Czechoslovak Mathematical Journal

Ran Xiong; Haigang Zhou
Constructing modular forms from harmonic Maass Jacobi forms
Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 2, 455-473

Persistent URL: http://dml.cz/dmlcz/148915

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/148915
http://dml.cz

Czechoslovak Mathematical Journal, 71 (146) (2021), 455—473

CONSTRUCTING MODULAR FORMS FROM HARMONIC
MAASS JACOBI FORMS

RAN XIONG, HAIGANG ZHOU, Shanghai

Received September 24, 2019. Published online December 18, 2020.

Abstract. We construct a family of modular forms from harmonic Maass Jacobi forms
by considering their Taylor expansion and using the method of holomorphic projection. As
an application we present a certain type Hurwitz class relations which can be viewed as
a generalization of Mertens’ result in M. H. Mertens (2016).
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1. INTRODUCTION

Modular forms have played prominent roles in many mathematical and physical
fields. Constructing large amount of modular forms is important. In [4], Cohen got
a family of modular forms from two modular forms by the so called Rankin-Cohen
bracket. In [5], Eichler and Zagier constructed modular forms from Jacobi forms
by considering the Taylor expansion of Jacobi forms. In [9], Mertens constructed
modular forms from harmonic Maass forms by using the Rankin-Cohen bracket and
holomorphic projection. As applications Mertens gave new proofs for several class
number relations including both classical and relatively new ones, and similar results
for mock theta functions.

Recently the theory of harmonic Maass Jacobi forms has been extensively studied.
In this article we construct modular forms from harmonic Maass Jacobi forms by
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considering their Taylor expansion and using the method, see [9]. This can be viewed
as a generalization of the method of Eichler and Zagier, see [5].

Before we state the main result of this paper, we give some notations. For a com-
plex number t we write e(t) := e?™’. For the elements 7 = x + iy of the complex
upper half plane H and z of C, we set ¢ = e(7), ( = e(z), respectively. We put
' = SLy(Z). Also, for a positive integer N > 1, set the congruence groups

To(N) = {’yz {Z Z} er: CEOmodN},

b
I‘l(N):{'y {i d}ef:aZd:1modN,c=OmodN}.

For nonnegative integers a, b, introduce the homogenous polynomials pél;) (X,Y),
P,y(X,Y) as

|
%pgg (X,Y) = coefficients of t** in (1 — Xt + Yt?)7°
a)! (b—1)!
and
Poy(X,Y) = Z <‘7+b'_2)Xj(X—|—Y)aj2,
J
2

respectively.

With the above notations the main theorem of this article follows.

Theorem 1.1. Let ¢(7, z) be a harmonic Maass Jacobi form of weight k > 2 and
index m on I' whose Fourier expansion is

r = Y g+ (2 (g me

Y

3
r2<4mn k-~ 2 re’z
4am|r?
. 3 r2 —4dmn
+ Z (r? — 4mn)k*3/2f<§ -k, 771( - )y)c* (n,7)q"¢".
r2>4mn

Then for each nonnegative integer v, the function

) ( > ph Y mn)e(n, r>) q" + £3,(T) + fa (7)

n=0 ‘r2<4dmn
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is a modular form on I of weight k + 2v if k4 2v > 2 and a quasimodular form on T’
of weight 2 if k + 2v = 2, where f5,(7), f5,(T) are given by

-ty 3 (7))

— é
2 r€Z_ 0<ASY
4m|r
1
F(§5+ 2v — )\) |T|2(k+l/—3/2)60 (i7 7") q7«2/4m,7

k
I =nr(i-HY Y% (k” )(;>

n>0r2>4mn 0KASY
X (|r|2(_’/+1/2)Pk+2u,5/27k7)\(4mna r? — dmn)

2N ()2 R+A=3/2)

— 4mn) ¢ (n,7)q".

In particular, for weight k = 2, the function

2 v)!
Z Z pgfl)(r, mn)c(n,r)q"_Fw

V!
n20r2<4dmn

2
X ( Z 2|r|2"+1co<£—m,r) g Ay Z Z (Ir| = V/r2 = 4mn)2y+lc_ (n,r)q”)

rez n>07r2>4mn

am|r?
is a modular form on I" of weight 2 4+ 2v if v > 0 and a quasimodular form on I' of
weight 2 if v = 0.

The classical example of a harmonic Maass Jacobi form is E3 (7, 2), i.e., the non-
holomorphic Jacobi-Eisenstein series of weight 2 and index 1 which was constructed
by Choie in [3]. Applying the Hecke type V-operator on E3 (7, z) and using Theo-
rem 1.1 for the weight k& equal to 2 we obtain:

Theorem 1.2. For positive integers m, | and nonnegative integers s, v, the func-

tion

Z Z pzynmr Z aH(MnT;iQ_rQ)q”

n>07r=s mod I al|(n,m,r)
(ZV)! )\(m s,0) )\(m,—s,l) n
TS0 Z( sui1 (1) +A5,01 7 (n))g
" n>0

is a modular form (quasimodular form) of weight 2 4+ 2v for v > 0 (v = 0) on
To(1?) NT1(1) if 1 1 s and on T(I1?) otherwise. Here H(n) denotes the Hurwitz class
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number for nonnegative integer n = 0,3 mod 4,

>‘(2T+tll)( ) = Z o ((m, n,h+ %)) min{h, %}H_QV

h|mn
h+mn/h=t mod [

with (-,-,) being the largest common divisor of integers in the parentheses.

Remark 1.3. In [9] Mertens showed that

Z Z pQV n,r)H(4n — r?)q™ + Z a(n)q"™

n>0r=s mod I nz0

are modular forms or quasimodular forms with a(n) behaving like sums of smaller
divisors, see [9], Proposition 7.2. Theorem 1.2 generalizes Mertens’ result and, for
the case m = 1, one can see it simplifies the related result of Mertens.

The outline of this article is as follows: In Section 2 we give a brief account of
some basic facts about harmonic Maass forms, harmonic Maass Jacobi forms, and
the holomorphic projection which is the key to prove the related results in [8]. After
this we prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

2. PRELIMINARIES

2.1. Harmonic Maass forms and harmonic Maass Jacobi forms. Harmonic
Maass forms and harmonic Maass Jacobi forms have vast applications in many
fields of mathematics and physics such as the partition theory, the theory of Lie-
superalgebras, and the quantum black holes to name a few. In this subsection, we
briefly review some basic facts about harmonic Maass forms and harmonic Maass
Jacobi forms. Readers are referred to [1] for background materials.

Definition 2.1. Let k € %Z and N be a positive integer. If k € % + Z then we
assume that 4 | N. A smooth function f: H — C is called a harmonic weak Maass
form of weight k, level N if it has the following properties:

b
(1) (fley)(T) = f(7) for all v = [a ] € T'o(N). The weight k slash operator is
c

d
defined as
(c¢+d)*kf<m+b) ifkez,
(Fln)(r) = erHd

(eatverTa) 1 (TN wket+z

ct+d
458



Here (c/d) is the Legendre symbol, /7 is the principal branch of the holomorphic

square root, and
1 ifd=1mod4,
Ed =

1 if d =3 mod 4.
(2) Agf =0, where Ay, is the k-hyperbolic Laplacian

Ay = (1 —7)20= + k(T — 7) 0.

(3) f grows at most linearly exponentially approaching the cusps of I'g(V).

The vector space of harmonic weak Maass forms of weight k, level IV is denoted
by Hi(N). By [1], Lemma 4.3, every f of Hy(N) has the Fourier expansion

+ n (4ny)1ik - - - k—1 -n
f(r) = E cr(n)g" + o1 Y (0) + E ¢y (n)n"I'(1 =k, dnny)q ™",
n>>>—oo n=1

where I'(a; x) := fxoo t*~le~t dt is the incomplete gamma function.

In [2] Bringmann and Richter defined harmonic Maass Jacobi forms. Let TV =
I' x 72 be the Jacobi group, i.e., the semi-direct product of I and Z? with the group
law

(A1, X1)(A2, X2) = (A1 42, X142 + X2).
For fixed integers k and m, define the Jacobi-slash operator of weight k, index m as

—me(z + A1 + p)?
et +d

(21) (PlhmA)(T,2) = (7 +d) e ( +mAT 4 2mAz) (7, 2)

b
with A = ({a d} ,(A,u)) € I'/. Let T'/(R) be the real Jacobi group. One can
c

extend (2.1) to an action of I'/(R) on C*(H x C). The center of the universal
enveloping algebra of I'/(R) is generated by a linear element and a cubic element
which is called Casimir element. The action of the Casimir element under |}'§m is
given by the operator

T—T k(T —7)

km . _=\29 _ _ _ _ =\A_ -~ _
CP™i= =2(r=7)07 — 2k — 1)(t —T)07 + Tam Oz + A 0.z
T=DE=2) o N Sa (1 BV (23O
+ e O0rz —2(1—=T)(2 —2)0;z + (1 — k)(2—2)0z
(r=7), (z2=2?2 k(r=-7)\, ,(T-7-2),
+ 4mim Orzz + ( 2 * 4mim )azzz + 4nim Ozzz.

Definition 2.2. Let k € Z and m be a positive integer. A function p: HxC — C
is called a harmonic Maass-Jacobi form of weight k and index m on I if ¢ is real-
analytic in 7 € H and z € C satisfies the following conditions:
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(1) For all A €T, ¢|p.mA= .
(2) We have that C*™ () = 0.
(3) We have ¢(1,2) = O(e“yeQ"m”z/y) for some a > 0, where y, u are the imaginary

parts of 7, z, respectively.

Let jkw,(f‘) denote the space of harmonic Maass-Jacobi forms of weight k£ and
index m on I' which are holomorphic in z. From the fact that it is annihilated by the
Casimir operator and the growth condition, one can see that, for ¢(7,2) € ﬁk,m(I‘),
© has the Fourier expansion

n r 1 m\k=3/2 0 7"2 r?/4m ~r
D) prn= S () X ()t
r2—4mn< oo 2 4m|r2

3 n(r? — 4mn)y>qncr

+ Z ¢ (n,r)(r? — 4mn)k_3/2f(§ —k,

r2—4mn>0

If the Fourier expansion of (2.2) is only over 72 < 4mn and the non-holomorphic part
vanishes then (7, z) is a holomorphic Jacobi form of weight k& and index m on T" as

in [5].

Let o(1,2) = > eln,r,y)¢"¢" € ]kJ(I‘). By [5], page 58, (7, z) has the theta
expansion wr

p(r,2) = > hu(r)b1u(7, 2),
u mod 2
where
2
Hl,u(Tvz) = Z qr /4(7’
rel
r=u mod 2
and N )
hu(r) = 30 CulN,y)g™* with Cu(N) 1= o Tu ).
N

By [5], Theorem 5.4, the function h(7) := > h,(47) transforms like a modular

u mod 2

form of weight k — & on T'(4).
For (7, z) € Ji,1(I") with the Fourier expansion (2.2), the function

y)3/2—F
(2.3) hry = 3 (C*(N)qNJr%CO(O)
N>—oc0 2

+ N’f—3/20—(N)r(g — 4nNy)q_N)

is a harmonic Maass form of weight k& — 3 on I'g(4) where CE(N) = C*(r,n) with
r2 7 4n = N. For more relations between the harmonic Maass forms and harmonic
Maass Jacobi forms, see [2].
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2.2. Differential operators for modular forms and Jacobi forms. The
derivative of a modular form is not a modular form. In [4], Cohen constructed
a family of modular forms from two modular forms by using a certain type differential
operator which is called the Cohen bracket. In the spirit of Cohen’s idea, Eichler and
Zagier got a series of modular forms from the Jacobi forms by using the Taylor
development operator in [5]. Here we introduce these differential operators.

Definition 2.3. Let f, g be smooth functions defined on the complex upper half
plane. Then for nonnegative integers k, [, v, we define the vth Rankin-Cohen bracket

of f and g as
k -1\ /I -1
[f,gl, = Z (_1)u< +v ) ( +v )D(M)JfD(vu)g7
v—p u
0<p<v
where D := (1/2ri)#d*/dr*, and for n,m € 17,

ny\ P(n+1)
m)  T(m+1)(n—m+1)
It is well known that if f, g are smooth functions transforming like modular forms
of weights k and [ on a congruence subgroup, respectively, then for each nonnegative

integer v, the function [f, g], satisfies the weight k 4 [ 4+ 2v modularity on the same
group.
Definition 2.4. Let (7, z) be a smooth function transforming like a Jacobi

form of weight k£ and index m. For each nonnegative integer v, define the (2v)th
Taylor development operator Ds, on (7, z) by

Pud)) = iy gy X T 0 ),
o<usy

where for any nonnegative integer t, x:(7) = 1/t! (0'¢/dz")(7,0).

In [5] Eichler and Zagier proved:

Theorem 2.5 ([5], Theorem 3.1). Let o(7,2) = Y, ¢(n,r)¢"¢" be a holomor-

r2<4mn

phic Jacobi form of weight k and index m on I". Then

(Davip)(T Z( Sl rmn)c(n,r)>q”

n=0 ‘r2<4dmn
is a modular form of weight k + 2v on T'.
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Remark 2.6. For a smooth function ¢(7,z) with respect to 7 satisfying the
transformation law of the Jacobi form of weight & and index m on some congruence
subgroup, the function (D2,¢)(7) transforms under the same congruence subgroup
like a modular form of weight k+ 2v. The Fourier coefficients of its holomorphic part
are still as in Theorem 2.5. We discuss the Fourier expansion of its non-holomorphic
part in Proposition 3.1.

Let h(7) be as in (2.3) and let 0(7) := > ¢"" be the usual theta function. For
rel
each nonnegative integer v, the function [h, 6], (7) satisfies the weight k + 2v mod-

ularity for T'o(4m). In addition, if ¢(7,2) € \ﬂ/k:(f‘), then by [5], Theorem 5.5
we have ([h,0],|U(4))(7) = v!(Dayp)(7), where the U(N) operator is defined as
>, c(n,y)g" [UN) := > e(Nn,y/N)gq"

ne’z ne’z

2.3. Holomorphic projection. The holomorphic projection operator was in-
troduced by Sturm in [10] and further developed by Gross and Zagier in [6]. In [7],
Imamoglu-Raum-Richter extend this to the vector-valued modular form case. Apply-
ing this operator they found simple recursions for the Fourier coefficients of Ramanu-
jan’s mock theta functions. Motivated by Imamoglu-Raum-Richter, in [9] Mertens
proved the Eichler-Selberg type relations for all harmonic Maass forms of weight %
Here we introduce the holomorphic projection briefly.

Definition 2.7. Let G be a congruence subgroup, 1 := i00, ..., k., the cusps
of G and vjk; = ico, where 7; € I for 1 < j < m. A smooth function f =

> ag(n,y)q" transforms like a modular form of weight k£ > 2 on G such that for
ne’z
some positive integers 6, ¢,

(1) f('yj*lw)(dT/dw)k/2 = céj) +O(S(w) ) forall 1 <j<mandw= VT
(2) ap(n,y) = O(y'*¢) as y — 0 for all n > 0.
Then we define the holomorphic projection of f by

k 1 e’}
(ot f)(7) i= (e )7 —c0”+2(4m -/ af<n,y>e—4wy’f—2dy)q"

Proposition 2.8 ([7], Theorem 3.3). Let f: H — C be as in Definition 2.7.
(1) If f is holomorphic, then mho f = f.
(2) We have that w1 f is a modular form of weight k on G if k > 2 and w1 f is
a quasimodular form of weight 2 on G.
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3. CONSTRUCTING MODULAR FORMS FROM HARMONIC MAASS JACOBI FORMS
First we will study a harmonic Maass

In this section we prove Theorem 1.1
Jacobi form under the Taylor development operator. In the calculations we quote

some related results of [9]. Readers can find further details in [8] or [9]

Proposition 3.1. Let ¢(7,z) € ﬁk7m,(F) whose Fourier expansion is
2
r
, 7,) qr2/4mCr

: (%)k_g/z > (4

Pz = 3 e+
r2<4dmn 2 4m|r2
Py P 4mn)k—3/2p(_ ik M)C— (n, 1) ¢
) 2 ’ m ’ '
r2>4mn
Then for each nonnegative integer v, the function
)i+ F )+ Fiu (o)

Z( S oV mn)et (n,r

DQI/()O
n20 “r2<4mn
transforms like a modular form of weight k 4+ 2v on I', where
0 v 0 ﬁ k+v—3 1/—% Ty 3/2—k—AX v2 /4m,
) =3 ;C(m’r)( v—A V)G T
4am|r?
I —k) k+v—3\/v—1
W= XY o XS (00)
n>>>—o0 r2>4mn 0<ALy F(i_k_A) v=A A
_ n(r? — 4mn)y
2(v—2X\) (TQ _ 4mn)k+)\ 3/2F( — k- ) n
m

Proof. For ¢(7,z2) € Jn m(T"), whose Fourier expansion is as in Proposition 3.1

we have
(31) (DT Z( > ph ”rmn>c+<n,r>)q"+F§V<r>+F2;<T>,
n=20 “r2<dmn
where
1 m k—3/2 r2 5
0 _ 0 r</4m ~r
FQMD?”(;C_%(;) > @ (gr)a )
re’l.
dm|r
2

- (k %)(k—l—V—Z) rel
4m|r
(=m)M(k + 20 = p = D! 5y ) ((3/2-k 0 r?/4m
- pl (20 — 2p1) 7Y ( (4m T) )



and

Fy (1) = DQV( Z (7“2 — 4mn)k73/2F(g —k, M)Cf (n,r)qngr>

r2>4mn m
_ (2v)! 9 K32
~ i+ —2) 22 (r® = dmn)™=* e (n, 7)
r2>4mn
“ 2 —p—2)!
% Z k?2+ V2 )
o<pu<y v —2p)!

(13-4 A2 )

We calculate the Fourier expansion of the non-holomorphic part. Applying the
Leibniz law and [8], Lemmas V.1.4, V.1.6, we get

(w)(,,3/2—k r2%/4m
(3.2) D™ (y q )

= Z (i) % (_4%[))\(%)H_/\y‘gﬂikf)‘qﬂ/‘im

0<ALp 2
and
3 24
(3.3) D (I‘(§ — k, w)qn)
m
2
— pw (F(§ k. 4x (r” — 4mn)y)qf(r274mn)/4m+r2/4m)
2 ’ 4m
2
— Z H D()\) (F(§ — ko 4x (’I“ - 4mn)y)q—(r2—4mn)/4m)D(u—)\)qrz/4m
A 2 ’ 4m
0<ASp

o F(g CEoa n(r? — 4mn)y)

m

7T27mn m r2 MiA 7’2 m
S e

e ——
x F(g kA W)q".
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Inserting (3.2) and (3.3) into (3.1), we obtain

(3.4)

Fy, (1) =

(2v)! m k—3/2 o 2 -
(k+v—2)(k— %) (?) Z r2( u)co(m,r)qr /4m

re’
4m|r?
y Z ik +2v —p—2)!
I(2v — 2@)

oy

) 0<§)\:<u ( >_7kk)>\) (_%ﬂ))(%)u_/\fﬂ—k—x

_ (2v)! i) 0 2 e
T htv-2)(k-2) o c(4m,7~)q

TEZ
Mn%z
Nk (k420 — p—2)!
X Z _-
O<1L<V( 4) ‘LL' (2V—2,LL)'
H F(é—k) Y 3/2—k—\
< 2 e Wy ()
0<ASH 2
(2u)! 3 Co(r_ T)qr2/4m
ool &
MnVQ
% Z F(Q —k) (n_y)B/Q k—\ YO
5
ogxgur(i_k_/\) m

(=) /1 I\# (k420 — pu—2)!
> <__) (= N)!(2v — 2p)!

2v)! B .
_m Yoo D ()

T n>—00 r2>4mn

« 3 (_m)“(k+2V—u—2)!<@)u

o<ty u!(Zl/ B 2M)! y
AT/ 3
x Z (i) (_13) LG —F) 2= 2= (2 g
0<A<n FG-k=%
3 n(r? — 4mn)y
X F<§ - k - A7 m )
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INt (b + 20— p—2)!
- I<:+1/— Z Z Z (_Z) u! (2v — 2u)!

">> 00 r2>4mn o<y
AT k k+A—3/2
X Z ( )# (7,2 _ 4mn) 7’2("7)‘)
0<ALp 5k /\)
2
—4
x r@ Y w)
m
TDIND MRS G-k
_ T
k + v : n>>—00 r2>4mn oAy F(Q k >\)
2 _
x(rQ—whnnﬁ***w%gwf”P<g-_k__Afdr 4nnny)
m

(=1 1y# (k+ 20— — 2)!
X)\;;KV Y (-3) (=N 20 —2p)l"

We assert that

—1)*(2v)! H v—p—2)! v—3\[(v-1
o9 S5, 2 () 5 () (0)

A<y

To show that the identity holds we use the relation between the Taylor develop-
ment operator and the Rankin-Cohen bracket. For ¢(7,2) € Ji1(T'), FS, (1), F5, ()

become

(2v
(3.7) FQOV(T)_(k—i—l/—Q' Py ;c 2, 2r)q

> %wyﬁﬂ“@rﬂ”)

(D> I+ (B+ 20— p—2)!
Z Al (_Z) (n— M2 —2p)!

(38) Fyy(7) = ,HV_Q Z > o

n>>—00 r2>4n

—k) . b
% Z 2 k )\)( r? — 4mn)k+> 3/2,2(v=X)
0<A<u

xr(§—k 3, 20 _nfm”)y)

" Z ( _) ((k:+2u— pw—2)!

N w—M!(2v —2u)l

respectively.
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Let h(7) be as stated in (2.3). By [8], Lemmas V.1.4, V.1.6, the non-holomorphic
part of [h, 0], (7) is given by HO(7) + H, (1), where

0,y 43k 3/2—k—X,2(v—=A) A0 () 72
HY(r) = g ()N 00y
T2 rel
XA
vy (5—k=X) v—A A
and
_ _ n k+v—3\[v-4%
mo= ¥ S oe-ar 3 (TR0
n>>—00 r2>4n oAy
PG -k 50 - 3
X WTQ( )\)(TQ—TL)kJr)\ 3/2 XF(§ —k—)\,4ﬂ(7"2 —n)y)

We have that

(39 (HlU@W)(7) = —5 S )2 4@ N 0)”
2 rez
(2 —k) k+v—3\(v-1
g F(%—k—mg@( v >< A )
and
L3\ [y _ 1
CSURUAEDICESD DD DR GETOILD D G | ()
n>>—00 r2>4n oAy
« F(I;(%;ﬁ)A) TQ(V—A) (7,2 _ 4n))\+1/2

X I‘(—% -\ n(r? — 4n)y)

Note that C°(0) = °(r?,2r), C~(r* — 4n) = ¢~ (n,r) for any r € Z.

Since v!([h,0], | U(4))(7) = (Da,p)(7), we have that FY (1) = (Ho | U(4))(7),
F;,(r) = (H- | U(4))(r). Combining the Fourier coefficients of (3.7) and (3.9),
(3.8), (3.10), respectively, we get the proposed identity.

Inserting (3.6) into (3.4) and (3.5), we complete the proof of Proposition 3.1. O

Proof of Theorem 1.1. We calculate

F2,(7) = (Mot F ) (1), f3,(7) = (ot Fay, ) (7)-
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We have that
fo, (1) = (Mol Fy, ) (7 _ § Z ( ) e
2 rez
4m|r
T(3—k) (k+v—3\(v—=2\/m\32F2 5,
<2 T A)( )T
(4ﬂr2/4m)k+2u71 /00 7m7“2y/my3/27k7)‘yk+2u 2dy
(k+2v—2)! 0
V! 0 r? r2/4m
_ c\—T)q
(k+2v—2)!(k—32) ; (4m )
am|r?
A m

oAy
& 2
« / e T y/my2uf)\71/2 dy,
0

N

fa(7) = (i P, ) (7
n>>—00 r2>4mn
= k) k+v— % vV — 1 2(v—N) (.2 k
v— —4 +X—=3/2
Xg;u __k A)( v )( \ ) (2 — 4mn)
y (4nn)k+2ufl /00 1’\(§ ko (7“2 — 4mn)y)ef4mnyyk+21/72 dy
(k4 2v — 2)! 2 ’ m '

By [8], Lemmas V.1.4, V.1.7 we have that
2w—A+1/2 1
mn ) F(Ql/ -+ 5)

= 2 2U—A—1/2
/ e T y/my v—XA—1/ dy — ( >
0 r

and
oo 2 o 4
/ I‘<§ — k- ( mmn)y)ef4nnyyk+2yf2 dy
0
= /Oo F(§ — k= 4TE(TQ_¢71)?J)e—47*(7“2/4m—(7"2—4mn)/4m)yyk-|-2u—2 dy
0 2 ’ 4dm
_ (4ﬂ)1_k_2y( —4mn)3/2fHF(g —k=A)(k+2v—2)!
- dm Ft2v—2
y (( 2 ))\72u+1/2 ( r2 — 4mn) (7“2 _ 4mn)k+>\*3/2)
im k+20,5/2—k—=X (T am i
_ 1—k—2v/, 2 39 kL5 —k=XN(k+2v—2)
= — (4n) (r* —4mn) / o
X (r2()\72y+1/2)Pk+2u,5/2—k—,\(n77"2 B 4mn) . (r2 i 4mn)k+)\73/2).
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Inserting this into the expression of f9 (7) f,,(T) we prove the first statement of
Theorem 1.1. The statement for & = 2 of Theorem 1.1 follows from the identities,
see [8], Lemma V.2.6, (ii) and Proposition V.2.7

(O et

|
(2v)! v :

20 (3)

and

Z 1/—|—% l/—%
v—A A
0<ALY

X (r2(7”+1/2)P2+2,,71/2_,\(4mn, r? — dmn) — r2(v=2) (r2 — 4mn))‘+1/2)

=27 (2:) (Ir| = V72— 4mn)2y+1.

Now we have completed the proof of Theorem 1.1. O

4. AN APPLICATION IN CLASS NUMBER RELATIONS

In this section we prove Theorem 1.2 by applying Theorem 1.1. To prove Theo-
rem 1.2 we need the following lemma.

Lemma 4.1. Let o(7,2) = > c(n,r,y)q"¢" € jk,m(I‘). For s € Z, define the Sl{s

n,r

(el STz =3 > ecnry'

n r=s mod !

operator as

Then (D2, (¢ | Sl‘]g))(T) satisfies the modular transformation law of weight k 4 2v on
the group I'g(12) if | | s and on T'g(I1?) N T'1(l) otherwise.

Proof. Let o(1,2) = > c(n,r,y)q"¢" € jkm(F) We have that

n,r

(o157 =1 3 e(=F) S etnrme(T)ae

t mod [ n,r
RPEC )
t mod [
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We assert that (¢ | Sl{s)(T, z) satisfies the same Jacobi transformation law but on

b
the group I'o(1%) N T (1), since for each [a ] eTo(I>)NT1(l) and t € 7,
c

d

ar+b  z t\ _ rat+b z+tlcr+d)/l
¢(07+d707+d+7)_ (CT—i—d’ cr+d )

e (P tr 1
(

el ) () 2] o )

f(m'—l—d) (gjfd) (T,Z+§),

where the last identity follows from the fact that d = 1 mod . In particular, if s | {

then . ,
(e1Sl)ma =7 3 e(rzty).

t mod [

CT—|—dk6

One finds for {a Z} € Io(1?) that
c

2

el G5 elreT)
mod [ t mod [
2

—e(crjc_fd)“%;“go(T,z-i—;).

Therefore (¢ | S/,)(r,z) satisfies the same Jacobi transformation law on I'o(l?)

for s|{. Now Lemma 4.1 follows from Theorem 2.5. g

Proof of Theorem 1.2. By [3], we know that

B3 (7,2) = ZZHZLn—r )" ¢+ Zq <
n=20reZ
Z Z v r? 4nI‘< n(r? — 4n)y )q”{r

n>0 r2—4n is O*

transforms like a Jacobi form of weight 2 and index 1, where [1* means the positive
square. Moreover, one can see that E3 (7,2) lies in the kernel of C%! by observing
the Fourier expansion of its non-holomorphic part. Thus £ (7, 2) € Ja1(I).

Let V,,, be the operator defined by

(30|271Vm)(7',z) —-m Z (c7’—|—d)2e(_ mez2 )w(aT + b7 mz )

ct+d ct+d er+d
(24 ]erana

ad—bc=m

470



It is well-known that (p|2,1Vin)(7, 2) satisfies the Jacobi transformation law of
weight 2 and index m, see [5], Theorem 4.1. By [5], Theorem 4.2 one calculates that

Eo (75 2) 7= (E5 1|21 Vi) (7, 2)

=22 > aH(W;%rQ)q"gr—f— 4‘]{242 UO((m7£,r))qT2/4mcr

n=0reZ al(n,m,r) |2

\/_Z Z oo((m,n,r))Vr 4mnI‘< 1 %)qnd.

n>0r2—4mn is O*

Thus 3 ,,(7,2) € jgm(F). Therefore, by Lemma 4.1, the function

[ S S S (M)ngr

n>0r=s mod [ a|(m,n,r)

+4\7T/\7_ Z Uo((m,%,r))qrzmmgr

=s mod [
2

dm|r

4\/_ > ool(myn,r)Vr?—4mn

n>20 r=smodl
r—4mn is O

(-} Aty

satisfies the 2 + 2v weight modular transform law on the group I'¢({?) if / | s and on
T'o(1?) NT1(1) otherwise. Applying Theorem 1.1 one has

2

(Mt ) = Y Y s ) Y e (TR

n>0r=s mod [ al(n,m,r)

2-2(14%) (2))! r L ougq o2
-\ o - v r*/4m
2 aol(mggr) )5

r=s mod !

4m|r?
2v)! 7| —Vr? —dmny\ 2+l
ZV!) Z Z 0—0((mvnar))<| | 9 ) q

n>0 r=smodl
r?—4mn is O*

2

—Z Z pQVnmr Z aH(Zm;iQ_r)q”

n>0r=s mod al(m,n,r)

RS Y altmmm) (1 2o

n20 r=s modl
r—4mn is O

" (|r| —\/r2—4mn)2u+1 n
q,
2
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where [1 means square and d1 ,2—4y,,, equals 1 if r?2 = 4mn and 0 otherwise.
Fixing m, n, we have the 1-1 correspondence from the following one set to the
other,

{h|mn: h2Smn,h—l—%zismodl}—%{rzsmodl: r? —4mnis O}:

h — i(h—k%).

Replacing r by h + mn/h, we obtain

.2
(Do B N =Y Y o) Y a (TR
n>07r=s mod al(n,m,r)
(2v)! mn ) mn ) 1+2v
S (e ) )

h+mn/h=s mod I

(ZV)' mn . mn Y 1+2v
+ Z Z 00((m,n,h+—>>mm{h,—} q".
|
2v! = N h h
h+mn/h=—s mod [

This completes the proof of Theorem 1.2. O
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