1), for some
j ∈ {1, 2, . . . , 2k}. We will prove that −32BjB2k+B2

k+k(k+ 1) 6≡ 0 (mod B2k+1).
Assume that −32BjB2k + B2

k + k(k + 1) ≡ 0 (mod B2k+1) in order to get a
contradiction. Then, one can see that

B2
k + k(k + 1) ≡ 32BjB2k (mod B2k+1) .

Since Bϕ(B2k+1)
2k ≡ 1 (mod B2k+1), multiplying both sides by Bϕ(B2k+1)−1

2k , we get

(6.11)
[
B2
k + k(k + 1)

]
B
ϕ(B2k+1)−1
2k ≡ 32Bj (mod B2k+1) .
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By Lemma 5, Bϕ(B2k+1)−1
2k ≡ Bk −Bk+2 (mod B2k+1). Then, (6.11) implies that

[B2
k + k(k + 1)] (Bk −Bk+2) ≡ 32Bj (mod B2k+1) ,

i.e.

32Bj +
[
B2
k + k(k + 1)

]
(Bk+2 −Bk) ≡ 0 (mod B2k+1) .

This leads to

(6.12) 32Bj +
[
B2
k + k(k + 1)

]
(Bk+2 −Bk)−BkB2k+1 ≡ 0 (mod B2k+1) ,

since BkB2k+1 ≡ 0 (mod B2k+1). Observe that

B2
k + k(k + 1)] (Bk+2 −Bk)−BkB2k+1

=
[
B2
k + k(k + 1)

]
(6Bk+1 − 2Bk)−Bk

(
B2
k+1 −B2

k

)
= BkBk+1(6Bk −Bk+1)−B3

k + 6k(k + 1)Bk+1 − 2k(k + 1)Bk(6.13)
= BkBk+1Bk−1 −B3

k + 6k(k + 1)Bk+1 − 2k(k + 1)Bk
= 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk ,

where we used Lemma 2 (i) to get that B2k+1 = B2
k+1 −B2

k, Bk+1Bk−1 = B2
k − 1.

Then, (6.12) and (6.13) imply that

(6.14) 32Bj + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk ≡ 0 (mod B2k+1) ,

• Suppose that 1 ≤ j ≤ 2k − 2. We will prove that

0 < 32Bj + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 .

We have

32Bj + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk
≥ 32 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk > 0 .(6.15)

On the other hand, since j ≤ 2k − 2, we have

B2k+1 − 32Bj − 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk
≥ B2k+1 − 32B2k−2 − 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk

= B2k+1 − 32B2k−1 +B2k−3

6 − 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk

= B2
k+1 −B2

k −
16
3 (B2

k −B2
k−1 +B2

k−1 −B2
k−2)− 6k(k + 1)Bk+1

+ [2k(k + 1) + 1]Bk
≥ B2

k+1 −B2
k − 6(B2

k −B2
k−2)− 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk(6.16)

= Bk [36Bk − 6Bk−1 − 36k(k + 1)]−Bk−1 [6Bk −Bk−1 − 6k(k + 1)]
−Bk [7Bk − 2k(k + 1)− 1] + 6B2

k−2

> Bk [29Bk − 6Bk−1 − 34k(k + 1) + 1]
−Bk−1 [6Bk −Bk−1 − 6k(k + 1)] .
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Observe that
29Bk − 6Bk−1 − 34k(k + 1) + 1− 6Bk +Bk−1 + 6k(k + 1)

= 23Bk − 5Bk−1 − 28k(k + 1) + 1 > 18Bk − 28k(k + 1) + 1 > 0 ,(6.17)

since 18Bk = 9P2k ≥ 9α2k−2 > 28k(k + 1), for k ≥ 4. Now, (6.17) implies that
29Bk − 6Bk−1 − 34k(k + 1) + 1 > 6Bk −Bk−1 − 6k(k + 1) .

Then, one obtains
(6.18)

Bk [29Bk − 6Bk−1 − 34k(k + 1) + 1]−Bk−1 [6Bk −Bk−1 − 6k(k + 1)] > 0 .
Inequalities (6.16) and (6.18) finally imply that
(6.19) 32Bj + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 .

From (6.15) and (6.19), we deduce that
0 < 32Bj + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 ,

which contradicts (6.14). Then, j ∈ {2k − 1, 2k}.
• Suppose that j = 2k − 1. Then, (6.14) becomes

(6.20) 32B2k−1 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk ≡ 0 (mod B2k+1) .
Using the recurrence formula, we check that 32B2k−1 = B2k+1 +B2k−3 − 2B2k−1.
Then, (6.20) becomes
(6.21)
B2k+1 +B2k−3−2B2k−1 +6k(k+1)Bk+1− [2k(k + 1) + 1]Bk ≡ 0 (mod B2k+1) .
We will prove that

0 < B2k+1 +B2k−3 − 2B2k−1 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 .

It is obvious that
(6.22) B2k+1 +B2k−3 − 2B2k−1 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk > 0 .
Furthermore, one sees that
B2k+1 −B2k+1 −B2k−3 + 2B2k−1 − 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk

= 2B2
k − 3B2

k−1 +B2
k−2 − 36k(k + 1)Bk + 6k(k + 1)Bk−1 + [2k(k + 1) + 1]Bk

> B2
k +B2

k−2 − 36k(k + 1)Bk + 6k(k + 1)Bk−1 + [2k(k + 1) + 1]Bk
= Bk [Bk − 34k(k + 1) + 1] +B2

k−2 + 6k(k + 1)Bk−1 > 0 ,

where we used Lemma 2 (i), the fact that B2
k − 3B2

k−1 > 0 and at the end the fact
that Bk = P2k

2 ≥
1
2α

2k−2 > 34k(k + 1)− 1, for k ≥ 6, which is the case for us. The
above inequality implies that
(6.23) B2k+1 +B2k−3 − 2B2k−1 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 .

From inequalities (6.22) and (6.23), we have
0 < B2k+1 +B2k−3 − 2B2k−1 + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 ,

which contradicts (6.21).
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• Suppose that j = 2k. Then, (6.14) becomes
(6.24) 32B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk ≡ 0 (mod B2k+1) .
Observe that

32B2k = 5B2k+1 + 5B2k−1 + 2B2k ≡ 5B2k−1 + 2B2k (mod B2k+1) .
Then, (6.24) implies
(6.25) 5B2k−1 + 2B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk ≡ 0 (mod B2k+1) .
We prove that 0 < 5B2k−1 + 2B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1.
It is obvious that
(6.26) 5B2k−1 + 2B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk > 0 .
On the other hand, using Lemma 2 (i), we get that

B2k+1 − 5B2k−1 − 2B2k − 6k(k + 1)Bk+1 + [2k(k + 1) + 1]Bk

= B2k+1 − 5B2k−1 − 2B2k+1 +B2k−1

6
= 1

3
[
72B2

k − 24BkBk−1 + 2B2
k−1 − 18B2

k + 16B2
k−1
]

(6.27)

+ 1
3 [−108k(k + 1)Bk + 18k(k + 1)Bk−1 + [6k(k + 1) + 3]Bk]

= 1
3 [Bk [50Bk − 102k(k + 1) + 3] +Bk−1 [14Bk−1 + 18k(k + 1)]] ,

where we used Lemma 3 (i) to get 24BkBk−1 = 4B2
k + 4B2

k−1 − 4. Moreover,
Bk[50Bk − 102k(k + 1) + 3] +Bk−1 [14Bk−1 + 18k(k + 1)]

> Bk [50Bk − 102k(k + 1) + 3] > 0 ,(6.28)

since 50Bk = 25P2k ≥ 25α2k−2 > 102k(k + 1), for k ≥ 4. Now, (6.27) and (6.28)
imply that B2k+1 − 5B2k−1 − 2B2k − 6k(k+ 1)Bk+1 + [2k(k + 1) + 1]Bk > 0 , i.e.
(6.29) 5B2k−1 + 2B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 .

From inequalities (6.26) and (6.29), we deduce that
0 < 5B2k−1 + 2B2k + 6k(k + 1)Bk+1 − [2k(k + 1) + 1]Bk < B2k+1 ,

which contradicts (6.25). Then, the proof of Theorem 4 is complete.
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