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Abstract. We introduce Engel elements in a BCI-algebra by using left and right normed
commutators, and some properties of these elements are studied. The notion of n-Engel
BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and
we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In
particular, we prove that any nilpotent BCI-algebra of type 2 is an Engel BCI-algebra, but
solvable BCI-algebras are not Engel, generally. Also, it is proved that 1-Engel BCI-algebras
are exactly the commutative BCI-algebras.
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1. Introduction and preliminaries

BCK-algebras and BCI-algebras are two important classes of logical algebras in-

troduced by Iséki in 1966 which have been extensively investigated by several re-

searchers (see [6]). From then, mathematicians have studied and developed many

concepts in these algebraic structures. For instance, Lei and Xi showed that each

p-semisimple BCI-algebra can be converted into an abelian group and, conversely,

that each abelian group can be converted into a BCI-algebra (see [8]). Some proper-

ties of these structures were presented in [3], [5], [7], [8]. The first author introduced

pseudo-commutator of two elements in a BCK-algebra (see [9]). After that, the

present authors used this notion to define a solvable BCK-algebra and considered

solvable BCK-algebras using commutators (see [10]). Then we gave a new defini-

tion for solvability, nilpotency, centralizer and pseudo-center in a BCI-algebra and

considered their properties (see [11], [12], [13]).
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In this paper, we present a definition for the notion of Engel element in BCI-

algebras based on commutators. We define also the notion of Engel set of a subset

of a BCI-algebra, give several characterizations of it, and prove that the class of

commutative BCI-algebras and 1-Engel BCI-algebras are equal. We also illustrate

these notions by some examples. One of the most important concepts in the study

of groups is the notion of nilpotency. Engel groups are certain generalized nilpotent

groups that have received considerable attention in recent years (see [6], [7]). It

is known that there exists a one-to-one correspondence between each p-semisimple

BCI-algebra and an abelian group (see [9]). Since a group is 1-Engel if and only

if it is abelian (see [7]), p-semisimple BCI-algebras have connections with 1-Engel

groups. This is one of the main motivations for defining the Engel BCI-algebras.

However, it is shown in group theory that the inverse of a right Engel element is left

one. But it is still an open problem whether every right Engel element of a group

is a left Engel element (see [1], [2]). We show that the answer to this question in

BCI-algebras is negative. Due to the close relationship between p-semisimple BCI-

algebras and abelian groups, perhaps this will be an incentive for finding a negative

answer to this question in group theory. We use the notion of Engel BCI-algebra to

develop other new concepts such as solvability and nilpotency of type 2, in BCK-

and BCI-algebras, and to discuss further properties of these concepts. We can also

investigate the variety and some subvarieties of this specific type of BCI-algebras.

By a BCI-algebra, we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the fol-

lowing axioms for all x, y, z ∈ X (see [5], [7], [6]):

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCI2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCI3) x ∗ x = 0,

(BCI4) x ∗ y = y ∗ x = 0 implies x = y.

Recall that given a BCI-algebra X , the BCI-ordering 6 on X is defined by x 6 y if

and only if x ∗ y = 0 for any x, y ∈ X . If in a BCI-algebra (X, ∗, 0) the condition

0 ∗ x = 0 for all x ∈ X holds, then it is a BCK-algebra. A BCI-algebra X has the

following properties for all x, y, z ∈ X :

(BCI5) x ∗ 0 = x,

(BCI6) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(BCI7) x 6 y implies x ∗ z 6 y ∗ z and z ∗ y 6 z ∗ x,

(BCI8) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

(BCI9) x ∗ (x ∗ (x ∗ y)) = x ∗ y.

An element x ∈ X is called positive if 0 6 x, i.e. 0 ∗ x = 0. The set of all positive

elements of X is said to be the BCK-part of X . We say that an element x of X

is minimal if y 6 x (i.e. y ∗ x = 0) implies x = y for any y ∈ X . The set of all
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minimal elements of X is said to be the p-semisimple part of X . An element x is

called maximal if x 6 y implies x = y, for any y ∈ X . If there exists n ∈ N such

that 0 ∗ xn = 0, then x is called nilpotent, where 0 ∗ xn = (. . . ((0 ∗ x) ∗ x) ∗ . . .) ∗ x

and x occurs n times. An ideal I of X is a subset of X such that

(i) 0 ∈ I,

(ii) x, y ∗ x ∈ I imply y ∈ I for any x, y ∈ X .

A subalgebra Y of X is a nonempty subset of X such that Y is closed under

the BCI-operation ∗ on X . If Y is both an ideal and a subalgebra of X , we call

it a closed ideal of X . If I is an ideal of a BCI-algebra X , then the relation θ

defined by (x, y) ∈ θ if and only if x ∗ y ∈ I and y ∗ x ∈ I is a congruence relation

on X . We usually write Cx for {y ∈ X : (x, y) ∈ θ}. Moreover, C0 = I is a closed

ideal. Assume that X/I = {Cx : x ∈ X}. Then (X/I, ∗, C0) is a BCI-algebra,

where Cx ∗ Cy = Cx∗y for all x, y ∈ X . Also Cx 6 Cy if and only if x 6 y. Let

(X, ∗, 0) and (Y, ·, 0) be two BCI-algebras. Then a map f : X −→ Y is called a

homomorphism if f(x ∗ y) = f(x) · f(y) for all x, y ∈ X . A BCI-algebra X is called a

commutative BCI-algebra if x 6 y implies x = x∧y, where x∧y = y ∗ (y ∗x). In any

commutative BCI-algebra X , for all x, y ∈ X we have (y ∧ x) ∗ (x ∧ y) = 0 ∗ (x ∗ y).

A BCI-algebra X is called associative if x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ X .

A BCI-algebra X is called p-semisimple if 0 ∗ (0 ∗ x) = x for all x ∈ X . In any

p-semisimple BCI-algebra X , the following statements hold for all x, y ∈ X (see [5]):

(PSBCI1) x ∗ (0 ∗ y) = y ∗ (0 ∗ x),

(PSBCI2) 0 ∗ (y ∗ x) = x ∗ y,

(PSBCI3) x ∗ (x ∗ y) = y.

From now on, (X, ∗, 0) or simply X is a BCI-algebra, unless otherwise specified.

Definition 1.1 ([11]). (i) Let x1, x2, . . . , xn be elements of X . Then the element

((x1∧x2)∗ (x2∧x1))∗ (0∗ (x1 ∗x2)) of X is called a pseudo-commutator of x1 and x2

of weight 2 and denoted by [x1, x2].

[x1, x2] = ((x2 ∧ x1) ∗ (x1 ∧ x2)) ∗ (0 ∗ (x1 ∗ x2)).

If x1 ∧ x2 = [x1, x2] ∗ (x2 ∧ x1) or x2 ∧ x1 = [x1, x2] ∗ (x1 ∧ x2), then [x1, x2] is

called the commutator of x1 and x2. In general, the element [x1, x2, . . . , xn] =

[[x1, . . . , xn−1], xn] is a pseudo-commutator of weight n > 2, where by convention

[x1] = x1.

(ii) For nonempty subsets A and B of X , the commutator of A and B is

[A,B] = {[ai1, bj1] ∗ [ai2, bj2] ∗ . . . ∗ [ain, bjn] : aik ∈ A, bjl ∈ B, n ∈ N}.

So, the commutator [A,B] is the set of all finite ∗-products of commutators of kind

[a, b] with a ∈ A and b ∈ B. When A = B = X , [X,X ] is denoted by X ′.
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Theorem 1.2 ([10], [4]). Let X be a BCK-algebra and x, y ∈ X . Then

(i) [x, y] 6 x and [x, y] 6 y,

(ii) if y 6 x, then [x, y] = 0,

(iii) [x, y] = y if and only if y = 0, so y 6= 0 if and only if [x, y] < y.

Theorem 1.3 ([11]). X is commutative if and only if X ′ = {0}.

Definition 1.4 ([12]). The set {x ∈ X : [x, y] = [y, x] = 0 for all y ∈ X} is

called the pseudo-center of X and is denoted by Z(X).

Definition 1.5 ([13]). We define C1(X) = [X,X ], . . . , Ck(X) = [Ck−1(X), X ]

and C1(X) = [X,X ], . . .,Ck(X) = [Ck−1(X), Ck−1(X)]. X is said to be nilpotent of

type 2 (respectively, solvable) if there exists n ∈ N such that Cn(X) = {0} (respec-

tively, Cn(X) = {0}). The least such n is called the nilpotency class (respectively,

derived length) of X .

Theorem 1.6 ([13]).

(i) Suppose that X is nilpotent of type 2. Then the nilpotency class of X is less

than or equal to n if and only if [[x1, x2, . . . , xn−1], xn] = 0 for all xi ∈ X.

(ii) There are proper inclusions of classes:

{commutative BCI-algebras} ( {nilpotent BCI-algebras of type 2}

( {solvable BCI-algebras}

(iii) Any finite BCI-algebra is solvable.

2. Engel elements in BCI-algebras

Suppose that x and y are elements of X . For the pair (x, y) and a non-negative

integer n we define inductively the n-Engel left normed commutator [x, ny] as follows:

[x, 0y] = x, . . . , [x, ny] = [[x, n−1y], y].

Also the n-Engel right normed commutator [nx, y] of the pair (x, y) is defined by

induction as follows:

[0x, y] = y, . . . , [nx, y] = [x, [n−1x, y]].

Especially, [x, 1y] = [1x, y] = [x, y] = ((y ∧ x) ∗ (x ∧ y)) ∗ (0 ∗ (x ∗ y)).
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Definition 2.1. For a positive integer k, an element x of X is called a right

k-Engel element of X whenever [x, ky] = 0 for all y ∈ X . An element x of X is

called a right Engel element if it is right k-Engel for some non-negative integer k.

We denote by R(X) and Rk(X) the set of right Engel elements and right k-Engel

elements, respectively. So

Rk(X) = {x ∈ X : [x, ky] = 0 for all y ∈ X}

and

R(X) =
⋃

k∈N

Rk(X).

Notice that the variable element y appears on the right of the bracket and that

if n can be chosen independently of y, then x is a right n-Engel element of X . Left

Engel elements are defined in a similar way.

Definition 2.2. For a positive integer k, an element x of X is called a left k-

Engel element of X whenever [y, kx] = 0 for all y ∈ X . Also, x is said to be a

left Engel element of X if it is left k-Engel for some non-negative integer k. We

denote by L(X) and Lk(X) the set of left Engel elements and left k-Engel elements,

respectively. So

Lk(X) = {x ∈ X : [y, kx] = 0 for all y ∈ X}

and

L(X) =
⋃

k∈N

Lk(X).

In Definition 2.2, the variable y is on the left of bracket. Also, since [x, 0] =

[0, x] = 0, for every x ∈ X , 0 ∈ R(X) ∩ L(X).

Definition 2.3. An element x of X that is both the left and right Engel element

is said to be an Engel element. The set of all Engel elements of X is denoted by

En(X). Obviously, 0 is an Engel element in any BCI-algebra.

E x am p l e 2.4. Let X = {0, a, b, c, d} be a BCI-algebra in which ∗ is defined by

the following table:
∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b a 0 b 0
c c c c 0 c
d d d d d 0
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The pseudo-commutators of elements of X are given by the following table:

[·, ·] 0 a b c d
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 0
d 0 0 0 0 0

By routine calculations, we obtain [a, 2d] = [[a, d], d] = [a, d] = a, [a, 3d] =

[[a, 2d], d] = [a, d] = a, [b, 2d] = [[b, d], d] = [b, d] = b and [b, 3d] = [[b, 2d], d] =

[b, d] = b. For every positive integer n, we have [a, nd] = a, [b, nd] = b and

hence a, b /∈ R(X). Therefore R(X) = {0, c, d} and L(X) = {0, a, b, c}. Thus,

En(X) = {0, c}.

Lemma 2.5. Let x, y ∈ X . Then for each n ∈ N the following assertions hold:

(i) [x ∗ y, x] = 0 and [x, x ∗ y] = 0.

(ii) [x, ny] and [nx, y] are positive elements of X .

(iii) [2x, y] = 0.

(iv) If X is a BCK-algebra with |X | > 2, then [x, ny] and [nx, y] are not maximal

elements.

P r o o f. (i)

[x ∗ y, x] = (((x ∗ y) ∗ ((x ∗ y) ∗ x)) ∗ (x ∗ (x ∗ (x ∗ y)))) ∗ (0 ∗ ((x ∗ y) ∗ x))

= (((x ∗ y) ∗ ((x ∗ x) ∗ y)) ∗ (x ∗ y)) ∗ ((0 ∗ (x ∗ y)) ∗ (0 ∗ x))

= (((x ∗ y) ∗ (0 ∗ y)) ∗ (x ∗ y)) ∗ ((0 ∗ (0 ∗ x)) ∗ (x ∗ y))

= (((x ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ y)) ∗ ((0 ∗ (0 ∗ x)) ∗ (x ∗ y))

= (0 ∗ (0 ∗ y)) ∗ ((0 ∗ (0 ∗ x)) ∗ (x ∗ y))

= (0 ∗ ((0 ∗ (0 ∗ x)) ∗ (x ∗ y))) ∗ (0 ∗ y)

= ((0 ∗ x) ∗ (0 ∗ (x ∗ y))) ∗ (0 ∗ y)

= ((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ (0 ∗ y) = 0,

[x, x ∗ y] = ((x ∗ (x ∗ (x ∗ y))) ∗ ((x ∗ y) ∗ ((x ∗ y) ∗ x))) ∗ (0 ∗ (x ∗ (x ∗ y)))

= ((x ∗ y) ∗ ((x ∗ y) ∗ ((x ∗ y) ∗ x))) ∗ (0 ∗ (x ∗ (x ∗ y)))

= ((x ∗ y) ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ (x ∗ y)))

= ((x ∗ x) ∗ y) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y)))

= (0 ∗ y) ∗ (0 ∗ ((0 ∗ x) ∗ (0 ∗ y)) ∗ x)

= (0 ∗ ((0 ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ x)) ∗ y

= (((0 ∗ x) ∗ (0 ∗ y)) ∗ (0 ∗ x)) ∗ y

= (((0 ∗ x) ∗ (0 ∗ x)) ∗ (0 ∗ y)) ∗ y = (0 ∗ (0 ∗ y)) ∗ y = 0.
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(ii) Suppose that x, y ∈ X and n ∈ N. We will proceed by induction on n. If

n = 1, then

0 ∗ [x, y] = 0 ∗ (((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y)))

= ((0 ∗ (x ∗ (x ∗ y))) ∗ (0 ∗ (y ∗ (y ∗ x)))) ∗ (0 ∗ ((0 ∗ (x ∗ y))))

= (((0 ∗ x) ∗ (0 ∗ (x ∗ y))) ∗ ((0 ∗ y) ∗ (0 ∗ (y ∗ x))))

∗ (0 ∗ ((0 ∗ x) ∗ (0 ∗ y)))

= (((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x))))

∗ (0 ∗ ((0 ∗ x) ∗ (0 ∗ y)))

= (((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x))))

∗ ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ y)))

= (((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ y))))

∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= (((0 ∗ x) ∗ ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ y)))) ∗ ((0 ∗ x) ∗ (0 ∗ y)))

∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= ((0 ∗ (0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ (0 ∗ y))) ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y)))

∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= (((0 ∗ (0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ (0 ∗ y)))) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ x)

∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= ((((0 ∗ x) ∗ (0 ∗ y)) ∗ ((0 ∗ x) ∗ (0 ∗ y))) ∗ x)

∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= (0 ∗ x) ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))

= (0 ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)))) ∗ x

= (0 ∗ (((0 ∗ ((0 ∗ y) ∗ (0 ∗ x))))) ∗ y) ∗ x

= (((0 ∗ (0 ∗ (0 ∗ y))) ∗ (0 ∗ (0 ∗ (0 ∗ x)))) ∗ (0 ∗ y)) ∗ x

= (((0 ∗ y) ∗ (0 ∗ x)) ∗ (0 ∗ y)) ∗ x

= (((0 ∗ y) ∗ (0 ∗ y)) ∗ (0 ∗ x)) ∗ x

= (0 ∗ (0 ∗ x)) ∗ x = 0.

Thus [x, y] is a positive element of X . Assume that the hypothesis is true for n. So,

0 ∗ [x, ny] = 0 = 0 ∗ [nx, y]. Hence 0 ∗ [x, n+1y] = 0 ∗ [[x, ny], y] = [0 ∗ [x, ny], 0 ∗ y] =

[0, 0 ∗ y] = 0 and 0 ∗ [n+1x, y] = [0 ∗ x, 0 ∗ [nx, y]] = [0 ∗ x, 0] = 0. Hence the result

holds for any positive integer n.
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(iii) We first show that [x, y] ∗ x = 0 ∗ (x ∧ y).

[x, y] ∗ x = (((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))) ∗ x

= (((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ x) ∗ (0 ∗ (x ∗ y))

= (((x ∗ (x ∗ y)) ∗ x) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))

= (((x ∗ x) ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))

= ((0 ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))

= ((0 ∗ (x ∗ y)) ∗ (0 ∗ (x ∗ y))) ∗ (y ∗ (y ∗ x))

= 0 ∗ (y ∗ (y ∗ x)).

Therefore, for every x, y ∈ X , we obtain

[2x, y] = [x, [x, y]]

= ((x ∗ (x ∗ [x, y])) ∗ ([x, y] ∗ ([x, y] ∗ x))) ∗ (0 ∗ (x ∗ [x, y]))

= ((x ∗ (x ∗ [x, y])) ∗ ([x, y] ∗ (0 ∗ (y ∗ (y ∗ x))))) ∗ ((0 ∗ x) ∗ (0 ∗ [x, y]))

= ((x ∗ (x ∗ [x, y])) ∗ ([x, y] ∗ (0 ∗ (y ∗ (y ∗ x))))) ∗ ((0 ∗ x) ∗ 0)

= ((x ∗ (x ∗ [x, y])) ∗ (0 ∗ x)) ∗ ([x, y] ∗ (0 ∗ (y ∗ (y ∗ x))))

= ((x ∗ (0 ∗ x)) ∗ (x ∗ [x, y])) ∗ ([x, y] ∗ (0 ∗ (y ∗ (y ∗ x))))

6 ([x, y] ∗ (0 ∗ x)) ∗ ([x, y] ∗ (0 ∗ (y ∗ (y ∗ x))))

6 (0 ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ x)

= 0 ∗ ((y ∗ (y ∗ x)) ∗ x) = 0 ∗ 0 = 0.

(iv) We proceed by induction on n. For n = 1, we show that [x, y] is not a

maximal element of X . Suppose that there exist x and y in X such that [x, y] is

a maximal element of X . Then [x, y] = y, as [x, y] 6 y. Hence y = 0. Therefore

[x, y] = [x, 0] = 0. This is a contradiction, because, if 0 is a maximal element of X ,

then from 0 6 x we deduce X = {0}.

Now assume that for n ∈ N, [x, ny] and [nx, y] are not maximal elements of X .

Since [x, n+1y] = [[x, ny], y] 6 [x, ny], [x, n+1y] is not maximal. Also [n+1x, y] =

[x, [nx, y]] 6 [nx, y]. Since [nx, y] is not a maximal element of X , [n+1x, y] is not

either. Hence the result holds for n+ 1 in both cases. �

Lemma 2.6.

(i) If X is a p-semisimple BCI-algebra, then any x ∈ X is an Engel element of X .

(ii) Let X be commutative. Then any x ∈ X is an Engel element of X .

(iii) Let X be associative. Then any x ∈ X is an Engel element of X .
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P r o o f. (i) Let X be a p-semisimple BCI-algebra. Then for all x, y ∈ X

[x, 1y] = [1x, y] = [x, y]

= ((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))

= (y ∗ x) ∗ (0 ∗ (x ∗ y)) = (y ∗ x) ∗ (y ∗ x) = 0.

Hence x is an Engel element of X . (The last two equalities are obtained from the

properties of (PBCI2) and (PBCI3)).

(ii) Since [x, y] = 0 for all x, y ∈ X in any commutative BCI-algebraX . Therefore,

every element of X is an Engel element.

(iii) Let X be associative. Then for each x, y ∈ X we obtain

[x, 1y] = [1x, y] = [x, y]

= ((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y))

= (((x ∗ x) ∗ y) ∗ ((y ∗ y) ∗ x)) ∗ ((0 ∗ x) ∗ y)

= ((0 ∗ y) ∗ (0 ∗ x)) ∗ ((0 ∗ x) ∗ y) = (0 ∗ y) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ y))

= (0 ∗ y) ∗ (((0 ∗ x) ∗ (0 ∗ x)) ∗ y) = (0 ∗ y) ∗ (0 ∗ y) = 0.

Therefore every element of X is an Engel element. �

However, it is still an open problem whether every right Engel element of a group

is a left Engel element (see [1]), but Example 2.4 shows that the answer to this

question in BCI-algebras is negative.

By the following example, it can be shown that the converses to parts (i), (ii), (iii)

of Lemma 2.6 are not true.

E x am p l e 2.7. Let X = {0, a, b, c} be a BCI-algebra in which the operation ∗

is defined by the following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b a 0 0
c c a a 0

By routine calculation, we obtain [b, c] = a and [x, y] = 0 for other x, y ∈ X . On the

other hand, [b, 2c] = [[b, c], c] = [a, c] = 0. So En(X) = X . ButX is not commutative,

because b = c∧ b 6= b∧c = a. Also X is not p-semisimple, because 0∗ (0∗a) = 0 6= a.

BCI-algebra X is not associative, because b ∗ (b ∗ a) = a 6= (b ∗ b) ∗ a = 0.

In the following remark, we study the relationship between an Engel element and

positive, nilpotent, maximal and minimal elements in a BCI-algebra.
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R em a r k 2.8. By Lemma 2.5, for every x, y ∈ X and n ∈ N, the elements [x, ny]

and [ny, x] are positive elements and nilpotent elements of order 1, but the converse

is not true. For instance, the element d in Example 2.4 is positive (also nilpotent,

because 0 ∗ d = 0), but it is not an Engel element of X and d 6= [x, ny] for all

x, y ∈ X . In this example, d is a maximal element but is not Engel, and also c is

an Engel element but is not a minimal element of X . In Example 2.7, b is an Engel

element, but is neither a maximal nor a minimal element of X .

3. Engel sets, defined by left and right normed commutators

In this section, using the notion of commutator of two elements in a BCI-algebra,

we introduce and study Engel sets, which are defined by left and right normed

commutators and several properties of these sets are noticed.

Definition 3.1. Let X be any BCI-algebra. The sets L(X) and R(X) of all left

(right, respectively) Engel elements are called its left (right, respectively) Engel set.

Also for every integer number k > 1 the sets Lk(X) and Rk(X) of all left (right,

respectively) k-Engel sets are called k-left (k-right, respectively) Engel set.

E x am p l e 3.2. From Example 2.7 we obtain L1(X) = {0, a, b}, L2(X) =

L3(X) = . . . = X . Also R1(X) = {0, a, c}, R2(X) = R3(X) = . . . = X .

Lemma 3.3. For all x ∈ X , 0 ∗ x ∈ L1(X).

P r o o f. Let x ∈ X . We show that for each y ∈ X , [y, 0 ∗ x] = 0.

[y, 0 ∗ x] = ((y ∗ (y ∗ (0 ∗ x))) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ y))) ∗ (0 ∗ (y ∗ (0 ∗ x)))

6 ((0 ∗ x) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ y))) ∗ (0 ∗ (y ∗ (0 ∗ x)))

= ((0 ∗ x) ∗ y) ∗ (0 ∗ (y ∗ (0 ∗ x)))

= ((0 ∗ x) ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ (0 ∗ x)))

= ((0 ∗ x) ∗ y) ∗ ((0 ∗ (0 ∗ (0 ∗ x))) ∗ y)

= ((0 ∗ x) ∗ y) ∗ ((0 ∗ x) ∗ y) = 0.

Since 0 is a minimal element of X and [y, 0 ∗ x] 6 0, we deduce that [y, 0 ∗ x] = 0.

Hence 0 ∗ x ∈ L1(X). �

Lemma 3.4.

(i) L1(X) ⊆ L2(X) ⊆ . . . ⊆ Ln(X) ⊆ . . . ⊆ L(X).

(ii) R1(X) ⊆ R2(X) ⊆ . . . ⊆ Rn(X) ⊆ . . . ⊆ R(X).
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P r o o f. (i) Let x ∈ L1(X). Then for all y ∈ X we have [y, x] = 0. Hence

[y,2 x] = [[y, x], x] = [0, x] = 0. Therefore x ∈ L2(X) and hence L1(X) ⊆ L2(X).

Simple induction shows that Ln(X) ⊆ Ln+1(X), for any positive integer n.

Obviously, Ln(X) ⊆ L(X) for all n ∈ N.

(ii) The proof is similar to the proof of (i). �

Corollary 3.5. For all x ∈ X , we obtain 0 ∗ x ∈ L(X).

Theorem 3.6. The following conditions on X are equivalent:

(i) L(X) = X ,

(ii) R(X) = X ,

(iii) En(X) = X .

P r o o f. (i) ⇒ (ii): Suppose that X = L(X). Then X = {x ∈ X : for all y ∈ X

exists n ∈ N such that [y, nx] = 0}, i.e. for all x ∈ X and for every y ∈ X there exists

n ∈ N such that [y, nx] = 0. By substituting x for y and y for x for any y ∈ X , there

exists a positive integer n such that [x, ny] = 0 for all x ∈ X . Hence X = R(X).

(ii) ⇒ (iii): Let R(X) = X and x ∈ X = R(X). Then, by the definition of R(X),

for all y ∈ X , there exists n ∈ N such that [x, ny] = 0. So, for each y ∈ X there

exists n ∈ N such that [y, nx] = 0. Thus x ∈ R(X) ∩ L(X) and hence X ⊆ E(X).

Since E(X) ⊆ X , we have X = E(X).

(iii) ⇒ (i): If En(X) = X , then R(X) ∩ L(X) = X . So R(X) = L(X) = X . �

Corollary 3.7. Ln(X) = X if and only if Rn(X) = X .

P r o o f. X = Ln(X) if and only if {x ∈ X : for all y ∈ X, [y, nx] = 0} = X if

and only if for all x, y ∈ X , [y, nx] = 0 if and only if for any x, y ∈ X , [x, ny] = 0 if

and only if X = Rn(X). �

Definition 3.8. Let X be any BCI-algebra. We define

(X)L = {x ∈ X : for all y ∈ X exists n ∈ N, [nx, y] = 0}

and

(X)R = {x ∈ X : for all y ∈ X exists n ∈ N, [ny, x] = 0}.

Also, for every integer number k > 1

(X)Lk = {x ∈ X : [kx, y] = 0 for all y ∈ X}

and

(X)Rk = {x ∈ X : [ky, x] = 0 for all y ∈ X}.
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E x am p l e 3.9. Let X be the BCI-algebra of Example 2.7. Since [b, c] = a and

[x, y] = 0 for other x, y ∈ X , [2b, c] = [b, [b, c]] = [b, a] = 0 by routine calculation,

we have (X)L1 = {0, a, c}, (X)L2 = (X)L3 = . . . = X . Also (X)R1 = {0, a, b},

(X)R2 = (X)R3 = . . . = X .

Corollary 3.10. (X)L2 = (X)L3 = . . . = X .

P r o o f. Since [2x, y] = 0 for every x, y ∈ X , (X)L2 = {x ∈ X : [2x, y] = 0 for

all y ∈ X} = X . Therefore, (X)L2 = (X)L3 = . . . = X . �

Theorem 3.11. (X)Ln = X if and only if (X)Rn = X and (X)L = X if and

only if (X)R = X .

P r o o f. The proof is similar to proof of Theorem 3.6 and Corollary 3.7. �

R em a r k 3.12. Whereas, for each y ∈ X , [y, 0 ∗ x] = 0, 0 ∗ x ∈ (X)R1 and

0 ∗ x ∈ (X)R.

Lemma 3.13. Let A, B be two nonempty subsets of X and A ⊆ B. Then

R(B) ⊆ R(A), L(B) ⊆ L(A), Rn(B) ⊆ Rn(A), and Ln(B) ⊆ Ln(A) for all n > 0.

P r o o f. Let A and B be nonempty subsets of X and A ⊆ B. Suppose that

x ∈ R(B). Then for each y ∈ B there exists n ∈ N such that [x, ny] = 0. Hence for

any y ∈ A we have [x, ny] = 0. Therefore R(B) ⊆ R(A). Proofs of the remaining

cases are similar. �

R em a r k 3.14. The BCK-part of X , namely the set {x ∈ X : 0 ∗ x = 0}, is a

subset of L1(X), L(X), (X)R1 and (X)R.

4. Engel BCI-algebras

In this section, we introduce the concept of Engel BCI-algebras and study it in

detail.

Definition 4.1. A BCI-algebra X in which all elements are Engel is said to be

an Engel BCI-algebra. We call the number sup{n : [x, ny] = 0, (x, y) ∈ X ×X} the

Engel degree of X .

Also a subset S ofX is called an Engel set if, for all x, y ∈ S, there is a non-negative

integer n such that [x, ny] = 0.
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E x am p l e 4.2.

(1) Let X = {0, a, b, c, d} be a BCI-algebra in which the operation ∗ is defined by

the following table:

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

By routine calculation, En(X) = {0, a, b, c}. Therefore X is an Engel BCI-

algebra.

(2) The BCI-algebra in Example 2.4 is not Engel, because a, b, d /∈ En(X).

Definition 4.3. X is called n-Engel if X = Ln(X), or equivalently, X = Rn(X).

Hence an n-Engel BCI-algebra is a BCI-algebra X such that [x, ny] = 0 for all

x, y ∈ X . That is, every element is an n-Engel element, i.e. the BCI-algebras in

which all elements are left Engel are Engel. For a given positive integer n, a BCI-

algebra X is n-Engel if all elements are left n-Engel elements. Obviously a 0-Engel

BCI-algebra has order 1. We now consider four special classes of Engel BCI-algebras:

p-semisimple, associative, commutative and nilpotent of type 2.

Proposition 4.4. Both the p-semisimple BCI-algebra and the associative BCI-

algebra are Engel BCI-algebras.

Theorem 4.5. X is 1-Engel if and only if X is commutative.

P r o o f. Let X be an 1-Engel BCI-algebra. Also suppose that x, y ∈ X and

x 6 y. Then [x, y] = [1x, y] = [x,1 y] = 0, for all x, y ∈ X . But [x, y] = ((x ∗ (x ∗ y)) ∗

(y ∗ (y ∗ x))) ∗ (0 ∗ (x ∗ y)) = ((x ∗ 0) ∗ (y ∗ (y ∗ x))) = x ∗ (y ∗ (y ∗ x)) = 0. So

x 6 (y ∗ (y ∗ x)). By BCI2, y ∗ (y ∗ x) 6 x, and thus y ∗ (y ∗ x) = x ∧ y = x.

Therefore X is commutative.

Conversely, if X is a commutative BCI-algebra, then for all x, y ∈ X , (y ∧ x) ∗

(x ∧ y) = 0 ∗ (x ∗ y), which implies that [x, y] = ((y ∧ x) ∗ (x ∧ y)) ∗ (0 ∗ (x ∗ y)) = 0.

Therefore X is 1-Engel BCI-algebra. �

Theorem 4.6. Any nilpotent BCI-algebra of type 2 is an Engel BCI-algebra.

P r o o f. LetX be a nilpotent BCI-algebra of type 2 and the nilpotency class ofX

be n. By Theorem 1.6, [[x1, x2, . . . , xn−1], xn] = 0 for all xi ∈ X. Hence [x, ny] = 0

for all x, y ∈ X . Therefore X is Engel. �
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In Example 2.7 we saw that X is an Engel BCI-algebra, but that it is neither a

p-semisimple nor a commutative, nor an associative BCI-algebra. In the following

example we show that the concepts of Engel, solvable, and nilpotent BCI-algebras

of type 2 are different.

E x am p l e 4.7. Let X = {0, a, b, c, d} and let the operation “∗” on X be given

by the following table:

∗ 0 a b c d
0 0 0 0 c c
a a 0 0 c c
b b b 0 c c
c c c c 0 0
d d c c a 0

Routine calculation shows that (X, ∗, 0) is a BCI-algebra and C1(X) = C1(X) =

{0, a}, C2(X) = {0} and C2(X) = C3(X) = C4(X) = . . . = {0, a}. Thus X is

solvable, but X is not nilpotent of type 2. Also, for each n ∈ N, we obtain [a, nb] = a.

So, X is not Engel.

Lemma 4.8. The following conditions on X are equivalent:

(i) X ′ = {0},

(ii) X is 1-Engel,

(iv) X = Z(X).

P r o o f. (i) ⇒ (ii): If X ′ = {0}, then for each x, y ∈ X we have [x, y] = 0. So X

is 1-Engel.

(ii) ⇒ (iii): Let X be 1-Engel. Then [x, y] = 0 for every x, y ∈ X . Hence

Z(X) = {x ∈ X : [x, y] = [y, x] = 0 for all y ∈ X} = X .

(iii) ⇒ (i): Let X = Z(X). Then {x ∈ X : [x, y] = [y, x] = 0 for all y ∈ X} = X .

Hence [x, y] = 0 for every x, y ∈ X . Therefore X ′ = {0}. �

It is clear that R0(X) = L0(X) = {0}, R1(X) = L1(X) = Z(X). So x is left

1-Engel or right 1-Engel element if and only if x is in the pseudo-center, and X is

1-Engel if and only if X is commutative.

Theorem 4.9. For every m > n, if X is an n-Engel BCI-algebra, then X is

m-Engel.

P r o o f. Suppose that X is an n-Engel BCI-algebra. Then [x, ny] = 0 for all

x, y ∈ X . But for each m > n and x, y ∈ X , we obtain [x,my] = [[x, ny],m−ny] =

[0,m−ny] = 0. Hence X is m-Engel. �
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R em a r k 4.10. Commutative BCI-algebras of order n > 2 are 1-Engel but are

not 0-Engel, because the single 0-Engel BCI-algebra is {0}. Therefore the converse

of Theorem 4.9 is generally not true.

Theorem 4.11. Let (X, ∗, 0) and (Y, ·, 0) be two BCI-algebras. If f : X −→ Y

is a homomorphism from X to Y and X is an Engel BCI-algebra, then f(X) is an

Engel BCI-algebra.

P r o o f. Suppose that t1, t2 ∈ f(X). Then for some x, y ∈ X we have t1 = f(x)

and t2 = f(y). Since X is Engel, there exists n ∈ N such that [x, ny] = 0. Hence

[t1, nt2] = [f(x), nf(y)] = f([x, ny]) = f(0) = 0. So f(X) is Engel. �

In general, the homomorphic image of an Engel BCI-algebra is not a BCI-algebra.

Thus, Engel BCI-algebras do not form a variety (for more details see Example 5.8

of [11]).

Proposition 4.12. Let I be an ideal of X . Then I and X/I are Engel sets if and

only if X is an Engel BCI-algebra.

P r o o f. Let X be an Engel BCI-algebra. Since I ⊆ X , and any subset of an

Engel BCI-algebra is an Engel set by definition, it follows that, I is an Engel set.

Let x, y be elements of X . Then Cx, Cy ∈ X/I. Since X is Engel, there exists

n ∈ N such that [x, ny] = 0. We claim that [Cx, nCy] = C[x,ny]. We will proceed by

induction on n. If n = 1, then

C[x,y] = C((y∧x)∗(x∧y))∗(0∗(x∗y)) = (C(y∧x) ∗ C(x∧y)) ∗ C0∗(x∗y)

= (Cx∗(x∗y) ∗ Cy∗(y∗x)) ∗ C0∗(x∗y)

= ((Cx ∗ (Cx ∗ Cy)) ∗ (Cy ∗ (Cy ∗ Cx))) ∗ (C0 ∗ (Cx ∗ Cy)) = [Cx, Cy].

Now, let [Cx, n−1Cy] = C[x,n−1y]. Therefore C[x,ny] = C[[x,n−1y],y] = [C[x,n−1y], Cy] =

[[Cx, n−1Cy ], Cy] = [Cx, nCy]. Hence the above claim holds for every positive inte-

ger n. Thus [Cx, nCy] = C[x,ny] = C0. So X/I is Engel.

Conversely, let I and X/I be Engel sets. If x is an arbitrary element of X , then

Cx ∈ X/I. Therefore, for every y ∈ X , there exists a positive integer n such that

[Cx,n Cy ] = C0. But [Cx, nCy] = C[x,ny], so C[x,ny] = C0. Hence [x, ny] ∈ I. Since I

is Engel, there exists m ∈ N such that [[x, ny],my] = 0. Whence [x, n+my] = 0.

Then X is Engel. �

By Lemma 3.13 if X is Engel, then any subalgebra of X is Engel too. Also, the

intersection of any two Engel subalgebras of X is Engel. Since commutative BCI-

algebras form a variety, 1-Engel BCI-algebras also form a variety. The quotient of

an Engel BCI-algebra is an Engel BCI-algebra.
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Proposition 4.13. The product of two Engel BCI-algebras is again an Engel

BCI-algebra.

P r o o f. Let X and Y be two Engel BCI-algebras of degrees r and s, respec-

tively. For every (x, y) and (a, b) ∈ X × Y and n ∈ N we show by induction that

[(x, y), n(a, b)] = ([x, na], [y, nb]). In the case n = 1, we obtain

[(x, y), (a, b)] =
(

((x, y) ∗ ((x, y) ∗ (a, b))) ∗ ((a, b) ∗ ((a, b) ∗ (x, y)))
)

∗
(

(0, 0) ∗ ((x, y) ∗ (a, b))
)

=
(

(x ∗ (x ∗ a), y ∗ (y ∗ b)) ∗ (a ∗ (a ∗ x), b ∗ (b ∗ y))
)

∗
(

0 ∗ (x ∗ a), 0 ∗ (y ∗ b)
)

=
(

(x ∗ (x ∗ a) ∗ (a ∗ (a ∗ x))), ((y ∗ (y ∗ b)) ∗ (b ∗ (b ∗ y)))
)

∗
(

0 ∗ (x ∗ a), 0 ∗ (y ∗ b)
)

=
(

(x ∗ (x ∗ a) ∗ (a ∗ (a ∗ x)) ∗ (0 ∗ (x ∗ a))),

((y ∗ (y ∗ b)) ∗ (b ∗ (b ∗ y))) ∗ (0 ∗ (y ∗ b))
)

= ([x, a], [y, b]).

Now inductively assume that [(x, y),n−1 (a, b)] = ([x,n−1 a], [y,n−1 b]). Then

[(x, y), n(a, b)] = [[(x, y), n−1(a, b)], (a, b)]

= [([x, n−1a], [y, n−1b]), (a, b)]

= ([[x, n−1a], a], [[y, n−1b], b])

= ([x, na], [y, nb]).

Since X and Y are Engel of degrees r and s, [x, ra] = 0 and [y, sb] = 0. By the as-

sumption n = max{r, s}, we have [x, na] = 0 and [y, nb] = 0. Hence [(x, y), n(a, b)] =

([x, na], [y, nb]) = (0, 0). Therefore X × Y is Engel of degree less than or equal to n.

�

The above proposition can be generalized to arbitrary families of Engel BCI-

algebras.
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5. Conclusions

In the present paper, we have introduced the concepts of Engel elements and Engel

sets in BCI-algebras and investigated some of their properties. To develop the theory

of BCI-algebras, one of the most encouraging ideas could be investigating the Engel

degree of BCI-algebras and finding a relation diagram between subclasses of BCI-

algebras. For instance, 1-Engel BCI-algebras are strictly commutative BCI-algebras.

It is hoped that this work contributes to further studies. Therefore, we think that

the results presented in this paper and the forthcoming works can pave the way for

a bright future of the theory of the BCI-algebras. The major goal of Engel theory in

BCI-algebras can be stated as follows: to find conditions on X which will ensure that

L(X) and R(X) are subalgebras, if possible. Some important problems for future

work are:

(1) For which BCI-algebra X and for which positive integers n are L(X), R(X)

and Rn(X), Ln(X) subalgebras of X . This question can be discussed for various

classes of BCI-algebras and small positive integers n.

(2) What is the relationship between left and right Engel elements of X?

(3) When do the right n-Engel elements of X form a subalgebra?

(4) For which positive integers n does there exist a positive integer k such that

Rn(X) ⊆ Lk(X) for all BCI-algebras X?
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