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ON SOME DIOPHANTINE EQUATIONS INVOLVING
BALANCING NUMBERS

EUuLOGE TCHAMMOU AND ALAIN TOGBE

ABSTRACT. In this paper, we find all the solutions of the Diophantine equation
Bf + 235J +- 4+ k:Bz = B} in positive integer variables (k,n), where B; is
the it" balancing number if the exponents p, ¢ are included in the set {1,2}.

1. INTRODUCTION

In 1999, A. Behera, and G.K. Panda [2] studied balancing numbers n € Z" as
solutions of the Diophantine equation
(1.1) 1424+ m—1)=O+1)+0+2)+ -+ (n+r),
for some positive integer r, in which case the number r is called a balancer or a

cobalancing number. If n is a balancing number with balancer r, then nn-l)

2
r(r+1)
2
—(2n+1)+v8n2+1 2r+1+v8r2 +8r+1
r= and n= .
2 2

Let B,, denote the nt" balancing number and b,, the n** cobalancing number. Then,

By=1, By=6 and B,y =6B,—B,_1, forn>2

b1 =0, bo=2 and b,y =6b, —b,_1+2, forn>2.

nr+ . This means that

(1.2)

From (1.2)), we see that B, is a balancing number if and only if 832 + 1 is a perfect
square and b,, is a cobalancing number if and only if 862 + 8b,, + 1 is a perfect
square. The numbers

Cpn=+/8B2+1 and ¢, =+/8b2+8b,+1

are then called the n*"* Lucas-balancing number and the n'" Lucas-cobalancing
number, respectively. P.K. Ray [I0] derived some nice results on balancing numbers
and Pell numbers which are given by

POZO,Plzl and f:)»ﬂ:2pn_1—‘r1:)n_27
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114 E. TCHAMMOU AND A. TOGBE

for n > 2. More generally, for n > 0, P_,, = (—1)"*!P, (extension of the sequence
for negative subscripts). Since an integer x is a balancing number if and only if
8x2 4 1 is a square, we set 822 + 1 = 42, so that y2 — 822 = 1, for some integer
y # 0, which is a Pell’s equation. The fundamental solution is (z1,y1) = (1, 3).
SO Yn 4+ 2,8 = (3 +/8)" for n > 1 and hence y,, — ,V8 = (3 — v/8)". Put
y=3+ V8 and § = 3 — /8. The Binet’s formula for balancing numbers is

’Y” —_

)

Putting o = 1 + v/2 and 8 = 1 — /2, the roots of the characteristic quadratic

equation 2 — 2z — 1 = 0 of the Pell’s sequence (Pn)n>0, the Binet’s formula for
P, is

(1.3) B, = , forn>1.

n __ an
P:a B forneZ.

n 2\/§ )

This easily implies that the inequalities
(1.4) "< P, <ot
aQn _ /6)271

42
for n > 1. Thus, there is a correspondence between balancing numbers and Pell
numbers. More precisely, we have that B,, = £2=. See [7], [8] and [9] for further
details.

The Diophantine equation

hold, for n > 1. Since o? = 7 and 3% = §, we easily get that B,, =

k
Y JF = FY
j=1

has been studied in 2018 by G. Soydan, L. Németh, and L. Szalay [11], where F; is
the i*" Fibonacci number. They solved this equation for (p, q) € {(1,1),(1,2),(2,1),
(2,2)}. Further, they conjectured that the only non-trivial solutions are given by:

F} =9 = F42F+3F;, Fy =21 = F1+2F+-3F3+4F,, F} = 27 = FP+2F)+3F5 .
Later in 2019, K. Gueth, F. Luca and L. Szalay [4] confirmed the conjecture, for
max{p, ¢} < 10. This result is again improved by Altassan and Luca [I] who proved
that if such equation is satisfied, then max{k,n,p, q} < 1025°9. The authors of this
paper studied a similar equation where the Fibonacci sequence is replaced by the
Pell sequence. See [12].

A question is what will happen if Fibonacci numbers are replaced by balancing
numbers. Therefore, in this paper, we investigate the Diophantine equation

(1.5) BY +2BY +---+ kB], = B,

in positive integers k and n, where p and ¢ are fixed in {1,2}. We consider
BY =1 = B{ as a trivial solution to (1.5]). The main results proved in this paper
are described as follows.

Theorem 1. The Diophantine equation

(1.6) By +2By+ -+ kB, = B,
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has only the trivial solution (k,n) = (1,1).

Theorem 2. The Diophantine equation

(1.7) B} +2Bj +---+ kBj = B,
possesses only the trivial solution (k,n) = (1,1).
Theorem 3. The Diophantine equation

(1.8) By +2By+ -+ kB, = B2
possesses only the trivial solution (k,n) = (1,1).
Theorem 4. The Diophantine equation

(1.9) B} +2B3+---+ kB =B,
possesses only the trivial solution (k,n) = (1,1).

We will prove our main results using modular arithmetic. We organize this paper
as follows. In Section [2] we will recall some known properties and prove key lemmas.
Our main results will be proved in Sections

2. SOME USEFUL LEMMAS

In this section, we present some useful lemmas. Some of them are a few
well-known results and we also prove some preliminary results. We start by recalling
Euler’s totient function, denoted ¢, which is defined for each positive integer n
by the number of integers k in the range 1 < k < n such that ged(n, k) = 1. The
following lemma is a well-known result. One can see Theorem 2.8 of [6].

Lemma 1 (Euler’s Totient Theorem). Let n be a positive integer. For each non-zero
integer a relatively prime to n,

a?™ =1 (mod n).

The next lemma is a collection of well-known results. One can see for instance
Proposition 2.1, Proposition 2.2, Proposition 2.3, and Proposition 2.6 in [3] and [5].

Lemma 2. Let k and n be arbitrary positive integers.
(i) BktnBr—n — B = —B2 if k > n (Catalan’s identity). In particular,
By_1Bny1 — B2 = —1 (Cassini’s identity) and Ba,1 = B,QLJrl - B2.
. k Biri1—Br—1
(i) 251 Bj = == ——

(iii) gcd(By, Bn) = Bgca(k,n)- In particular, By, and B,, are coprime if and only
if k and n are coprime.

(iV) Pn,1Pn+1 - PT% = (—1)”
(V) Piyn = PePoy1 + Py_1P,. In particular, Psy, 11 = P2+ P,QL_H.

Remark 5. Properties (iv) and (v) hold for any integers k and n, using the formula
of the extension to negative subscripts.

We will prove the following results.
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Lemma 3. Let k be a positive integer.
(i) GBkBk_l = B]% + B£71 —1 and 33B£ — B]%71 = sz+1 -2 ’Lf k 2 2.

" k Bajy1—2k—1
(ii) Zj:l Bgz‘ =

(iii) S, jB; = HBen=Bo-Be

32
(V) Bk+n — Bk+17n = (Bk+1 — Bk)(Pgnfl + Pgnfg), fO’f’ n e {1, 2,..., k’} In
particular, Biiyn = Biy1—n (mod (Bri1 — By)).
(Vl) 4Bl%+l—n — 4B’r2L + Pyp1 = P2k:—4n+3 (Bk+1 — Bk), fOT n {1, 2,..., k‘}
In particular, 4B}, |, = 4B2 — Py,_1 (mod (Byi1 — By)).

2
(iv) Z?leBj? _ kBakp1—Bi—k(k+1)

Proof.
e The property (i) can be obtained easily, using the recurrence formula of (By,)n>1
and Lemma 2] ().

e We prove property (ii). It is obvious to see that the property is true for k = 1.
Assume that £ > 2. We have

- 2 £ P2j 2 1 2
(2.1) ZBj :Z(T) :ZZsz.
Observe that

k k k
D OPL =44 (2P 1+ Pyj2)? =4+ > (4P5; | + Py o+ 4Py 1Py o)
j=1 j=2 j=2

k

k
=4+ (4P} — P3 o+ 2Py oPy) =4+ (6P}, — P} _,—2)
Jj=2 =2

k
=4+ (6(6P5 ,— P 5+2)—P3 ,—2)
j=2

k
=4+ (35P3_, —6PF; 4 +10)
=2
k
=4+ (34P5; o+ (P35 — 6P _5+2)+8)
j=2

k
=4+ (34P5; , — P34 +8)

=2

k
=33 P}, —33P5 + P5_,+8k—4.
j=1
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In the above chain, we used Lemma (iv) to get Pyj_oPoj = ]322]-71 —1. So

k 2 2
33P;, — P. —8k+4
2.2 py =2k 22 :
22) >r% =
Now (2.1) and ([2.2) imply that

zk:BZ _ 33P5 P ,—8k+4  33Bi- B}~ 2k+1 By 2k-1
I 128 B 32 32 ’

where we used (i) to get 33B7 — B | = Bog41 — 2. Then, property (ii) is proved.
e The next step is to prove (iii). We have

k k k k k
D iB;=13+Y jB; =13+Y (6jBj_1—jBj_2) =13+6> jB;_1—Y jBj_»
j=1 j=3 j=3 j=3 j=3
k k
=1346) [(j—1)Bj_1+Bj1]— > _[(j —2)Bj_2 + 2B, 2]
j=3 7j=3

_ k—1 k—2 k—2
= 13+6Zij+6ZBj ~-> jB;-2) B
= = = =

_1+5Z]B +4ZB (5k +4)By + (k + 1)By—1 .

So, we get
Xk:jB, _ (5k+4)By — (k+1)B_1 — 42521 B; -1
J 4
j=1
. (5I€ + 5)Bk — (k + 1)Bk,1 — Bj11
B 4
_ (E+1)(Brt1 — Br) = Bre1 _ k(Brr — Bi) — Bi
4 4 ’

where we used Lemma [2] (ii). Then property (iii) is proved.

e Now, we will take care of (iv). One can easily see that the property is true for
k = 1. Assume that k > 2.

k k
> iB} =B} +2B3+> j(6Bj_1 — Bj_)’
- pr

k
=73+ j(36B7, —12B;_1B; 5+ B2 ,)
j=3

=73+Y j(34B? | -B? ,+2) —73—1—342ij . Z] 2+2Zj
j=3
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k k

=T734+34) [(j—1)Bj_, + (i —2)B} ,+2B; ,] +2> j
Jj=3 j=3 j=3

k—1 k—1 — _ 3
=67+34% jB}+34) B’ —ZjBJZ —22B§+22j
j=2 j=2 j=1 j=1 j=1

Mw

k k
=33 jB}+32> BF —33kBi+ (k+1)B}_, —32B} + k(k+1)—1,
j=1 j=1

where we used Lemma (i) to get that 12B; 1 Bj o = 2B: 5+ 2B | — 2. Then,

k k
32 jB} =33kBy—(k+1)Bi_,+32B; — k(k + 1)+1-32) B’
j=1 j=1
=k(33B} — B} _)+33B}—B} ,— B} —k(k+1)+1 —Bop1+2k+1
(2.3) = kBagi1 — By —k(k+1),

where we used (ii) and (i). Finally, (2.3]) implies that
Z’“ 5 kBopyr — B — k(k+1)
jB] = ’
32

j=1
as expected.

e Next, we will prove (v). Let n be an element of {1,2,...,k}. We have

P — P
(Bi+1 — Bi)(Pap—1 + Pop_2) = (%) (Pap—1 + Pon—2)
(2.4) = Popy1(Pap—1 + Pon—2) .
On the other hand, using Lemma [2] (v), we obtain

Popyor =Pop Popi1 + Pon—1 Py,

(2.5) =2Ps11(Pon—1 + Pon—2) — Pon—2Posy1 + Pop_1Pay .
Then, we get

1
(2.6) Popy1(Pon—1 + Pap—2) = §(P2n+2k + Pop—oPogy1 — Poy—1Poy).

Equations (2.4)) and (2.6)) imply that

1
(2.7)  (Bg+1 — Br)(Pan—1 + Pon—2) = = (Pantok + Pon—2Pogy1 — Pon—1Pa).

2
Using again Lemma [2| (v), we have that

Popro_on = Po_ontor = Po_9n Popy1 + Pr_on Pog
(2.8) = —Pop2Poy1 + Pop—1 P,



ON SOME DIOPHANTINE EQUATIONS INVOLVING BALANCING NUMBERS 119

where we used formulas of the extension of the sequence of Pell numbers for negative
subscripts. Equation (2.8) implies that

(2.9) Poy—oPojy1 — Pop_1Po, = —Papya_on .
Now, equations (2.7) and (2.9)) imply that

1
(Br+1 — Br)(Pan—1 + Pon—2) = §(P2n+2k — Pojt2-9n) = Bign — Big1-n

and property (v) is proved.
e Finally, we will deal with property (vi). Let n be an element of {1,2,... k}.

Using the Binet’s formula for (P,),,~,, we obtain

Pojyo — Poy
2
(ath—tn+d g glh—dntd  (2h—dn+3g2al 2kl g2k dn3)

Pop—ant3(Brt1 — Bi) = P2k74n+3( ) = Poj_4nt+3Por41

(2.10) =

co| —

Observe that

_a2l~c—4n+3ﬁ2k+l o a2k+152l€—4n+3
— _ a2k+152k+1a2a_4" o a2k+1/@2k+152/@—4n _ a2a—4n+ /626—4n
4n—2 4n—2
(2.11) = qin—2 4 gin—2,

where we used the fact that o281 32k+1 = (_1)2k+1 = 1. Then, equations (2.10)

and (2.11)) imply that

1 —4n —4n n— n—
(2.12)  Pop_ani3(Brs1 — Bi) = 3 (a4k dntd | gik—dntd | G4n—2 4 g 2) .

On the other hand, again using the Binet’s formula for (P,), -, we get that

4B/§+1—n - 4B1?L + P47l—1 = P22k+2—2n - P22n =+ P22n—1 =+ P22n = P22k+2—2n + P22n—1
1

(2.13) =3 (0/“‘5*4”*4 1 gk—dntd 4 (an—2 Jr/847172)

where we used Lemma [2| (v) to get that Py, 1 = P2, ; + P2 . From equations

(2.12)) and (2.13]), we conclude that
4B}, _, —AB2 + Piy_1 = Pa_spis (Bis1 — By)

)

as expected. [
Lemma 4. Let (U,)n>1 be the sequence defined by U,, = Bayp4+1 — Ban—1 and k be
a positive integer.
(i) The sequence (Uy)n>1 satisfies Uy = 34, Us = 1154 and U,, = 34U,,_1 —
Uy_o, forn > 3.
(ii) Ukqn — Ukg1—n = 32Bop_1Bopt1, for n € {1,2,...,k}. In particular,
Uk+n = Ugy1-n (mod Bogy1), forn € {1,2,... k}.
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Proof. One can check easily (i). We prove (ii). Let n € {1,2,...,k}. We have

(2.14)  Uikgn — Ukg1-n = Bopgont1 — Borton—1 — (Bok—2n+3 — Bok—2n+1) -
By, Lemma [3| (i), Bogtont1 = 33B,§+n — B,%_m_l + 2 and by Lemma [2] (i),
Bogyon1 = BZ,, — B2, |, 50 that Bog o1 — Bagion1 = 32B2,, + 2. Si-
milarly, Bog—2n+3 — Bak—2n41 = 32B7_,, + 2. Then, equation becomes

Uktn — Ukt1-n = 32(Biyy — Bi_pi1) = 32Bon_1Bogy1
where we used Lemma [2| (i) to get that Bf,, — Bj_, ., = Ban_1Bogs1. Then,
Uktn — Ukt1—n = 32Bgy,_1Bak+1, as expected, completing the proof of (7). O
Lemma 5. Let k be a positive integer. Then, we have

BfPe )"l = g By (mod Bagys),

where @ is Fuler’s totient function.
Proof. We have
(2.15)  By(Bg — Biy2) = B — ByBjyo = By — Bi,; +1=1 (mod Baj11),
since by Lemma (i) to get that ByBgio = B,%_H —1 and B,% — B,%_H = —Boky1-
Multiplying both sides of by B,f(B”"“)*l, we get that

(2.16) (Bi — Bryo)BYP2e+) = pBae) =l (1164 Bypy).

Since k and 2k + 1 are coprime, By, and Bag1 are coprime (see Lemma [2] (iii)).
Then, by Lemma Blf(Bz"'“) =1 (mod Bagy1), so that (2.16) leads to

B;:(szJrl)—l =B, — Bk+2 (mod sz+1) .

3. PROOF OF THEOREM [I]

For Kk =1,2,...,5, one can easily find the solutions mentioned in the statement
of Theorem |1} So, we assume from now that k& > 6. Using Lemma [3| (i77), equation

leads to
po 2Bt Be
Bi+1 — By
This last equation implies that 4B, + By =0 (mod (Bk+1 — By)). So, we study
the sequence (B,,),,~,; modulo By, — By, if k is fixed. Note that we just in-
dicate a suitable value congruent to B,, modulo By4+1 — B, not always the
smallest non-negative remainders. Since Bj4; = Br11-; (mod (Bg4y1 — By)), for
i€{1,2,...,k} (see Lemma [3| (v)), the period having length 4k + 2 can be given
by
k k k+1
1,6,35,..., By, Br, B—1, Br—2,...,35,6,1,0, -1, —6, 35, ..., — By,
k+1

_Bk:a _kah _Bk72a ..., —35,—6,-1,0.
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So either B,, =0 or + B; (mod (Bk+1 — Bg)), for some i € {1,2,...,k}. Hence,
4B, + By = By or +4B; + By (mod (Bg+1 — Bg)) -
Assume that 4B,, + By, = By (mod (Bg4+1 — Bi)). We have
0 < B < Bpy1— Bp =068y — By_1 — By, = 5By, — By_1,

so that Bk 5_'5 0 (mod (B}g+1 — Bk)) Thus 4Bn + Bk _—,z_é 0 (mod (Bk+1 — Bk))
Assume now that 4B,, + By, = +4B; + By, (mod (Bi+1 — Bg)), i € {1,2,...,k}.
o If 1 <i<k—1, then we get that

0< —4By_1+ By <+4B; + B, <4Bj_1 + By < 5By — By—1 = Byy1 — By
So £4B; + By, # 0 (mod (Bi+1 — Bx)).

o If i =k, then

AB; + By, = 5By = Bpy1 — B+ By_1 = Br_y  (mod (Byy1 — By)).
But, since k > 6, we have 0 < Bi_1 < 5By, — Bx—1 = Bi4+1 — By, so that
Br_1 #20 (mod (Bg41 — Bg)).
Then, —4B; + By, #0 (mod (Bk4+1 — By)). Similarly, —4B; + By, = —3By,. Since
—5By + Br—1 = —Bjt1+ B, =0 (mod (Bgy1 — By)),

we get that —3B; = 2B — Br_1 (mod (Bk:+1 — Bk)). But 2By — By_1 # 0
(mod (Bg41 — By)) since 0 < 2By, — Bg—1 < Byy1 — By. Then, —4B; + B, £ 0
(mod (By+1 — By)).
In conclusion, we get that
4B, + B #0 (mod (Blc+1 - Bk)) s

for k > 6. So equation (1.6) has no more solutions when k£ > 6. The proof of
Theorem [I] is complete.

4. PROOF OF THEOREM

When £k =1,2,...,5, one can easily find the solution given in Theorem [2| So,
we assume from now that k& > 6. Using Lemma (iv), equation (1.7)) implies that

_ 32B2+ B+ k(k+1)
Bkt

Observe that 32B2 = 33B2 — B2_, — (B2 — B2_,) = Bapt1 — 2 — Bay_1 (see

Lemma [3] (i) and Lemma 2 (i)), so that equation (#.I)) becomes
 Up+Bi+k(k+1)
Bakt1

(4.1) 2

(4.2) 2 —2 N,

where (Up,)m>1 is the sequence defined by Uy, = Bapmyt1 — Bam—1. By Lemma
(i), Uy = 34, Uy = 1154 and U,, = 34U,,—1 — Up,—2, for m > 3. Equation
(4.2) implies that U, + B + k(k +1) —2 = 0 (mod Baj1). So, we study the
sequence (Uy,),,,~; modulo Boy 1, if & is fixed. Since Up4; = Up41—; (mod Bajy1),
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for i € {1,2,...,k} (see Lemma [4| (ii)), the period having length 2k 4+ 1 can be
given by
k k+1

34,1154, ..., Up—1,Up Uy, Up—1,...,1154,34,2 .
So either U,, = 2 or U; (mod Bayy1), for some j € {1,2,...,k}. Hence, we have

U+ Bi+k(k+1)—2=Bi+k(k+1)or Uj+ B + k(k+1)—2 (mod Bag1)-

Assume that U,, + B} + k(k+1) —2= B} + k(k+1) (mod Bag1). Using Lemma
(i), we have

2
P2Ic

Bopi1 = 33B — B? | +2>32B? = B} +31 :

> B} +7TP3. > B} + k(k+1),

where we used the fact that 7P22k > 74— > k(k + 1), for £ > 1. Hence,
0 < B} +k(k+1) < Bajt1, so that Bf + k(k+1) 20 (mod Baj+1). Then, we get

Up+ B +k(k+1)—2#0 (mod Bapy1).
Assume now that
Up+Bi+k(k+1)—2=U; + Bf + k(k+1)—2 (mod Bay11),
for some j € {1,2,...,k}.
o If j =k, then we get that
Up+ B +k(k+1)—2=Bopy1 — Bog1 + B + k(k+1) — 2
= Bop1+ Bi_ +k(k+1) -2

(4.3) =B} ,+k(k+1)—2 (mod Bayyi1),

where, we used Lemma [2| (i) to get that Bay_1 = B — Bi_,. Using the previous
case, we have that

0<B} | +k(k+1)—2< B} +k(k+1) < Bagy1,
so that
(4.4) B} | +k(k+1)—2#0 (mod Bogy1).
Congruences and imply that U; + B2 + k(k+1) —2 # 0 (mod Baj+1),
o If1 <j<k-—1,then we get that
Uj+Bi+k(k+1)—2<Up1+Bi +k(k+1) -2
= Bog—1 — Bog—3 + Bf + k(k+1) —2
= Bop-1+ Bi_y+ Bog—1 + k(k+1) —2
(4.5) =2By—1 + k(k+1)+ Bi_, -2,
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where, we used Lemma (i) to get that Bop_3 = B,i1 — B,iz and B,% — 3271 =
Bsi_1. On the other hand, we have

Bopy1 —2Bop 1 —k(k+1) — B , +2
By B 2(BE— BEy) — hk 1) - B, +2

(4.6)  =36B} —12ByB),_1 + B;_, — 3B} +2B;_ | — B} _,—k(k+1)+2
=31B} +B}_ |, — B} ,—k(k+1)+4
31

>31B7 —k(k+1)+4="P3 —k(k+1)+4>0.

4
In the above chain, we used Lemma (i) to get that 12BBy_1 = 232 —1—2313_1 -2,
as well as the fact that %ng > 704 %=1 > k(k+1) — 4, for k > 1. Inequality
implies that
(4.7) 2Bok—1 + k(k+ 1)+ Bi_5 — 2 < Bogy1.
Now, inequalities and imply that U, + B + k(k+1) —2 < Bag1. Finally,
we have 0 < U; + B + k(k + 1) — 2 < Bgg41, so that

Ui+ B +k(k+1)—2#0 (mod Bogy1)-
In conclusion, we have

Ui+ B +k(k+1)—2#0 (mod Bagy1),

for j € {1,2,...,k}. Therefore, equation (1.7) has no more solutions for k > 6.
This completes the proof of Theorem [2]

5. PROOF OF THEOREM [3]

The proof of this theorem is similar to the proof of Theorem[l} For k = 1,2, ...,5,
one can easily find the solution mentioned in the statement of Theorem [3 So, we
assume from now that k£ > 6. By Lemma [3] (iii), equation (L.8) implies that

4B%2 + B

Bjt1 — Bi
This last equation implies that 4B2 + B, =0 (mod (Byy1 — By)). So, we study
here the sequence (Bfn)m>1 modulo By — By, if k is fixed. The period having
length 2k + 1 can be deduced from the range

k k+1
12,6%,35%,..., B, B}, B} _, B} _,,...,35%,6%,1%,0 .
So we have B2 =0 or B? (mod (By41 — By)), for some i € {1,2,...,k}. Thus
AB2 + By, = By, or 4B? + By, (mod (By+1 — By)).

e Assume that 4B2+ By, = By, (mod (Bj11—By)). We have 0 < By, < Byy1— By,
so that Bk 7_é 0 (mod (Bk+1 — Bk)) So 4B721 + Bk 7‘é 0 (mod (Bk-',-l - Bk))

e Assume that 4B2 + By = 4B2 + By (mod (Bky1 — By)), for some i €
{1,2,...,k}.



124 E. TCHAMMOU AND A. TOGBE

We put m = L%J Suppose that 1 < i < m. Then, we have

(5.1) AB? + By = P} + By, < P}, + By < P} +By.
On the other hand, we get
Bry1 — Br=4By — By_1+ By = %+Bk
(5.2) _ 8Py ;31321%2 LB, = 8P, + 81;1? + 3Pap—2 4 B,
:Mﬁ4+4ﬁ+3§%£44ﬂ>ff+Bh

From (5.1)) and (5.2), one can see that 4B? + By, < Byi1 — By. Thus we obtain
0<4B?+Bk < Bpy1 — By,

so that 4B2 4+ By, # 0 (mod (Byy1 — By)), fori € {1,2,...,m}.
It remains to prove that for ¢ € {1,2,...,m + 1},

4B}, ,+ By #0 (mod (Byy1 — By)).

By Lemma (vi), we have 431%-5-1—1‘ + By, =4B2 + By, — Py;—1 (mod (Byi1 — By)),
for i € {1,2,...,m+ 1}. So, it suffices to prove that for i € {1,2,...,m + 1},

AB} + B — Pyi—1 #0 (mod (Biy1 — By)).

Let i be an element of the set {1,2,...,m + 1}. From the previous argument, we
get 4B? + By, < Bj41 — Bj. Then, we deduce that

(5.3) 4B? + By — Py_1 < Byy1 — By
We will prove that 4B2 + By — Py;—1 > 0. We have

P 2Psp—1 + Poj—
4Bz‘2+3k—P4i—1:P22i+72k—P221—1_P22i:w_P22i—1
2P2 | +2P? + Poy,_—o )
> 2 = Py
2 2 2 Pop—2
(5.4) > Py + Pp — Py + >0.

Now, from (5.3]) and (5.4), we have 0 < 4Bi2 + By — Pyi—1 < Bg4+1 — By, so that
4B? + By, — Pyi—1 #0 (mod (Bg41 — By)). Hence, we obtain

4Bii1_i+Bp #0 (mod (Bry1 — By)),
for i € {1,2,...,m+ 1}. This completes the proof of Theorem

6. PROOF OF THEOREM [

For k=1,2,...,5, one can easily find the solution mentioned in the statement
of Theorem |4} So, we assume that k > 6. By Lemma [2| (i), one can see that
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ng = Bog—1Bakt+1 + 1 = 1 (mod Bagy1). Using Lemma (iv), equation (1.9)
implies that
32B, + B2+ k(k+1
(6.1) k= okt (+).
Bagi1

Equation (6.1)) implies particularly that 32B,, 4+ Bf + k(k + 1) =0 (mod Bag1).
So, here we study the sequence (B,,),,~; modulo B, if k is fixed. The period
can be deduced from the range B

2k+1 2k+1
17 6a 35a R B2/€7 0 _B2k7 _6B2k7 _3532k; ey _BQkleQ}’m _nga 0

of length 4k + 2 since B3, = 1 (mod Bajy1). So either B, = 0 (mod Bag1) or
B, = Bj or — BjBy;, (mod Bay1), for some j € {1,2,...,2k}. Hence, we have

32B, + B} + k(k+1)= B} + k(k+1) (mod Baxi1)

or
32B; + Bf + k(k+1)=32B; + Bf + k(k+1) (mod Baj41)
or
32B; + B} + k(k +1) = —32B;Bay, + Bi + k(k+1) (mod Bogy1),
for some j € {1,2,...,2k}. Therefore, we will distinguish three cases.
Case 1: 32B, + B + k(k+1) = B} + k(k + 1) (mod Bayy1). Using Lemma (i),
we have
2 2 2 2 Py, 2
since 31PT22’“ > 7P2 > 7a** =1 > k(k + 1). Hence, we obtain, 0 < B? + k(k+1) <
Bajg11, so that B,% + k(k+1)#0 (mod Bagt1). Then, we deduce that
32B, + B} + k(k+1)#0 (mod Bajy1).
Case 2: 32B, + B + k(k+ 1) = 32B; + B? + k(k + 1) (mod Baj41), for some

je{1,2,...,2k}.
o If j = 2k, then we get that

32Boy + Bi + k(k + 1) = 5Bogy1 + 2Bog + 5Bog_1 + Bi + k(k +1)

(6.2) = 2Boy + 5Boj—1 + Bi + k(k+1) (mod Bogi1).
We will check that
(6.3) 2By, + 5Baj_1 + B + k(k+1) < By .

Indeed, one can see that
9Bak—1 = Bak + Bag—2 — Bog—1 < Bay,
so that
(6.4) 2Boj, + 5Bak—1 + B + k(k+1) < 3Boy + Bf + k(k +1).
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On the other hand, using By = % and Lemma (i), we get that
Bopi1 — 3Bop — B — k(k+1)
(6.5) = 16B? + B}, —6ByByr_1 — k(k+1)
P2
=15Bf +1—k(k+1) :1572’“+1—k(k+1) >0,
where we used Lemma (3| (i) to get that 6By By_1 = B + B | — 1 and the fact
that 15%2’“ > 304+ =1 > k(k + 1), for k > 1. Inequality (6.5)) implies that
(6.6) 3Bok + Bf + k(k+1) < Bog1 -

From (6.4) and , we get 2Boy +5Bo) 1 —I—B,% +k(k+1) < Bogy1. So inequality
(6.3) is proved and finally

(6.7) 0 < 2Boy, + 5Bag—1 + Bi + k(k + 1) < Bajy -
Now, (6.2)) and (6.7) imply that
32B; + B + k(k+1)#0 (mod Boxi1).

e If 1 < j <2k —1, then we have

(6.8) 32B; + Bi + k(k+1) <32Boy_y + B + k(k+1).
Furthermore, using Lemma [2| (i) and the recurrence formula, we get

Bogy1 — 32Bay,_1 — Bi — k(k +1)
(6.9) = 2B? +33B}_, — 12ByBy_1 — k(k + 1)

=31B}_, +2—k(k+1) >0,
where we used again Lemma [3| (i), as well as the fact that 31B,§71 > 7P22k72 >
70**=2) > k(k 4 1), for k > 1. Inequality implies that
(6.10) 32Boy 1 + B + k(k+ 1) < Bojy1 -
Now, and imply that 32B; + B + k(k + 1) < Bag1. Finally, we have
0 < 32B;+Bi+k(k+1) < Bogy1, so that 32B;+Bi+k(k+1) #0 (mod Baji1).
In all subcases, we have 32B; + B + k(k +1) 0 (mod Baj41). So, we obtain
328, + Bf + k(k+1)#0 (mod Bogi1).

Case 3: 32B,,+ B + k(k+1) = —32B;Ba, + B + k(k+1) (mod Bag1), for some
j€{1,2,...,2k}. We will prove that —32B;Ba + B + k(k+1) 0 (mod Baj41).

Assume that —32B,;Ba, + B,% + k(k+1) = 0 (mod Bagy1) in order to get a
contradiction. Then, one can see that

B]% + k(k + 1) = 328, By, (mod ng+1) .
Since B;,C(B%“) =1 (mod Bag41), multiplying both sides by B;ak(Bz’““)_17 we get

(6.11) [B? + k(k +1)] BSP#+)71 = 32B;  (mod Bajy1) .
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By Lemma B;ak(B%“)_l = By — Br12 (mod Bajg41). Then, implies that
[B? + k(k+1)](By, — Bry2) = 32B; (mod Baxi1),
ie.
32B; + [B} +k(k+1)] (Brso — By) =0 (mod Bapy1).
This leads to
(6.12)  32B; + (B} + k(k +1)] (Brsa — Bi) — BiBary1 =0  (mod Bagy1),
since By Bak+1 =0 (mod Bag41). Observe that
B + k(k +1)] (Br42 — Br) — BxBars1
= [B} +k(k +1)] (6Bit1 — 2Bi) — By, (Biy, — BY)
(6.13) = ByByy1(6B), — Byy1) — B} +6k(k +1)Byyq — 2k(k + 1) By,
= BypBypi1Br_1 — B} 4+ 6k(k + 1)Bypyq — 2k(k + 1) By,
= 6k(k+ 1)Bgy1 — [2k(k + 1) + 1] By,
where we used Lemma (i) to get that Byyiy = Bf, | — BE, Br41Br—1 = B} — 1.
Then, and imply that
(6.14) 32Bj + 6k(k+1)Biy1 — [2k(k+1)+1] By =0 (mod Bajy1),

e Suppose that 1 < j < 2k — 2. We will prove that
0 < 32Bj + 6k(k 4+ 1)Byq1 — [2k(k + 1) + 1] B, < Bajy1 -
We have
32B; + 6k(k+ 1)By1 — [2k(k+ 1) + 1] B
(6.15) > 32+ 6k(k+1)Bry1 — [2k(k+ 1)+ 1] Bx, > 0.
On the other hand, since j < 2k — 2, we have
Bogy1 — 32B; — 6k(k + 1)Bgy1 + [2k(k+ 1) + 1] By
> Bopt1 — 32Bgj—2 — 6k(k + 1)Br11 + [2k(k + 1) + 1] B

Bok_1 + Bok_:

= Bory1 — 32% — 6k(k + 1)Byy1 + [2k(k + 1) + 1] By,
16

= By~ B}~ (B}~ Biy + Bi, — Biy) ~ 6k(k + DBup

+ [2k(k + 1) + 1] By,
(6.16) > Bf,, — Bf —6(B — Bi_,) — 6k(k +1)Byy1 + 2k(k + 1) + 1] By,
= By, [36By, — 6By_1 — 36k(k +1)] — By_1 [6By — By_1 — 6k(k + 1)]
— By [TBy — 2k(k +1) — 1] +6B7_,
> By [29By — 6B),_1 — 34k(k + 1) + 1]
— By_1[6By — Bp_1 — 6k(k+1)] .
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Observe that
29By, — 6By—1 — 34k(k+ 1)+ 1 — 6By + By—1 + 6k(k + 1)
(6.17) = 23B;, —5Bj_1 —28k(k+1)+1>18B, — 28k(k+1)+1 >0,
since 18By, = 9Py, > 9a2k—2 > 28k(k + 1), for k > 4. Now, implies that
29Bj, —6Bg_1 — 34k(k+1)+ 1> 6B, — By—1 — 6k(k+1).

Then, one obtains
(6.18)
By, [29Bk —6Br_1 — 34]{}(]{) + 1) + ].] — Bp_1 [GBk — Bp_1 — Gk(k + 1)} >0.

Inequalities and finally imply that
(6.19) 32B; + 6k(k + 1)Bit+1 — [2k(k + 1) 4+ 1] By, < Bag41 -
From and (6.19)), we deduce that

0 < 32B; + 6k(k + 1)Br41 — [2k(k + 1) + 1] B, < Bag1 ,

which contradicts (6.14)). Then, j € {2k — 1, 2k}.
e Suppose that j = 2k — 1. Then, (6.14) becomes

(6.20)  32Bap_y + 6k(k+1)Bisy — [2k(k+1) +1] By =0 (mod Byjy1).

Using the recurrence formula, we check that 32B5;_1 = Bogy1 + Bog—3 — 2Bag—1.

Then, (6.20)) becomes
(6.21)

Bogy1+ Bok—3—2Bog_1+6k(k+1)Brt1—2k(k+ 1)+ 1] B =0 (mod Bajy1) -
We will prove that
0 < Bog41 + Bog—3 — 2Bop—1 + 6k(k + 1)Biy1 — [2k(k + 1) + 1] Bx < Bagy1 -
It is obvious that
(6.22)  Bagy1 + Bog—3 — 2Bop—1 + 6k(k + 1)Bry1 — [2k(k+ 1)+ 1] B, > 0.
Furthermore, one sees that
Boky1 — Bogy1 — Bog—3 + 2Bog—1 — 6k(k + 1)Biy1 + [2k(k+ 1) + 1] By,
= 2B —3B}_, + Bf_, — 36k(k + 1)By, + 6k(k + 1)By_1 + [2k(k + 1) + 1] By,
> B} + B? , —36k(k+1)By, + 6k(k +1)By_1 + [2k(k +1) + 1] By,
= By [By, — 34k(k + 1) + 1] 4+ Bi_, + 6k(k +1)Bx_1 > 0,
where we used Lemma [2] (i), the fact that B —3B}_, > 0 and at the end the fact

that By, = % > %a2k*2 > 34k(k + 1) — 1, for k > 6, which is the case for us. The
above inequality implies that

(6.23) Baji1 + Bag—3 — 2Bog—1 + 6k(k + 1)Br4+1 — [2k(k+ 1) + 1] By, < Bagy1 -
From inequalities and , we have

0 < Bogt1 + Bog—3 — 2Bo_1 + 6k(k + 1)Bgy1 — [2k(k+ 1) + 1) By < Bogt1 s
which contradicts .
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e Suppose that j = 2k. Then, becomes
(6.24) 32Bgy, + 6k(k 4+ 1)Byy1 — [2k(k+ 1)+ 1] By =0 (mod Bag41) -
Observe that
32Boy, = 5Bag41 + 5Bog—1 + 2Bay, = 5Boj—1 + 2By, (mod Bajq1) .
Then, implies
(6.25) 5Bgj—1 + 2Baj + 6k(k+1)Biy1 — [2k(k+ 1)+ 1] B, =0 (mod Baj1) .

We prove that 0 < 5Bog_1 + 2B, + Gk(k + 1)Bk+1 — [Qk(k} + 1) + 1] By < Bojy1.
It is obvious that

(626) 5Bok_1 + 2By, + Gk(k + 1)Bk+1 - [2]€(k + ].) + ].] B > 0.
On the other hand, using Lemma [2| (i), we get that
Bopy1 —5Bag—1 — 2By, — Gk(k‘ + 1)Bk+1 + [Qk(k + 1) + 1] By,

2B2k+1 + Bop—1
6

[72B} — 24BBy,_1 + 2B;_, — 18B} + 16B;_,]

= Bop11 —5Bag—1 —

(6.27) !

1
3 [-108k(k + 1)By, + 18k(k + 1)Bi—1 + [6k(k + 1) + 3] By]
[By, [50By, — 102k (k + 1) + 3] + Bg_1 [14Bj—1 + 18k(k + 1)]] ,

Wi~ +  w

where we used Lemma [3[ (i) to get 24B;B,_1 = 4B,% + 432_1 — 4. Moreover,
By [50By, — 102k(k + 1) + 3] + By—1 [14Bj—1 + 18k(k + 1)]

(6.28) > By [50B, — 102k(k+ 1)+ 3] > 0,
since 50B), = 25Py;, > 250272 > 102k(k + 1), for k > 4. Now, and
imply that Bogy1 — 5Baog—1 — 2Bap — 6k(k+1)Byy1 + [2k(k+ 1)+ 1] B, > 0, ie.
(6.29) 5Boj—1 + 2By + 6k(k + 1)Bi+1 — [2k(k + 1) + 1] B, < Baj41 -
From inequalities and , we deduce that

0 < 5Bgk_1 + 2Bak + 6k(k + 1)Bgy1 — [2k(k + 1) + 1] By < Bag41,
which contradicts . Then, the proof of Theorem [4|is complete.
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