Czechoslovak Mathematical Journal

Zhi-Hong Sun

Ramsey numbers for trees II

Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 2, 351-372

Persistent URL: http://dml.cz/dmlcz/148909

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RAMSEY NUMBERS FOR TREES II

Zhi-Hong Sun, Huaian

Received July 24, 2019. Published online March 5, 2021.

Abstract. Let $r\left(G_{1}, G_{2}\right)$ be the Ramsey number of the two graphs G_{1} and G_{2}. For $n_{1} \geqslant n_{2} \geqslant 1$ let $S\left(n_{1}, n_{2}\right)$ be the double star given by $V\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0}, v_{1}, \ldots, v_{n_{1}}, w_{0}\right.$, $\left.w_{1}, \ldots, w_{n_{2}}\right\}$ and $E\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n_{1}}, v_{0} w_{0}, w_{0} w_{1}, \ldots, w_{0} w_{n_{2}}\right\}$. We determine $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)$ under certain conditions. For $n \geqslant 6$ let $T_{n}^{3}=S(n-5,3), T_{n}^{\prime \prime}=$ $\left(V, E_{2}\right)$ and $T_{n}^{\prime \prime \prime}=\left(V, E_{3}\right)$, where $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, E_{2}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}\right.$, $\left.v_{1} v_{n-2}, v_{2} v_{n-1}\right\}$ and $E_{3}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{2} v_{n-2}, v_{3} v_{n-1}\right\}$. We also obtain explicit formulas for $r\left(K_{1, m-1}, T_{n}\right), r\left(T_{m}^{\prime}, T_{n}\right)(n \geqslant m+3), r\left(T_{n}, T_{n}\right), r\left(T_{n}^{\prime}, T_{n}\right)$ and $r\left(P_{n}, T_{n}\right)$, where $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}, P_{n}$ is the path on n vertices and T_{n}^{\prime} is the unique tree with n vertices and maximal degree $n-2$.

Keywords: Ramsey number; tree; Turán's problem
MSC 2020: 05C55, 05C05, 05C35

1. Introduction

In this paper, all graphs are simple graphs. For a graph $G=(V(G), E(G))$ let $e(G)=|E(G)|$ be the number of edges in G, and let $\Delta(G)$ and $\delta(G)$ denote the maximal degree and minimal degree of G, respectively.

For a graph G, as usual \bar{G} denotes the complement of G. Let G_{1} and G_{2} be two graphs. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that, for every graph G with n vertices, either G contains a copy of G_{1} or \bar{G} contains a copy of G_{2}.

Let \mathbb{N} be the set of positive integers. For $n \in \mathbb{N}$ with $n \geqslant 6$ let T_{n} be a tree on n vertices. As mentioned in [8], recently Zhao proved that $r\left(T_{n}, T_{n}\right) \leqslant 2 n-2$, which was conjectured by Burr and Erdős, see [1].

The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).

Let $m, n \in \mathbb{N}$. For $n \geqslant 3$ let $K_{1, n-1}$ denote the unique tree on n vertices with $\Delta\left(K_{1, n-1}\right)=n-1$, and for $n \geqslant 4$ let T_{n}^{\prime} denote the unique tree on n vertices with $\Delta\left(T_{n}^{\prime}\right)=n-2$. In 1972, Harary in [6] showed that for $m, n \geqslant 3$,

$$
r\left(K_{1, m-1}, K_{1, n-1}\right)= \begin{cases}m+n-3 & \text { if } 2 \nmid m n \tag{1.1}\\ m+n-2 & \text { if } 2 \mid m n .\end{cases}
$$

From [2], page 72, if G is a graph with $\delta(G) \geqslant n-1$, then G contains every tree on n vertices. Using this fact, in 1995, Guo and Volkmann in [5] proved that for $n>m \geqslant 4$,

$$
r\left(K_{1, m-1}, T_{n}^{\prime}\right)= \begin{cases}m+n-3 & \text { if } 2 \mid m(n-1), \tag{1.2}\\ m+n-4 & \text { if } 2 \nmid m(n-1) .\end{cases}
$$

In 2012 the author in [9] evaluated the Ramsey number $r\left(T_{m}, T_{n}^{*}\right)$ for $T_{m} \in$ $\left\{P_{m}, K_{1, m-1}, T_{m}^{\prime}, T_{m}^{*}\right\}$, where P_{m} is a path on m vertices and T_{n}^{*} is the tree on n vertices with $V\left(T_{n}^{*}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E\left(T_{n}^{*}\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}\right.$, $\left.v_{n-3} v_{n-2}, v_{n-2} v_{n-1}\right\}$. In particular, he proved that for $n>m \geqslant 7$,

$$
r\left(K_{1, m-1}, T_{n}^{*}\right)= \begin{cases}m+n-3 & \text { if } m-1 \mid n-3 \tag{1.3}\\ m+n-4 & \text { if } m-1 \nmid n-3\end{cases}
$$

For $n \geqslant 5$ let $T_{n}^{1}=\left(V, E_{1}\right)$ and $T_{n}^{2}=\left(V, E_{2}\right)$ be the trees on n vertices with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, E_{1}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-4} v_{n-2}, v_{n-3} v_{n-1}\right\}$ and $E_{2}=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-3} v_{n-2}, v_{n-3} v_{n-1}\right\}$. Then $\Delta\left(T_{n}^{1}\right)=\Delta\left(T_{n}^{2}\right)=\Delta\left(T_{n}^{*}\right)=n-3$. In [12], Sun, Wang and Wu proved that

$$
\begin{equation*}
r\left(K_{1, m-1}, T_{n}^{1}\right)=r\left(K_{1, m-1}, T_{n}^{2}\right)=m+n-4 \quad \text { for } n>m \geqslant 7 \text { and } 2 \mid m n \tag{1.4}
\end{equation*}
$$

For $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \geqslant n_{2}$, let $S\left(n_{1}, n_{2}\right)$ be the double star given by

$$
\begin{aligned}
& V\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0}, v_{1}, \ldots, v_{n_{1}}, w_{0}, w_{1}, \ldots, w_{n_{2}}\right\} \\
& E\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n_{1}}, v_{0} w_{0}, w_{0} w_{1}, \ldots, w_{0} w_{n_{2}}\right\}
\end{aligned}
$$

We say that v_{0} and w_{0} are centers of $S\left(n_{1}, n_{2}\right)$. In [4], Grossman, Harary and Klawe evaluated the Ramsey number $r\left(S\left(n_{1}, n_{2}\right), S\left(n_{1}, n_{2}\right)\right)$ under certain conditions. In particular, they showed that for odd n_{1} and $n_{2}=1,2$,

$$
\begin{equation*}
r\left(S\left(n_{1}, n_{2}\right), S\left(n_{1}, n_{2}\right)\right)=\max \left\{2 n_{1}+1, n_{1}+2 n_{2}+2\right\} \tag{1.5}
\end{equation*}
$$

It is clear that $T_{n}^{\prime}=S(n-3,1)$ and $T_{n}^{2}=S(n-4,2)$. In this paper, we prove the following general result:

$$
\begin{align*}
& r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \tag{1.6}\\
& \quad= \begin{cases}m+n_{1} & \text { if } 2 \mid m n_{1}, n_{1} \geqslant m-2 \geqslant n_{2} \geqslant 2 \\
m-1+n_{1} & \text { if } 2 \nmid m n_{1}, n_{1} \geqslant m-2>n_{2} \\
& \text { and } n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)\left(n_{2}-2\right)}{m-1-n_{2}}, \\
& \text { and } n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)^{2}}{m-2-n_{2}} .\end{cases}
\end{align*}
$$

Also,

$$
\begin{equation*}
r\left(K_{1, m-1}, T_{n}^{1}\right)=m+n-5 \text { for } n \geqslant m+2 \geqslant 7 \text { and } 2 \nmid m n . \tag{1.7}
\end{equation*}
$$

For $n \geqslant 6$ let $T_{n}^{3}=S(n-5,3), T_{n}^{\prime \prime}=\left(V, E_{2}\right)$ and $T_{n}^{\prime \prime \prime}=\left(V, E_{3}\right)$, where

$$
\begin{gathered}
V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, \quad E_{2}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{1} v_{n-2}, v_{2} v_{n-1}\right\}, \\
E_{3}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{2} v_{n-2}, v_{3} v_{n-1}\right\} .
\end{gathered}
$$

Then $\Delta\left(T_{n}^{3}\right)=\Delta\left(T_{n}^{\prime \prime}\right)=\Delta\left(T_{n}^{\prime \prime \prime}\right)=n-4$. In this paper, we evaluate $r\left(K_{1, m-1}, T_{n}\right)$ and $r\left(T_{m}^{\prime}, T_{n}\right)$ for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. In particular, we show that

$$
\begin{align*}
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right)= & r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right) \tag{1.8}\\
& = \begin{cases}m+n-5 & \text { if } 2 \mid m(n-1), m \geqslant 7, n \geqslant 15 \\
& \text { and } n>m+1+\frac{8}{m-6}, \\
m+n-6 & \text { if } 2 \nmid m(n-1) \text { and } n \geqslant m+3 \geqslant 9,\end{cases}
\end{align*}
$$

and that for $m \geqslant 9$ and $n>m+2+\max \{0,(20-m) /(m-8)\}$,

$$
r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{3}\right)= \begin{cases}m+n-5 & \text { if } m-1 \mid n-5 \tag{1.9}\\ m+n-6 & \text { if } m-1 \nmid n-5 .\end{cases}
$$

We also prove that for $m \geqslant 11, n \geqslant(m-3)^{2}+4$ and $m-1 \nmid n-5$,

$$
\begin{equation*}
r\left(G_{m}, T_{n}\right)=m+n-6 \quad \text { for } G_{m} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\} \text { and } T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\} \tag{1.10}
\end{equation*}
$$

In addition, we establish the following results:

$$
\begin{aligned}
& r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime \prime \prime}\right)= \begin{cases}2 n-9 & \text { if } 2 \mid n \text { and } n>29, \\
2 n-8 & \text { if } 2 \nmid n \text { and } n>22,\end{cases} \\
& r\left(T_{n}^{3}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{3}\right)=2 n-8 \quad \text { for } n>22, \\
& r\left(T_{n}^{\prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime}\right)=2 n-5 \quad \text { for } n \geqslant 10, \\
& r\left(T_{n}^{\prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{3}, T_{n}^{i}\right)=2 n-7 \quad \text { for } n>16 \text { and } i=1,2, \\
& r\left(P_{n}, T_{n}^{\prime \prime}\right)=r\left(P_{n}, T_{n}^{\prime \prime \prime}\right)=r\left(P_{n}, T_{n}^{3}\right)=2 n-9 \quad \text { for } n \geqslant 33 .
\end{aligned}
$$

In addition to the above notation, throughout this paper, we use the following notation: $[x]$-the greatest integer not exceeding $x, d(v)$-the degree of the vertex v in a graph, $d(u, v)$ - the distance between the two vertices u and v in a graph, K_{n}-the complete graph on n vertices, $G\left[V_{1}\right]$-the subgraph of G induced by vertices in the set $V_{1}, G-V_{1}$-the subgraph of G obtained by deleting vertices in V_{1} and all edges incident with them, $\Gamma(v)$-the set of vertices adjacent to the vertex $v, e\left(V_{1} V_{1}^{\prime}\right)$-the number of edges with one endpoint in V_{1} and the other endpoint in V_{1}^{\prime}.

2. BASIC LEMmAS

For a forbidden graph L let ex $(p ; L)$ be the maximal number of edges in a graph of order p not containing any copies of L. The corresponding Turán's problem is to evaluate $\operatorname{ex}(p ; L)$. Let $p, n \in \mathbb{N}$ with $p \geqslant n \geqslant 2$. For a given tree T_{n} on n vertices, it is difficult to determine the value of $\operatorname{ex}\left(p ; T_{n}\right)$. The famous Erdős-Sós conjecture asserts that $\operatorname{ex}\left(p ; T_{n}\right) \leqslant \frac{1}{2}(n-2) p$. Write $p=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. In 1975 Faudree and Schelp in [3] showed that

$$
\begin{equation*}
\operatorname{ex}\left(p ; P_{n}\right)=k\binom{n-1}{2}+\binom{r}{2}=\frac{(n-2) p-r(n-1-r)}{2} \tag{2.1}
\end{equation*}
$$

In [10], [11], [12], the author and his coauthors determined $\operatorname{ex}\left(p ; T_{n}\right)$ for $T_{n} \in$ $\left\{T_{n}^{\prime}, T_{n}^{*}, T_{n}^{1}, T_{n}^{2}, T_{n}^{3}, T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$.

Lemma 2.1 ([9], Lemma 2.1). Let G_{1} and G_{2} be two graphs. Suppose that $p \in \mathbb{N}$, $p \geqslant \max \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}$ and $\operatorname{ex}\left(p ; G_{1}\right)+\operatorname{ex}\left(p ; G_{2}\right)<\binom{p}{2}$. Then $r\left(G_{1}, G_{2}\right) \leqslant p$.

Proof. Let G be a graph of order p. If $e(G) \leqslant \operatorname{ex}\left(p ; G_{1}\right)$ and $e(\bar{G}) \leqslant \operatorname{ex}\left(p ; G_{2}\right)$, then $\operatorname{ex}\left(p ; G_{1}\right)+\operatorname{ex}\left(p ; G_{2}\right) \geqslant e(G)+e(\bar{G})=\binom{p}{2}$. This contradicts the assumption. Hence, either $e(G)>\operatorname{ex}\left(p ; G_{1}\right)$ or $e(\bar{G})>\operatorname{ex}\left(p ; G_{2}\right)$. Therefore, G contains a copy of G_{1} or \bar{G} contains a copy of G_{2}. This shows that $r\left(G_{1}, G_{2}\right) \leqslant|V(G)|=p$. So the lemma is proved.

Lemma 2.2. Let $k, p \in \mathbb{N}$ with $p \geqslant k+1$. Then there exists a k-regular graph of order p if and only if $2 \mid k p$.

This is a known result. See for example [11], Corollary 2.1.

Lemma 2.3 ([9], Lemma 2.3). Let G_{1} and G_{2} be two graphs with $\Delta\left(G_{1}\right)=d_{1} \geqslant 2$ and $\Delta\left(G_{2}\right)=d_{2} \geqslant 2$. Then:
(i) $r\left(G_{1}, G_{2}\right) \geqslant d_{1}+d_{2}-\frac{1}{2}\left(1-(-1)^{\left(d_{1}-1\right)\left(d_{2}-1\right)}\right)$.
(ii) Suppose that G_{1} is a connected graph of order m and $d_{1}<d_{2} \leqslant m$. Then $r\left(G_{1}, G_{2}\right) \geqslant 2 d_{2}-1 \geqslant d_{1}+d_{2}$.
(iii) Suppose that G_{1} is a connected graph of order m and $d_{2}>m$. If one of the conditions
(1) $2 \mid\left(d_{1}+d_{2}-m\right)$,
(2) $d_{1} \neq m-1$,
(3) G_{2} has two vertices u and v such that $d(v)=\Delta\left(G_{2}\right)$ and $d(u, v)=3$ holds, then $r\left(G_{1}, G_{2}\right) \geqslant d_{1}+d_{2}$.

Lemma 2.4. Let $p, n \in \mathbb{N}$ with $p \geqslant n-1 \geqslant 1$. Then $\operatorname{ex}\left(p ; K_{1, n-1}\right)=\left[\frac{1}{2}(n-2) p\right]$.
This is a known result. See for example [11], Theorem 2.1.

Lemma 2.5 ([11], Theorem 3.1). Let $p, n \in \mathbb{N}$ with $p \geqslant n \geqslant 5$, and let $r \in$ $\{0,1, \ldots, n-2\}$ be given by $p \equiv r(\bmod n-1)$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{\prime}\right)= \begin{cases}{\left[\frac{(n-2)(p-1)-r-1}{2}\right]} & \text { if } n \geqslant 7 \text { and } 2 \leqslant r \leqslant n-4 \\ \frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
$$

Lemma 2.6 ([12], Theorems 2.1 and 3.1). Suppose that $p, n \in \mathbb{N}, p \geqslant n-1 \geqslant 4$ and $p=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. For $i=1$ or 2 ,

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{i}\right)=\max \left\{\left[\frac{(n-2) p}{2}\right]-(n-1+r), \frac{(n-2) p-r(n-1-r)}{2}\right\} \\
& = \begin{cases}{\left[\frac{(n-2) p}{2}\right]-(n-1+r)} & \text { if } n \geqslant 16 \text { and } 3 \leqslant r \leqslant n-6 \\
& \text { or if } 13 \leqslant n \leqslant 15 \text { and } 4 \leqslant r \leqslant n-7, \\
\frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Lemma 2.7 ([10], Theorems 3.1 and 5.1). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 10, p=$ $k(n-1)+r, k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Then

$$
\begin{aligned}
\operatorname{ex}\left(p ; T_{n}^{\prime \prime}\right)=\operatorname{ex}\left(p ; T_{n}^{\prime \prime \prime}\right)= & \frac{(n-2) p-r(n-1-r)}{2} \\
& +\max \left\{0,\left[\frac{r(n-4-r)-3(n-1)}{2}\right]\right\}
\end{aligned}
$$

Lemma 2.8 ([10], Lemmas 4.6 and 4.7). Let $n \in \mathbb{N}$ with $n \geqslant 15$. Then

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

and

$$
\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)=n^{2}-9 n+29+\max \left\{\left[\frac{n-37}{4}\right], 0\right\}
$$

Lemma 2.9 ([10], Theorems 4.1-4.5). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 10, p=k(n-1)+r$, $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$.
(i) If $r \in\{0,1,2, n-6, n-5, n-4, n-3, n-2\}$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-r(n-1-r)}{2}
$$

(ii) If $n \geqslant 15$ and $r \in\{3,4, \ldots, n-9\}$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-r(n-1-r)}{2}+\max \left\{0,\left[\frac{r(n-4-r)-3(n-1)}{2}\right]\right\}
$$

(iii) If $n \geqslant 15$ and $r=n-8$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-7 n+30}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

(iv) If $n \geqslant 15$ and $r=n-7$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-6(n-7)}{2}+\max \left\{\left[\frac{n-37}{4}\right], 0\right\} .
$$

Lemma 2.10. Let $n \in \mathbb{N}, n \geqslant 10$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $p=$ $k(n-1)+r$ with $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Then

$$
\operatorname{ex}\left(p ; T_{n}\right) \leqslant \frac{(n-2) p}{2}-\min \left\{n-1+r, \frac{r(n-1-r)}{2}\right\}
$$

Proof. This is immediate from [10], Lemmas 2.8, 3.1, 4.1 and 5.1.

Lemma 2.11 ([11], Theorems 4.1-4.3). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 6$ and $p=$ $k(n-1)+r$ with $k \in \mathbb{N}$ and $r \in\{0,1, n-5, n-4, n-3, n-2\}$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}\frac{(n-2)(p-2)}{2}+1 & \text { if } n>6 \text { and } r=n-5 \\ \frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
$$

Lemma 2.12 ([11], Theorem 4.4). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 11, r \in\{2,3, \ldots, n-6\}$ and $p \equiv r(\bmod n-1)$. Let $t \in\{0,1, \ldots, r+1\}$ be given by $n-3 \equiv t(\bmod r+2)$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}{\left[\frac{(n-2)(p-1)-2 r-t-3}{2}\right]} & \text { if } r \geqslant 4 \text { and } 2 \leqslant t \leqslant r-1 \\ \frac{(n-2)(p-1)-t(r+2-t)-r-1}{2} & \text { otherwise }\end{cases}
$$

3. FORMULAS FOR $r\left(T_{n}, T_{n}^{\prime \prime}\right), r\left(T_{n}, T_{n}^{\prime \prime \prime}\right)$ AND $r\left(T_{n}, T_{n}^{3}\right)$

Theorem 3.1. Let $n \in \mathbb{N}$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime \prime \prime}\right)= \begin{cases}2 n-9 & \text { if } 2 \mid n \text { and } n>29 \\ 2 n-8 & \text { if } 2 \nmid n \text { and } n>22 .\end{cases}
$$

Proof. Suppose that $T_{n}, T_{n}^{0} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$. By Lemma 2.7,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; T_{n}\right) & =\frac{(2 n-9)(n-5)-(n-29)}{2}+\max \left\{0,\left[\frac{n-29}{2}\right]\right\} \\
& =\left[\frac{(2 n-9)(n-5)}{2}\right] \text { for } n \geqslant 29
\end{aligned}
$$

Hence, for $n \in\{30,32,34, \ldots\}$,
$\operatorname{ex}\left(2 n-9 ; T_{n}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{0}\right)=2\left[\frac{(2 n-9)(n-5)}{2}\right]=(2 n-9)(n-5)-1<\binom{2 n-9}{2}$.

Applying Lemma 2.1 yields $r\left(T_{n}, T_{n}^{0}\right) \leqslant 2 n-9$. On the other hand, appealing to Lemma 2.3 (i),

$$
r\left(T_{n}, T_{n}^{0}\right) \geqslant n-4+n-4-\frac{1-(-1)^{(n-5)(n-5)}}{2}=2 n-9 .
$$

Therefore $r\left(T_{n}, T_{n}^{0}\right)=2 n-9$ for $n \in\{30,32,34, \ldots\}$.
Now assume that $2 \nmid n$ and $n>22$. By Lemma 2.7,

$$
\operatorname{ex}\left(2 n-8 ; T_{n}\right)=\frac{(n-2)(2 n-8)-6(n-7)}{2}=n^{2}-9 n+29
$$

Thus,

$$
\operatorname{ex}\left(2 n-8 ; T_{n}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}^{0}\right)=2\left(n^{2}-9 n+29\right)<2 n^{2}-17 n+36=\binom{2 n-8}{2}
$$

Hence, $r\left(T_{n}, T_{n}^{0}\right) \leqslant 2 n-8$ by Lemma 2.1. By Lemma 2.2, we may construct a regular graph G of order $2 n-9$ with degree $n-5$. Clearly \bar{G} is also a regular graph with degree $n-5$. Since $\Delta\left(T_{n}\right)=\Delta\left(T_{n}^{0}\right)=n-4$, both G and \bar{G} do not contain any copies of T_{n} and T_{n}^{0}. Therefore, $r\left(T_{n}, T_{n}^{0}\right)>2 n-9$ and so $r\left(T_{n}, T_{n}^{0}\right)=2 n-8$. This completes the proof.

Theorem 3.2. Let $n \in \mathbb{N}$ with $n>22$. Then

$$
r\left(T_{n}^{3}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{3}\right)=2 n-8
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. When n is odd, using Lemma 2.3(i) we see that $r\left(T_{n}^{3}, T_{n}\right) \geqslant n-4+n-4=2 n-8$. When n is even, we may construct a regular graph H with degree $n-10$ and $V(H)=\left\{v_{1}, \ldots, v_{n-6}\right\}$. Let G_{0} be a graph given by

$$
V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-4}, u_{1}, \ldots, u_{n-6}\right\}
$$

and

$$
\begin{aligned}
E\left(G_{0}\right)=E(H) \cup\{ & v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-5}, \ldots, v_{n-6} v_{n-5}, v_{1} v_{n-4}, \ldots, v_{n-5} v_{n-4}, v_{1} u_{1}, \\
& v_{1} u_{2}, v_{2} u_{1}, v_{2} u_{2}, \ldots, v_{n-7} u_{n-7}, v_{n-7} u_{n-6}, v_{n-6} u_{n-7}, v_{n-6} u_{n-6}, \\
& \left.u_{1} u_{2}, \ldots, u_{1} u_{n-6}, u_{2} u_{3}, \ldots, u_{2} u_{n-6}, u_{3} u_{n-6}, \ldots, u_{n-7} u_{n-6}\right\} .
\end{aligned}
$$

Then $d\left(v_{0}\right)=d\left(v_{n-5}\right)=d\left(v_{n-4}\right)=n-4$ and $d\left(v_{1}\right)=\ldots=d\left(v_{n-6}\right)=d\left(u_{1}\right)=\ldots=$ $d\left(u_{n-6}\right)=n-5$. Clearly $\left|V\left(G_{0}\right)\right|=2 n-9$ and G_{0} does not contain any copies of T_{n}^{3}. Since $\Delta\left(\bar{G}_{0}\right)=n-5$ and $\Delta\left(T_{n}\right)=n-4, \bar{G}_{0}$ does not contain any copies of T_{n}. Thus, $r\left(T_{n}^{3}, T_{n}\right) \geqslant\left|V\left(G_{0}\right)\right|+1=2 n-8$.

From Lemma 2.7, $\operatorname{ex}\left(2 n-8 ; T_{n}^{\prime \prime}\right)=\operatorname{ex}\left(2 n-8 ; T_{n}^{\prime \prime \prime}\right)=n^{2}-9 n+29$. By Lemma 2.8, $\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)=n^{2}-9 n+29+\max \left\{0,\left[\frac{1}{4}(n-37)\right]\right\}$. Thus,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}\right) & \leqslant 2 n^{2}-18 n+58+2 \max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& <2 n^{2}-18 n+58+n-22=\binom{2 n-8}{2}
\end{aligned}
$$

Hence, applying Lemma 2.1 gives $r\left(T_{n}^{3}, T_{n}\right) \leqslant 2 n-8$ and so $r\left(T_{n}^{3}, T_{n}\right)=2 n-8$ as claimed.

Theorem 3.3. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime}\right)=2 n-5
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(T_{n}^{\prime}\right)=n-2$, using Lemma 2.3 (ii) we see that $r\left(T_{n}, T_{n}^{\prime}\right) \geqslant 2(n-2)-1=2 n-5$. By Lemmas 2.5, 2.7 and 2.9,

$$
\begin{aligned}
& \operatorname{ex}\left(2 n-5 ; T_{n}\right)+\operatorname{ex}\left(2 n-5 ; T_{n}^{\prime}\right) \\
&=\frac{(n-2)(2 n-5)-3(n-4)}{2}+\left[\frac{(n-2)(2 n-6)-(n-3)}{2}\right] \\
&=\left[\frac{4 n^{2}-23 n+37}{2}\right]<\frac{4 n^{2}-22 n+30}{2}=\binom{2 n-5}{2} .
\end{aligned}
$$

Hence, $r\left(T_{n}, T_{n}^{\prime}\right) \leqslant 2 n-5$ by Lemma 2.1. Therefore, $r\left(T_{n}, T_{n}^{\prime}\right)=2 n-5$ as claimed.

Theorem 3.4. Let $n \in \mathbb{N}, n>16$ and $i \in\{1,2\}$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{3}, T_{n}^{i}\right)=2 n-7
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(T_{n}^{i}\right)=n-3$, using Lemma 2.3 (ii) we see that $r\left(T_{n}, T_{n}^{i}\right) \geqslant 2(n-3)-1=2 n-7$. From Lemmas 2.6, 2.7 and 2.9,

$$
\begin{aligned}
\operatorname{ex}(2 n-7 ; & \left.T_{n}\right)+\operatorname{ex}\left(2 n-7 ; T_{n}^{i}\right) \\
& =\frac{(n-2)(2 n-7)-5(n-6)}{2}+\left[\frac{(n-2)(2 n-7)}{2}\right]-(2 n-7) \\
& =\left[\frac{4 n^{2}-31 n+72}{2}\right]<\frac{4 n^{2}-30 n+56}{2}=\binom{2 n-7}{2} .
\end{aligned}
$$

Hence, $r\left(T_{n}, T_{n}^{i}\right) \leqslant 2 n-7$ by Lemma 2.1. Therefore, $r\left(T_{n}, T_{n}^{i}\right)=2 n-7$ as claimed.

Theorem 3.5. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then $r\left(T_{n}, T_{n}^{*}\right)=2 n-5$ for $T_{n} \in$ $\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$.
Proof. By Lemmas 2.7 and 2.9, ex $\left(2 n-5 ; T_{n}\right)=\frac{1}{2}((n-2)(2 n-5)-3(n-4))=$ $n^{2}-6 n+11<n^{2}-5 n+4$. Thus the result follows from [9], Lemma 3.1.

Remark 3.1. By [9], Theorem 6.3 with $m=n$ and $a=2, r\left(T_{n}, K_{1, n-1}\right)=2 n-3$ for $n \geqslant 6$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$.

Theorem 3.6. Let $n \in \mathbb{N}$. Then $r\left(P_{n}, T_{n}^{\prime \prime}\right)=r\left(P_{n}, T_{n}^{\prime \prime \prime}\right)=2 n-9$ for $n \geqslant 30$ and $r\left(P_{n}, T_{n}^{3}\right)=2 n-9$ for $n \geqslant 33$.

Proof. Suppose that $n \geqslant 30$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(P_{n}\right)=2$, appealing to Lemma 2.3 (ii) we obtain $r\left(P_{n}, T_{n}\right) \geqslant 2(n-4)-1=2 n-9$. By (2.1) and Lemma 2.7 for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; P_{n}\right)+\operatorname{ex} & \left(2 n-9 ; T_{n}\right) \\
& =\frac{(n-2)(2 n-9)-7(n-8)}{2}+\left[\frac{(2 n-9)(n-5)}{2}\right] \\
& =\left[\frac{4 n^{2}-39 n+119}{2}\right]<\frac{4 n^{2}-38 n+90}{2}=\binom{2 n-9}{2}
\end{aligned}
$$

Hence, applying Lemma 2.1 gives $r\left(P_{n}, T_{n}\right) \leqslant 2 n-9$ and so $r\left(P_{n}, T_{n}\right)=2 n-9$.
Now assume that $n \geqslant 33$. From (2.1) and Lemma 2.8,

$$
\begin{aligned}
& \operatorname{ex}\left(2 n-9 ; P_{n}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right) \\
&=\frac{(n-2)(2 n-9)-7(n-8)}{2}+n^{2}-10 n+24+\left[\frac{n}{2}\right] \\
&=2 n^{2}-20 n+61+\left[\frac{n}{2}\right]<2 n^{2}-19 n+45=\binom{2 n-9}{2}
\end{aligned}
$$

Hence, $r\left(P_{n}, T_{n}^{3}\right) \leqslant 2 n-9$ by Lemma 2.1 and so $r\left(P_{n}, T_{n}^{3}\right)=2 n-9$.
4. Formulas for $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right), r\left(K_{1, m-1}, T_{n}^{1}\right)$,

$$
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right) \text { AND } r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right)
$$

Theorem 4.1. Let $m, n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \geqslant m-2 \geqslant n_{2} \geqslant 2$ and $2 \mid m n_{1}$. If $n_{1}>m-5+n_{2}+\left(n_{2}-1\right)\left(n_{2}-2\right) /\left(m-1-n_{2}\right)$, then $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)=m+n_{1}$.

Proof. Since $\Delta\left(S\left(n_{1}, n_{2}\right)\right)=n_{1}+1$, from Lemma 2.3 (i) we see that

$$
r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \geqslant m-1+n_{1}+1-\frac{1-(-1)^{(m-2) n_{1}}}{2}=m+n_{1}
$$

Now we show that $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m+n_{1}$. Let G be a graph of order $m+n_{1}$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. That is, $\Delta(\bar{G}) \leqslant m-2$. We show that G contains a copy of $S\left(n_{1}, n_{2}\right)$. Clearly

$$
\delta(G)=m+n_{1}-1-\Delta(\bar{G}) \geqslant m+n_{1}-1-(m-2)=n_{1}+1 .
$$

Suppose that $\Delta(G)=n_{1}+1+s, v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G), \Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n_{1}+1+s}\right\}$, $V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}$. Then $\left|V_{1}^{\prime}\right|=m-2-s$. For $i=1,2, \ldots, n_{1}+$ $1+s$, we have

$$
\left|V_{1}^{\prime}\right|+1+\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant d\left(v_{i}\right) \geqslant \delta(G) \geqslant n_{1}+1
$$

and so

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-\left|V_{1}^{\prime}\right|=n_{1}-(m-2)+s \geqslant s
$$

For $s \geqslant n_{2}$ we have $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s \geqslant n_{2}$ and $\left|\Gamma\left(v_{0}\right)\right|-n_{2}=n_{1}+1+s-n_{2} \geqslant n_{1}+1$. Hence $G\left[V_{1}\right]$ contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}.

Now assume that $s<n_{2}$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, \ldots, u_{m-2-s}\right\}$. It is clear that for $i=1,2, \ldots, m-2-s$,

$$
m-3-s+\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|=\left|V_{1}^{\prime}\right|-1+\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant d\left(u_{i}\right) \geqslant \delta(G) \geqslant n_{1}+1
$$

and so $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-(m-4-s)$. It then follows that $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-2-s) \times$ $\left(n_{1}-(m-4-s)\right)$. By the assumption,

$$
n_{1}>m-5+n_{2}+\frac{\left(n_{2}-2\right)\left(n_{2}-1\right)}{m-1-n_{2}} \geqslant m-5+n_{2}-2 s+\frac{\left(n_{2}-2\right)\left(n_{2}-1-s\right)}{m-1-n_{2}} .
$$

Thus, $\left(m-1-n_{2}\right) n_{1}>(m-2-s)(m-4-s)+(s+1)\left(n_{2}-s-1\right)$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant$ $(m-2-s)\left(n_{1}-(m-4-s)\right)>\left(n_{1}+1+s\right)\left(n_{2}-s-1\right)$. Therefore, $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant n_{2}-s$ for some $v_{i} \in \Gamma\left(v_{0}\right)$. From the above, $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s$. Thus, G contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}. Therefore $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m+n_{1}$ and so the theorem is proved.

Corollary 4.1. Let $m, n \in \mathbb{N}, n-2 \geqslant m \geqslant 4$ and $2 \mid m n$. Then $r\left(K_{1, m-1}, T_{n}^{2}\right)=$ $m+n-4$.

Proof. Since $T_{n}^{2}=S(n-4,2)$, putting $n_{1}=n-4$ and $n_{2}=2$ in Theorem 4.1 yields the result.

Corollary 4.2. Let $m, n \in \mathbb{N}, m \geqslant 5, n>m+3+2 /(m-4)$ and $2 \mid m(n-1)$. Then $r\left(K_{1, m-1}, T_{n}^{3}\right)=m+n-5$.

Proof. Since $T_{n}^{3}=S(n-5,3)$, taking $n_{1}=n-5$ and $n_{2}=3$ in Theorem 4.1 gives the result.

Theorem 4.2. Let $m, n_{1}, n_{2} \in \mathbb{N}, n_{1} \geqslant m-2>n_{2}$ and $2 \nmid m n_{1}$. If $n_{1}>$ $m-5+n_{2}+\left(n_{2}-1\right)^{2} /\left(m-2-n_{2}\right)$, then $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)=m-1+n_{1}$.

Proof. Since $\Delta\left(S\left(n_{1}, n_{2}\right)\right)=n_{1}+1$, from Lemma 2.3 (i) we see that

$$
r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \geqslant m-1+n_{1}+1-\frac{1-(-1)^{(m-2) n_{1}}}{2}=m-1+n_{1}
$$

Now we show that $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m-1+n_{1}$. Let G be a graph of order $m-1+n_{1}$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. We need to show that G contains a copy of $S\left(n_{1}, n_{2}\right)$. Clearly $\Delta(\bar{G}) \leqslant m-2$ and so $\delta(G)=m-2+$ $n_{1}-\Delta(\bar{G}) \geqslant n_{1}$. Since $2 \nmid m n_{1}$, there is no regular graph of order $m-1+n_{1}$ with degree n_{1} by Euler's theorem. Hence $\Delta(G) \geqslant \delta(G)+1 \geqslant n_{1}+1$. Suppose that $\Delta(G)=n_{1}+1+s, v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G), \Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n_{1}+1+s}\right\}$, $V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}$. Then $\left|V_{1}^{\prime}\right|=m-3-s$. For $v_{i} \in \Gamma\left(v_{0}\right)$, $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n_{1}$ and so $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+1+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n_{1}$. Thus,

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-1-\left|V_{1}^{\prime}\right|=n_{1}-(m-2)+s \geqslant s
$$

Hence, $G\left[V_{1}\right]$ contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i} for $s \geqslant n_{2}$.
Now assume that $s<n_{2}$ and $V_{1}^{\prime}=\left\{u_{1}, \ldots, u_{m-3-s}\right\}$. As $d\left(u_{i}\right) \geqslant n_{1}$, we see that $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-(m-4-s)$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3-s)\left(n_{1}-(m-4-s)\right)$. Since

$$
n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)^{2}}{m-2-n_{2}} \geqslant m-5+n_{2}-2 s+\frac{\left(n_{2}-1\right)\left(n_{2}-1-s\right)}{m-2-n_{2}},
$$

we get $\left(m-2-n_{2}\right) n_{1}>(m-3-s)(m-4-s)+(s+1)\left(n_{2}-s-1\right)$. Hence,

$$
\begin{aligned}
e\left(V_{1} V_{1}^{\prime}\right) & \geqslant(m-3-s)\left(n_{1}-(m-4-s)\right) \\
& >(m-3-s) n_{1}-\left(m-2-n_{2}\right) n_{1}+(s+1)\left(n_{2}-s-1\right) \\
& =\left(n_{1}+1+s\right)\left(n_{2}-s-1\right)
\end{aligned}
$$

Therefore, we have $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant n_{2}-s$ for some $v_{i} \in \Gamma\left(v_{0}\right)$. From the above, $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s$. Thus, G contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}. Consequently, $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m-1+n_{1}$ and so the theorem is proved.

Corollary 4.3. Let $m, n \in \mathbb{N}, m \geqslant 5, n>m+1+1 /(m-4)$ and $2 \nmid m n$. Then $r\left(K_{1, m-1}, T_{n}^{2}\right)=m+n-5$.

Proof. Since $T_{n}^{2}=S(n-4,2)$, putting $n_{1}=n-4$ and $n_{2}=2$ in Theorem 4.2 yields the result.

Corollary 4.4. Let $m, n \in \mathbb{N}, m \geqslant 6, n>m+3+4 /(m-5)$ and $2 \nmid m(n-1)$. Then $r\left(K_{1, m-1}, T_{n}^{3}\right)=m+n-6$.

Proof. Since $T_{n}^{3}=S(n-5,3)$, putting $n_{1}=n-5$ and $n_{2}=3$ in Theorem 4.2 we deduce the result.

Theorem 4.3. Let $m, n \in \mathbb{N}, n \geqslant m+2 \geqslant 7$ and $2 \nmid m n$. Then $r\left(K_{1, m-1}, T_{n}^{1}\right)=$ $m+n-5$.

Proof. Since $n>m$ and $2 \nmid m n$, we have $n \geqslant m+2$. Let G be a graph of order $m+n-5$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. We show that G contains a copy of T_{n}^{1}. Clearly $\Delta(\bar{G}) \leqslant m-2$ and so $\delta(G)=m+n-6-\Delta(\bar{G}) \geqslant n-4$. If $\Delta(G)=n-4$, then G is a regular graph of order $m+n-5$ with degree $n-4$ and so $(m+n-5)(n-4)=2 e(G)$. Since $m+n-5$ and $n-4$ are odd, we get a contradiction. Thus, $\Delta(G) \geqslant n-3$. Assume that $v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G)=n-3+c, \Gamma\left(v_{0}\right)=$ $\left\{v_{1}, \ldots, v_{n-3+c}\right\}, V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m-3-c}\right\}$. Since $\delta(G) \geqslant n-4$ for $v_{i} \in \Gamma\left(v_{0}\right)$ we have $1+\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n-4$ and so $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-(m-3-c)=n-m-2+c \geqslant c$.

We first assume that $\left|V_{1}^{\prime}\right|=m-3-c \geqslant 2$. For $i=1,2$ we have $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+$ $\left|V_{1}^{\prime}\right|-1 \geqslant d\left(u_{i}\right) \geqslant \delta(G) \geqslant n-4$ and so $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-4+1-(m-3-c)=$ $n-m+c \geqslant 2$. Hence G contains a copy of T_{n}^{1}. If $\left|V_{1}^{\prime}\right|=1$, then $c=m-4 \geqslant 1$. Since $d\left(u_{1}\right) \geqslant n-4>1$, we have $u_{1} v_{j} \in E(G)$ for some $v_{j} \in \Gamma\left(v_{0}\right)$. Recall that $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant c \geqslant 1$ for $v_{i} \in \Gamma\left(v_{0}\right) . G$ must contain a copy of T_{n}^{1}. Now assume that $\left|V_{1}^{\prime}\right|=0$. That is, $c=m-3$ and $G=G\left[V_{1}\right]$. Since $d\left(v_{0}\right)=n-3+m-3 \geqslant n-3+2$ and $d\left(v_{i}\right) \geqslant n-4 \geqslant 3$ for $v_{i} \in \Gamma\left(v_{0}\right)$, we see that $G\left[\Gamma\left(v_{0}\right)\right]$ contains a copy of $2 K_{2}$ and so G contains a copy of T_{n}^{1}.

By the above, G contains a copy of T_{n}^{1}. Therefore $r\left(K_{1, m-1}, T_{n}^{1}\right) \leqslant m+n-5$. From Lemma 2.3,

$$
r\left(K_{1, m-1}, T_{n}^{j}\right) \geqslant m-1+n-3-\frac{1-(-1)^{(m-2)(n-4)}}{2}=m+n-5
$$

Hence $r\left(K_{1, m-1}, T_{n}^{1}\right)=m+n-5$ as claimed.

Lemma 4.1. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7, n>m+1+8 /(m-6)$ and $T_{n} \in$ $\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Let G_{m} be a connected graph of order m such that $\operatorname{ex}\left(m+n-5 ; G_{m}\right) \leqslant$ $\frac{1}{2}(m-2)(m+n-5)$. Then $r\left(G_{m}, T_{n}\right) \leqslant m+n-5$. Moreover, if $m-1 \mid n-5$, then $r\left(G_{m}, T_{n}\right)=m+n-5$.

Proof. If $T_{n} \neq T_{n}^{3}$ or $m \notin\{n-3, n-4\}$, appealing to Lemmas 2.7 and 2.9 we have

$$
\begin{aligned}
\operatorname{ex}\left(m+n-5 ; T_{n}\right)= & \frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\max \left\{0,\left[\frac{(m-4)(n-m)-3(n-1)}{2}\right]\right\} \\
= & \frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\max \left\{0,\left[\frac{(m-7)(n-m-3)-18}{2}\right]\right\} .
\end{aligned}
$$

Thus, if $(m-7)(n-m-3) \geqslant 18$, then

$$
\begin{aligned}
\operatorname{ex}(m+ & \left.n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}\right) \\
\leqslant & \frac{(m-2)(m+n-5)}{2}+\frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\frac{(m-7)(n-m-3)-18}{2} \\
= & \frac{(m+n-5)(m+n-7)}{2} \\
< & \binom{m+n-5}{2} .
\end{aligned}
$$

If $(m-7)(n-m-3)<18$, since $n>m+1+8 /(m-6)$ we see that $(m-6) n>$ $m^{2}-5 m+2,(m-4)(n-m+3)>2(m+n-5)$ and so

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}\right) \\
& \quad \leqslant \frac{(m-2+n-2)(m+n-5)-(m-4)(n-m+3)}{2}<\binom{m+n-5}{2}
\end{aligned}
$$

Hence, $r\left(G_{m}, T_{n}\right) \leqslant m+n-5$ by Lemma 2.1.
For $m=n-3$, using Lemma 2.8 we see that

$$
\begin{aligned}
\operatorname{ex}(m+n-5 ; & \left.G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}^{3}\right)=\operatorname{ex}\left(2 n-8 ; G_{n-3}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right) \\
& \leqslant \frac{(2 n-8)(n-5)}{2}+n^{2}-9 n+29+\max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& =2 n^{2}-18 n+49+\max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& <2 n^{2}-17 n+36=\binom{m+n-5}{2}
\end{aligned}
$$

For $m=n-4$, appealing to Lemma 2.8,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}^{3}\right)=\operatorname{ex}\left(2 n-9 ; G_{n-4}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right) \\
& \leqslant \frac{(2 n-9)(n-6)}{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&=2 n^{2}-20 n+51-\frac{n}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&<2 n^{2}-19 n+45=\binom{m+n-5}{2}
\end{aligned}
$$

Thus, $r\left(G_{m}, T_{n}^{3}\right) \leqslant m+n-5$ for $m=n-4, n-3$ by Lemma 2.1.
Now assume that $m-1 \mid n-5$. Then $m+n-6=k(m-1)$ for $k \in\{2,3, \ldots\}$. Since $\Delta\left(\overline{k K_{m-1}}\right)=n-5$ we see that $k K_{m-1}$ does not contain G_{m} as a subgraph and $\overline{k K_{m-1}}$ does not contain T_{n} as a subgraph. Hence $r\left(G_{m}, T_{n}\right)>k(m-1)=$ $m+n-6$ and so $r\left(G_{m}, T_{n}\right)=m+n-5$. The proof is now complete.

Theorem 4.4. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7, n>m+1+8 /(m-6)$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. If $2 \mid m(n-1)$, then $r\left(K_{1, m-1}, T_{n}\right)=m+n-5$.

Proof. By Euler's theorem or Lemma 2.4, $\operatorname{ex}\left(m+n-5 ; K_{1, m-1}\right) \leqslant \frac{1}{2}(m-2) \times$ $(m+n-5)$. Thus, applying Lemma 4.1 we obtain $r\left(K_{1, m-1}, T_{n}\right) \leqslant m+n-5$. Suppose that $2 \mid m(n-1)$. By Lemma 2.3,

$$
r\left(K_{1, m-1}, T_{n}\right) \geqslant m-1+n-4-\frac{1-(-1)^{(m-2)(n-5)}}{2}=m+n-5 .
$$

Thus the result follows.
Corollary 4.5. Let $n \in \mathbb{N}, n \geqslant 17$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Then $r\left(K_{1, n-3}, T_{n}\right)=$ $2 n-7$.

Proof. Taking $m=n-2$ in Theorem 4.4 gives the result.

Theorem 4.5. Let $m, n \in \mathbb{N}, m \geqslant 6, n \geqslant m+3$ and $2 \nmid m(n-1)$. Then

$$
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right)=r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right)=m+n-6
$$

Proof. Let G be a graph of order $m+n-6$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. That is, $\Delta(\bar{G}) \leqslant m-2$. Thus, $\delta(G)=m+n-7-\Delta(\bar{G}) \geqslant n-5$. If $\Delta(G)=n-5$, then G is a regular graph of order $m+n-6$ with degree $n-5$ and so $(m+n-6)(n-5)=2 e(G)$. Since $m+n-6$ and $n-5$ are odd, we get a contradiction. Thus, $\Delta(G) \geqslant n-4$. Assume that $v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G)=n-4+c, \Gamma\left(v_{0}\right)=$
$\left\{v_{1}, \ldots, v_{n-4+c}\right\}, V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, \ldots, u_{m-3-c}\right\}$. Since $\delta(G) \geqslant n-5$, we see that for $v_{i} \in \Gamma\left(v_{0}\right),\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+1+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n-5$ and so

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-1-(m-3-c)=n-m-3+c \geqslant c .
$$

For $u_{i} \in V_{1}^{\prime}$, we see that $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+\left|V_{1}^{\prime}\right|-1 \geqslant d\left(u_{i}\right) \geqslant n-5$ and so

$$
\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-(m-4-c)=n-m-1+c \geqslant 2+c .
$$

We first assume that $c=0$. Since $\left|V_{1}^{\prime}\right|=m-3 \geqslant 3$ and $\delta(G) \geqslant n-5$, we see that $\left|\Gamma\left(u_{i}\right) \cap\left\{v_{1}, \ldots, v_{n-4}\right\}\right| \geqslant n-5-(m-4)=n-m-1 \geqslant 2$ for $u_{i} \in V_{1}^{\prime}$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3)(n-m-1)$. Since $n \geqslant m+3$ we see that $(m-4) n \geqslant(m-4)(m+3)=$ $m^{2}-m-12>m^{2}-2 m-7$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3)(n-m-1)>n-4$. Therefore, $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant 2$ for some $i \in\{1,2, \ldots, n-4\}$. With no loss of generality, we may suppose that $u_{1} v_{i}, u_{2} v_{i}, u_{2} v_{j}, u_{3} v_{k} \in E(G)$, where v_{i}, v_{j}, v_{k} are distinct vertices in $\Gamma\left(v_{0}\right)$. Thus G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Next we assume that $\left|V_{1}^{\prime}\right|=m-3-c \geqslant 3$ and $c \geqslant 1$. Then $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant 3$ for $i=1,2,3$. Hence there are distinct vertices $v_{j}, v_{k}, v_{l} \in \Gamma\left(v_{0}\right)$ such that $u_{1} v_{j}, u_{2} v_{k}, u_{3} v_{l} \in E(G)$ and so G contains a copy of $T_{n}^{\prime \prime \prime}$. Since $d\left(v_{j}\right) \geqslant n-5>2, v_{j}$ is adjacent to some vertex w different from v_{0} and u_{1}. Hence, G contains a copy of $T_{n}^{\prime \prime}$.

Now assume that $\left|V_{1}^{\prime}\right|=2$. That is, $c=m-5$. Since $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant \delta(G)-1 \geqslant$ $n-6 \geqslant 3$ for $i=1,2$, and $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-m-3+c=n-8 \geqslant 1$ for $v_{i} \in \Gamma\left(v_{0}\right)$, it is easy to see that G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Suppose that $\left|V_{1}^{\prime}\right|=1$. Then $c=m-4 \geqslant 2, d\left(u_{1}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ and $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ for $i=1,2, \ldots, n-4+m-4$. Hence G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Finally we assume that $\left|V_{1}^{\prime}\right|=0$. That is, $c=m-3$. Since $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ for $i=1,2, \ldots, n-4+m-3$, it is easy to see that G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Suppose that $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$. By the above, G contains a copy of T_{n}. Hence $r\left(K_{1, m-1}, T_{n}\right) \leqslant m+n-6$. By Lemma 2.3, $r\left(K_{1, m-1}, T_{n}\right) \geqslant m-1+n-4-$ $\frac{1}{2}\left(1-(-1)^{(m-2)(n-5)}\right)=m+n-6$. Thus $r\left(K_{1, m-1}, T_{n}\right)=m+n-6$ as asserted.

Theorem 4.6. Let $n \in \mathbb{N}$ with $n \geqslant 15$. Then $r\left(K_{1, n-4}, T_{n}^{3}\right)=2 n-8$.
Proof. By Euler's theorem, $\operatorname{ex}\left(2 n-8 ; K_{1, n-4}\right) \leqslant \frac{1}{2}(n-5)(2 n-8)$. Thus, $r\left(K_{1, n-4}, T_{n}^{3}\right) \leqslant 2 n-8$ by taking $G_{m}=K_{1, n-4}$ in Lemma 4.1. If $2 \nmid n$, from Lemma 2.3 we have $r\left(K_{1, n-4}, T_{n}^{3}\right) \geqslant n-4+n-4=2 n-8$. Thus the result is true for odd n. Now assume that $2 \mid n$. Let G_{0} be the graph of order $2 n-9$ constructed
in Theorem 3.2. Then G_{0} does not contain T_{n}^{3} as a subgraph. As $\delta\left(G_{0}\right)=n-5$, we have $\Delta\left(\bar{G}_{0}\right)=2 n-10-(n-5)=n-5$ and so \bar{G}_{0} does not contain $K_{1, n-4}$ as a subgraph. Hence $r\left(K_{1, n-4}, T_{n}^{3}\right)>\left|V\left(G_{0}\right)\right|=2 n-9$ and so $r\left(K_{1, n-4}, T_{n}^{3}\right)=2 n-8$ as claimed.

Theorem 4.7. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then

$$
r\left(K_{1, n-2}, T_{n}^{3}\right)=r\left(K_{1, n-2}, T_{n}^{\prime \prime}\right)=r\left(K_{1, n-2}, T_{n}^{\prime \prime \prime}\right)=2 n-5 .
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(K_{1, n-2}\right)=n-2$ and $\Delta\left(T_{n}\right)=n-4$, we have $r\left(K_{1, n-2}, T_{n}\right) \geqslant 2(n-2)-1=2 n-5$ by Lemma 2.3 (ii). By Lemmas 2.4, 2.7 and 2.9,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-5 ; K_{1, n-2}\right) & =\left[\frac{(n-3)(2 n-5)}{2}\right]=n^{2}-6 n+8+\left[\frac{n-1}{2}\right] \\
\operatorname{ex}\left(2 n-5 ; T_{n}\right) & =\frac{(n-2)(2 n-5)-3(n-4)}{2}=n^{2}-6 n+11
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-5 ; K_{1, n-2}\right)+\operatorname{ex}\left(2 n-5 ; T_{n}\right) & =n^{2}-6 n+8+\left[\frac{n-1}{2}\right]+n^{2}-6 n+11 \\
& <2 n^{2}-11 n+15=\binom{2 n-5}{2}
\end{aligned}
$$

Now, applying Lemma 2.1 yields $r\left(K_{1, n-2}, T_{n}\right) \leqslant 2 n-5$ and so $r\left(K_{1, n-2}, T_{n}\right)=$ $2 n-5$, which proves the theorem.
5. FORMULAS FOR $r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right), r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)$ AND $r\left(T_{m}^{\prime}, T_{n}^{3}\right)$

Theorem 5.1. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7$ and $m-1 \mid n-5$. Suppose that $G_{m} \in\left\{P_{m}, T_{m}^{\prime}, T_{m}^{*}, T_{m}^{1}, T_{m}^{2}, T_{m}^{3}, T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $m \geqslant 10$ or $G_{m} \notin\left\{T_{m}^{3}, T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}\right\}$. Then $r\left(G_{m}, T_{n}\right)=m+n-5$.

Proof. Note that $m+n-5 \equiv 1(\bmod m-1)$. By (2.1) and Lemmas 2.5, 2.6, 2.10 and 2.11, ex $\left(m+n-5 ; G_{m}\right) \leqslant \frac{1}{2}(m-2)(m+n-5)$. Thus, applying Lemma 4.1 and the fact $n \geqslant m+4$ gives the result.

Theorem 5.2. Let $m, n \in \mathbb{N}, m \geqslant 9, n>m+2+\max \{0,(20-m) /(m-8)\}$ and $m-1 \nmid n-5$. Then

$$
r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{3}\right)=m+n-6
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{m}^{\prime}\right)=m-2<m-1$ and $\Delta\left(T_{n}\right)=$ $n-4>m-2$, we have $r\left(T_{m}^{\prime}, T_{n}\right) \geqslant m-2+n-4=m+n-6$ by Lemma 2.3 (ii)-(iii). Note that $m \geqslant 9$ and so $n \geqslant 15$. Since $n>m+2+(20-m) /(m-8)$, we see that $(m-8) n>m^{2}-7 m+4$ and so $(m-5)(n-m+4)>3(m+n-6)-(m-2)$.

Suppose that $T_{n} \neq T_{n}^{3}$ or $n \neq m+3$. From Lemmas 2.7 and 2.9, if $(m-5)(n-m+1) \geqslant 3(n-1)$, then

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}\right) \leqslant & \frac{(n-2)(m+n-6)-(m-5)(n-m+4)}{2} \\
& +\frac{(m-5)(n-m+1)-3(n-1)}{2}=\frac{(n-5)(m+n-6)}{2}
\end{aligned}
$$

if $(m-5)(n-m+1)<3(n-1)$, then

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}\right) & =\frac{(n-2)(m+n-6)-(m-5)(n-m+4)}{2} \\
& <\frac{(n-2)(m+n-6)-3(m+n-6)+m-2}{2} \\
& =\frac{(n-5)(m+n-6)+m-2}{2} .
\end{aligned}
$$

Recall that $m-1 \nmid n-5$. By Lemma 2.5, $\operatorname{ex}\left(m+n-6 ; T_{m}^{\prime}\right) \leqslant \frac{1}{2}((m-2)(m+n-6)-$ $(m-2))$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{\prime}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) \\
& \quad<\frac{(m-2)(m+n-6)-(m-2)}{2}+\frac{(n-5)(m+n-6)+m-2}{2}=\binom{m+n-6}{2} .
\end{aligned}
$$

Now applying Lemma 2.1 yields $r\left(T_{m}^{\prime}, T_{n}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{\prime}, T_{n}\right)=m+n-6$.
Now assume that $T_{n}=T_{n}^{3}$ and $n=m+3$. Then $\max \{0,(20-m) /(m-8)\}<1$ and so $m=n-3 \geqslant 15$. Also, $m+n-6=2 n-9=n-1+n-8=2 m-3=m-1+m-2$. From Lemma 2.9 (iii),

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

By Lemma 2.5, ex $\left(2 m-3 ; T_{m}^{\prime}\right)=\frac{1}{2}((m-2)(2 m-3)-(m-2))=(m-2)^{2}=(n-5)^{2}$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{\prime}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) \\
&=(n-5)^{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&=2 n^{2}-20 n+49+\max \left\{\left[\frac{n}{2}\right], 13\right\}<2 n^{2}-19 n+45=\binom{2 n-9}{2} .
\end{aligned}
$$

Applying Lemma 2.1 gives $r\left(T_{m}^{\prime}, T_{n}^{3}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{\prime}, T_{n}^{3}\right)=m+n-6$ for $n=m+3$. This completes the proof.

Theorem 5.3. Let $n \in \mathbb{N}$ with $n \geqslant 18$. Then

$$
r\left(T_{n-3}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n-3}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n-3}^{\prime}, T_{n}^{3}\right)=2 n-9
$$

Proof. Suppose that $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right)$. Since $\Delta\left(T_{n}\right)=n-4>n-5=$ $\Delta\left(T_{n-3}^{\prime}\right)$, from Lemma 2.3 (ii) we have $r\left(T_{n-3}^{\prime}, T_{n}\right) \geqslant 2(n-4)-1=2 n-9$. By Lemma 2.5, ex $\left(2 n-9 ; T_{n-3}^{\prime}\right)=\frac{1}{2}(n-5)(2 n-10)=n^{2}-10 n+25$. From Lemma 2.7 for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; T_{n}\right) & =\frac{(n-2)(2 n-9)-7(n-8)}{2}+\max \left\{0,\left[\frac{4(n-8)-3(n-1)}{2}\right]\right\} \\
& =n^{2}-10 n+37+\max \left\{0,\left[\frac{n-29}{2}\right]\right\}<n^{2}-9 n+20
\end{aligned}
$$

and so

$$
\operatorname{ex}\left(2 n-9 ; T_{n-3}^{\prime}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}\right)<n^{2}-10 n+25+n^{2}-9 n+20=\binom{2 n-9}{2}
$$

Now, applying Lemma 2.1 yields $r\left(T_{n-3}^{\prime}, T_{n}\right) \leqslant 2 n-9$ and so $r\left(T_{n-3}^{\prime}, T_{n}\right)=2 n-9$. On the other hand, from Lemma 2.8 we have

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}<n^{2}-9 n+20
$$

Thus,

$$
\operatorname{ex}\left(2 n-9 ; T_{n-3}^{\prime}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)<n^{2}-10 n+25+n^{2}-9 n+20=\binom{2 n-9}{2}
$$

Applying Lemma 2.1, $r\left(T_{n-3}^{\prime}, T_{n}^{3}\right) \leqslant 2 n-9$ and so $r\left(T_{n-3}^{\prime}, T_{n}^{3}\right)=2 n-9$, which completes the proof.

Theorem 5.4. Let $m, n \in \mathbb{N}$ with $n>m \geqslant 10$, and $T_{m} \in\left\{T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}, T_{m}^{3}\right\}$. Then

$$
r\left(T_{m}, T_{n}^{\prime}\right)=r\left(T_{m}, T_{n}^{*}\right)= \begin{cases}m+n-3 & \text { if } m-1 \mid n-3, \\ m+n-4 & \text { if } m-1 \nmid n-3 \text { and } n \geqslant(m-3)^{2}+2 .\end{cases}
$$

Proof. If $m-1 \mid n-3$, then $\operatorname{ex}\left(m+n-3 ; T_{m}\right)=\frac{1}{2}((m-2)(m+n-3)-(m-2))$ by Lemmas 2.7 and 2.9. Thus, the result follows from [9], Theorems 4.1 and 5.1.

Now assume that $m-1 \nmid n-3$. By Lemma 2.10, ex $\left(m+n-4 ; T_{m}\right)<\frac{1}{2}(m-2) \times$ ($m+n-4$). Applying [9], Theorems 4.4 and 5.4 deduces the result. The proof is now complete.
6. Evaluation of $r\left(T_{m}^{0}, T_{n}\right)$ with $T_{m}^{0} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$

Lemma 6.1 ([7], Theorem 8.3, pages 11-12). Let $a, b, n \in \mathbb{N}$. If a is coprime to b and $n \geqslant(a-1)(b-1)$, then there are two nonnegative integers x and y such that $n=a x+b y$.

Theorem 6.1. Let $m, n \in \mathbb{N}$ with $m \geqslant 9, n>m+1+12 /(m-8)$ and $m-1 \nmid n-5$. Suppose that $T_{m}^{0} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $T_{m}^{0} \neq T_{m}^{*}$ or $m \geqslant 11$. Then $r\left(T_{m}^{0}, T_{n}\right)=m+n-7$ or $m+n-6$. If $n \geqslant(m-3)^{2}+4$ or $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y, then $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$.

Proof. Note that $\Delta\left(T_{m}^{0}\right)=m-3<n-4=\Delta\left(T_{n}\right)$. Using Lemma 2.3 (ii)-(iii), $r\left(T_{m}^{0}, T_{n}\right) \geqslant m-3+n-4=m+n-7$. Since $m-1 \nmid n-5$, from Lemmas 2.6, 2.11 and 2.12 we have $\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right) \leqslant \frac{1}{2}((m-2)(m+n-6)-(m-2))$.

We first assume that $T_{n} \neq T_{n}^{3}$ or $n \neq m+2, m+3$. By the proof of Theorem 5.2, $\operatorname{ex}\left(m+n-6 ; T_{n}\right)<\frac{1}{2}((n-5)(m+n-6)+m-2)$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) \\
& \quad<\frac{(m-2)(m+n-6)-(m-2)}{2}+\frac{(n-5)(m+n-6)+m-2}{2}=\binom{m+n-6}{2} .
\end{aligned}
$$

Hence, $r\left(T_{m}^{0}, T_{n}\right) \leqslant m+n-6$ by Lemma 2.1 and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$ or $m+n-7$.

We next assume that $T_{n}=T_{n}^{3}$ and $n=m+2$. Then $m+n-6=2 n-8=n-1+n-7$, $m+2>m+1+12 /(m-8)$ and so $n-2=m>20$. By Lemma 2.9 (iv),

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right) \\
& =\frac{(n-2)(2 n-8)-6(n-7)}{2}+\max \left\{\left[\frac{n-37}{4}\right], 0\right\} \\
& =n^{2}-9 n+29+\max \left\{\left[\frac{n-37}{4}\right], 0\right\}<n^{2}-9 n+29+\frac{n-22}{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) & <\frac{(n-4)(2 n-9)}{2}+n^{2}-9 n+29+\frac{n-22}{2} \\
& =(n-4)(2 n-9)=\binom{2 n-8}{2}
\end{aligned}
$$

Hence $r\left(T_{m}^{0}, T_{n}^{3}\right) \leqslant m+n-6$ by Lemma 2.1 and so $r\left(T_{m}^{0}, T_{n}^{3}\right)=m+n-6$ or $m+n-7$.

Finally, we assume that $T_{n}=T_{n}^{3}$ and $n=m+3$. Then $m+n-6=2 n-9=$ $n-1+n-8, m+3>m+1+12 /(m-8)$ and so $n-3=m \geqslant 15$. From Lemma 2.9 (iii),

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=\frac{(n-2)(2 n-9)-7 n+30}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& =n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right) & =\operatorname{ex}\left(2 m-3 ; T_{m}^{0}\right) \leqslant \frac{(m-2)(2 m-3)-(m-2)}{2} \\
& =(m-2)^{2}=(n-5)^{2}
\end{aligned}
$$

We then obtain

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =(n-5)^{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& =2 n^{2}-20 n+49+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& <2 n^{2}-19 n+45=\binom{2 n-9}{2} .
\end{aligned}
$$

Applying Lemma 2.1 gives $r\left(T_{m}^{0}, T_{n}^{3}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{0}, T_{n}^{3}\right)=m+n-6$ or $m+n-7$ for $n=m+3$.

If $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y, setting $G=x K_{m-1} \cup y K_{m-2}$ we find that G does not contain any copies of T_{m}^{0}. Observe that $\Delta(\bar{G})=n-5$ or $n-6$. We see that \bar{G} does not contain any copies of T_{n}. Hence $r\left(T_{m}^{0}, T_{n}\right)>|V(G)|=m+n-7$ and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$. If $n \geqslant(m-3)^{2}+4$, then $m+n-7 \geqslant(m-2)(m-3)$. By Lemma 6.1, $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$ as claimed.

Summarizing the above proves the theorem.

References

[1] S. A. Burr, P. Erdös: Extremal Ramsey theory for graphs. Util. Math. 9 (1976), 247-258. Zbl MR
[2] G. Chartrand, L. Lesniak: Graphs and Digraphs. Wadsworth \& Brooks/Cole Mathematics Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, 1986.
[3] R. J. Faudree, R. H. Schelp: Path Ramsey numbers in multicolorings. J. Comb. Theory, Ser. B 19 (1975), 150-160.

Zbl MR doi
[4] J. W. Grossman, F. Harary, M. Klawe: Generalized Ramsey theory for graphs, X: Double stars. Discrete Math. 28 (1979), 247-254.
[5] Y. Guo, L. Volkmann: Tree-Ramsey numbers. Australas. J. Comb. 11 (1995), 169-175.
[6] F. Harary: Recent results on generalized Ramsey theory for graphs. Graph Theory and Applications. Lecture Notes in Mathematics 303. Springer, Berlin, 1972, pp. 125-138.
[7] L. K. Hua: Introduction to Number Theory. Springer, Berlin, 1982.
Zbl MR doi
[8] S. P. Radziszowski: Small Ramsey numbers. Electron. J. Comb. 2017 (2017), Article ID DS1, 104 pages.
[9] Z.-H. Sun: Ramsey numbers for trees. Bull. Aust. Math. Soc. 86 (2012), 164-176.
[10] Z.-H. Sun, Y.-Y. Tu: Turán's problem for trees T_{n} with maximal degree $n-4$. Available at https://arxiv.org/abs/1410.7282 (2014), 28 pages.
[11] Z.-H. Sun, L.-L. Wang: Turán's problem for trees. J. Comb. Number Theory 3 (2011), 51-69.
[12] Z.-H. Sun, L.-L. Wang, Y.-L. Wu: Turán's problem and Ramsey numbers for trees. Colloq. Math. 139 (2015), 273-298.

Author's address: Zhi-Hong Sun, School of Mathematics and Statistics, Huaiyin Normal University, 111 Changjiang West Road, Huaian, Jiangsu 223300, P. R. China, e-mail: zhsun@hytc.edu.cn.

