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Abstract. We study the question of the unique solvability of the periodic type problem
for the second order linear integro-differential equation with distributed argument deviation

u
′′(t) = p0(t)u(t) +

∫ ω

0

p(t, s)u(τ (t, s)) ds+ q(t),

and on the basis of the obtained results by the a priori boundedness principle we prove
the new results on the solvability of periodic type problem for the second order nonlinear
functional differential equations, which are close to the linear integro-differential equations.
The proved results are optimal in some sense.

Keywords: linear integro-differential equation; periodic problem; distributed deviation;
solvability
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1. Introduction

On the interval I = [0, ω], consider the second order linear integro-differential

equation

(1.1) u′′(t) = p0(t)u(t) +

∫ ω

0

p(t, s)u(τ(t, s)) ds+ q(t),
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and nonlinear functional differential equation

(1.2) u′′(t) = F (u)(t) + q(t)

with the periodic type two point boundary conditions

(1.3) u(i−1)(ω)− u(i−1)(0) = ci, i = 1, 2,

where c1, c2 ∈ R, p0, f, q ∈ L∞(I,R), p ∈ L∞(I2,R), τ : I2 → I is a measurable func-

tion, and F : C′(I,R) → L∞(I,R) is a continuous operator. (The spaces C′(I,R)

and L∞(I,R) are defined below.)

We will say that a function u : I → R is a solution of problem (1.2), (1.3) if it is

absolutely continuous together with its first derivative, satisfies equation (1.2) almost

everywhere on I and satisfies conditions (1.3).

It is well-known that there are many subjects in physics and technology using

mathematical methods that depend on the integro-differential equations. For these

and for purely theoretical reasons ample interesting literature is devoted to the pe-

riodic problem for the integro-differential equations (see, e.g., [4], [6], [3], [10] and

the references therein). Our work is motivated by some original results for the

functional differential equations with argument deviation (see [1], [2], [9]), and the

results of Nieto (see [10]), Erbe and Guo (see [4]), and Kuo-Shou Chiu (see [3]).

Nieto in [10] studied linear equation (1.1) on the interval I = [0, 2π] when p0 ≡ M ,

p(t, s) = Nk(t, s) and τ(t, s) ≡ s, i.e. the equation of the form

(1.4) u′′(t) = Mu(t) +N [Ku](t) + q(t)

under conditions (1.3) with c1 = c2 = 0, where [Ku](t) =
∫ 2π

0 k(t, s)u(s) ds, k ∈

L2(I × I), M > 0 and N ∈ R. In this paper, different sufficient efficient conditions

of the unique solvability of linear problem (1.4), (1.3) are established, and one of

them, the condition ‖τ‖2 < 1, is optimal, where τ(t, s) =
∫ 2π

0
G(t, r)k(t, s) dr, and G

is the Green’s function of the periodic problem for the equation v′′(t) = Mv(t). On

the basis of these results, the periodic problem for the nonlinear equation u′′(t) =

f(t, u(t), [Ku](t)) is studied even in the case when the kernel k changes its sign.

In [6] the authors develop the monotone iterative method based on comparison re-

sults, which is applicable for problem (1.4), (1.3) only if K is Volterra operator with

nonnegative kernel. A more general case is considered in paper [4], here the op-

erator K is of the form [Kx] = N [Tx] + N1[Sx], where T is the integral operator

of Volterra type and S is the integral operator of Fredholm type with nonnegative

kernels. Chiu in [3] investigates the existence of periodic solutions for the systems

of integro-differential equations with piecewise alternately retarded and advanced
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argument of generalized type. In the mentioned paper the author proves interesting

results of the solvability and unique solvability, but these results do not take into

account the effect of argument deviation.

In this paper we establish the theorems which in some sense complete and gener-

alize the results of the works cited above as well as some other known results. We

first describe some classes of unique solvability for linear problem (1.1), (1.3), and

on the basis of these results, by the a priori boundedness principle, we prove the

existence theorems for nonlinear problem (1.2), (1.3). The conditions we obtain take

into account the effect of argument deviation, and in some sense are optimal (see

Remarks 2.1, 2.3).

Interesting results follow from our main proposition for such special cases of equa-

tions (1.1) and (1.2) as are linear integro-differential equations with distributed delay

(see Corollary 2.2), linear differential equations with argument deviation (see Corol-

lary 2.3), or the nonlinear equation

(1.5) u′′(t) = f

(
t, u(t),

∫ ω

0

V (u)(t, s)u(τ(t, s)) ds

)
+ q(t),

where f : I×R
2 → R is from the Carathéodory class, and V : C′(I,R) → L∞(I2,R)

is a continuous bounded operator.

Also our results allow to obtain conditions of unique solvability for a large class

of the two point BVP for higher order functional differential equations. Here as an

example of such problems we consider nth order linear functional differential equation

with argument deviation

(1.6) u(n)(t) = p1(t)u(τ(t)) + q(t)

under the two point boundary conditions

(1.7) u(i−1)(ω)− u(i−1)(0) = ci, u(j−1)(0) = cj , i = 1, 2, j = 3, . . . , n,

if n > 3, where ck ∈ R, k = 1, n, p1 ∈ L∞(I,R), and τ : I → I is a measurable

function.

Throughout the paper we use the following notations: R = ]−∞,∞[, R+ = [0,∞[;

C(I;R) is the Banach space of continuous functions u : I → R with the norm ‖u‖C =

max{|u(t)| : t ∈ I}; C′(I;R) is the Banach space of the functions u : I → R which are

continuous together with their first derivatives with the norm ‖u‖C′ = max{|u(t)|+

|u′(t)| : t ∈ I}; L(I;R) is the Banach space of the Lebesgue integrable functions

p : I → R with the norm ‖p‖L =
∫ ω

0 |p(s)| ds; L∞(I,R) is the space of the essentially

bounded measurable functions p : I → R with the norm ‖p‖∞ = esssup{|p(t)| :
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t ∈ I}; L∞(I2,R) is the set of such functions p : I2 → R, that for any fixed t ∈ I,

p(t, ·) ∈ L(I,R) and
∫ ω

0 |p(·, s)| ds ∈ L∞(I,R). Also for arbitrary p0, p1 ∈ L∞(I,R),

p ∈ L∞(I2,R), and measurable τ : I2 → I we will use the notations

l0(p0, p)(t) = |p0(t)|+

∫ ω

0

|p(t, s)| ds,

l1(p, τ) =
2π

ω

(∫ ω

0

(∫ ω

0

|p(ξ, s)||τ(ξ, s) − ξ| ds

)
dξ

)1/2

.

Definition 1.1. Let σ ∈ {−1, 1} and τ : I2 → I be measurable function. We

will say that the pair of functions (h0, h), where h0 ∈ L∞(I,R+) and h ∈ L∞(I2,R+)

belong to the set P σ
τ if for arbitrary measurable functions p0 : I → R and p : I2 → R

such that

0 6 σp0(t) 6 h0(t), 0 6 σp(t, s) 6 h(t, s) for t, s ∈ I,(1.8)

p0(t) +

∫ ω

0

p(t, s) ds 6≡ 0,(1.9)

the homogeneous problem

v′′(t) = p0(t)v(t) +

∫ ω

0

p(t, s)v(τ(t, s)) ds,(1.10)

v(i−1)(ω)− v(i−1)(0) = 0, i = 1, 2,(1.11)

has no nontrivial solution.

2. Statement of the main results

2.1. Linear problem.

Proposition 2.1. Let σ ∈ {−1, 1},

(2.1) h0 ∈ L∞(I,R+), h ∈ L∞(I2,R+), h0(t) +

∫ ω

0

h(t, s) ds 6≡ 0,

and for almost all t ∈ I the inequality

(2.2)
1− σ

2
l0(h0, h)(t) + l1(h, τ)l

1/2
0 (h0, h)(t) <

4π
2

ω2

holds. Then

(2.3) (h0, h) ∈ P σ
τ .
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Theorem 2.1. Let σ ∈ {−1, 1}, σp0 ∈ L∞(I,R+), σp ∈ L∞(I2,R+) and condi-

tion (1.9) be fulfilled. Moreover, let for almost all t ∈ I the inequality

(2.4)
1− σ

2
l0(p0, p)(t) + l1(p, τ)l

1/2
0 (p0, p)(t) <

4π
2

ω2

hold. Then problem (1.1), (1.3) is uniquely solvable.

R em a r k 2.1. Condition (2.4) is optimal in the sense that for the equation

(2.5) u′′(t) = p0(t)u(t) for t ∈ [0, 2π]

when p0(t) 6 0, condition (2.4) transforms into the condition |p0(t)| < 1, which is

optimal, because if p0 ≡ −1, then sin t is a nonzero solution of problem (2.5), (1.3)

with c1 = c2 = 0.

From the last theorem it also follows the well known fact that if p0(t) > 0, then

problem (2.5), (1.3) with c1 = c2 = 0, has only the zero solution.

When in equation (1.1) the coefficients p0 and p are nonnegative, then 1− σ = 0,

and from Theorem 2.1 it follows:

Corollary 2.1. Let

(2.6) p0 ∈ L∞(I,R+), p ∈ L∞(I2,R+), p0(t) +

∫ ω

0

p(t, s) ds 6≡ 0,

and for almost all t ∈ I let the inequality
∫ ω

0

∫ ω

0

p(ξ, s)|τ(ξ, s) − ξ| ds dξ

(
p0(t) +

∫ ω

0

p(t, s) ds

)
<

4π
2

ω2

hold. Then problem (1.1), (1.3) is uniquely solvable.

Let now p0 ≡ 0, τ(t, s) ≡ t− ν(t, s), and

(2.7) 0 6 ν(t, s) 6 t for t, s ∈ I.

Then equation (1.1) transforms into the integro-differential equation with distributed

delay

(2.8) u′′(t) =

∫ ω

0

p(t, s)u(t− ν(t, s)) ds+ q(t),

and from Corollary 2.1 it follows:

Corollary 2.2. Let p ∈ L∞(I2,R+),
∫ ω

0
p(t, s) ds 6≡ 0 and for almost all t ∈ I let

the inequality ∫ ω

0

∫ ω

0

p(ξ, s)ν(ξ, s) ds dξ

∫ ω

0

p(t, s) ds <
4π

2

ω2

hold. Then problem (2.8), (1.3) is uniquely solvable.
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If p0 ≡ 0 and τ(t, s) = τ(t) for t, s ∈ I, then equation (1.1) transforms into

equation (1.6) with n = 2, p1(t) =
∫ ω

0 p(t, s) ds, and then from Corollary 2.1 it

follows:

Corollary 2.3. Let p1 ∈ L∞(I,R+) be such that for almost all t ∈ I the inequality

p1(t)

∫ ω

0

p1(s)|τ(s) − s| ds <
4π

2

ω2

holds. Then problem (1.6), (1.3) when n = 2, is uniquely solvable.

Corollary 2.4. Let n > 3 and the function p1 ∈ L∞(I,R+) be such that for

almost all t ∈ I the inequality

∫ ω

0

∫ t

0

p1(s)|τ(s) − t| ds dt

∫ ω

0

p1(s) ds 6
4π

2((n− 3)!)2

ω2(n−2)

holds. Then problem (1.6), (1.7) is uniquely solvable.

R em a r k 2.2. If in Corollaries 2.1–2.3 we assume that σp0 = h0 and σp = h,

we get the sufficient efficient conditions which guarantee inclusion (2.3).

2.2. Nonlinear problem. Now we consider the theorems on the solvability of

nonlinear problem (1.2), (1.3). First we will introduce here the definitions.

Definition 2.1. We will say that the operator F belongs to Carathéodory’s local

class and write F ∈ K(C′, L∞) if F : C′(I,R) → L∞(I,R) is continuous operator,

and for an arbitrary r > 0

sup{|F (x)(t)| : ‖x‖C′ 6 r, x ∈ C′(I,R)} ∈ L∞(I,R+).

Definition 2.2. Let σ ∈ {−1, 1}, inclusion (2.3) hold and the operators V0 :

C′(I,R) → L∞(I,R), V : C′(I,R) → L∞(I2,R) be continuous. Then we will say

that (V0, V ) ∈ E(h0, h, P
σ
τ ) if for all x ∈ C′(I,R) the conditions

(2.9) 0 6 σV0(x)(t) 6 h0(t), 0 6 σV (x)(t, s) 6 h(t, s) for t, s ∈ I

hold, and

(2.10) inf{‖L(x, 1)‖L : x ∈ C′(I,R)} > 0,
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where

(2.11) L(x, y)(t) = V0(x)(t)y(t) +

∫ ω

0

V (x)(t, s)y(τ(t, s)) ds.

Also throughout the paper we assume that

(2.12) sgnx =

{
1 if x > 0,

−1 if x < 0.

Then the next theorem is true:

Theorem 2.2. Let σ ∈ {−1, 1} and

(2.13) (V0 + Ṽ0, V ) ∈ E(h0, h, P
σ
τ ),

where σV0(x)(t) > 0, σṼ0(x)(t) > 0 on I for all x ∈ C′(I,R).

Moreover, let the constant r0 > 0, the operator F ∈ K(C′, L∞) and the function

g0 ∈ L(I,R+) be such that the conditions

(2.14) g0(t) 6 σ(F (x)(t) − L(x, x)(t)) sgn x(t)

6 |Ṽ0(x)(t)x(t)| + η(t, ‖x‖C′) for t ∈ I, ‖x‖C′ > r0,

and

(2.15) |c2| 6

∫ ω

0

g0(s) ds−

∣∣∣∣
∫ ω

0

q(s) ds

∣∣∣∣

hold, where the function η : I × R+ → R+ is summable in the first argument, non-

decreasing in the second one, and admits to the condition

(2.16) lim
̺→∞

1

̺

∫ ω

0

η(s, ̺) ds = 0.

Then problem (1.2), (1.3) has at least one solution.

R em a r k 2.3. Inequality (2.15) cannot be replaced by the inequality

(2.17) |c2| 6

∫ ω

0

g0(s) ds−

∣∣∣∣
∫ ω

0

q(s) ds

∣∣∣∣+ ε,

no matter how small ε > 0 would be. Indeed, if F ≡ 0, q(t) ≡ εω−1, g0 ≡ 0, c2 = 0,

then instead of (2.15), inequality (2.17) holds and all other conditions of Theorem 2.2

are fulfilled with L(x, y) ≡ 0, η ≡ 0, Ṽ0 ≡ h0 ≡ 1, σ = 1. Nevertheless, in that case,

problem (1.2), (1.3) is not solvable.
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R em a r k 2.4. Let σ ∈ {−1, 1}, (h0, h) ∈ P σ
τ ,

(2.18) V0(x)(t) = p0(t), Ṽ0(x)(t) = p̃0(t),

where σp0, σp̃0 ∈ L∞(I,R+), and V : C′(I,R) → L∞(I2,R) be the continuous oper-

ator. Then due to Definition 2.2 it is obvious that inclusion (2.13) holds if

(2.19) 0 < |p0(t)|, σ(p0(t) + p̃0(t)) 6 h0(t) for t ∈ I,

0 6 σV (y)(t, s) 6 h(t, s) for t, s ∈ I, y ∈ C′(I,R).

Corollary 2.5. Let σ ∈ {−1, 1}, inclusion (2.3) hold, the functions g0, σp0, σp̃0 ∈

L∞(I,R+), and the continuous operator V : C′(I,R) → L∞(I2,R) be such that

inequalities (2.15), (2.19) are fulfilled. Moreover, let

(2.20) g0(t) 6 σ(f(t, x1, x2)− p0(t)x1 − x2) sgnx1

6 |p̃0(t)x1|+ η(t, |x1|) for t ∈ I, x1, x2 ∈ R,

where η : I × R+ → R+ be summable in the first argument, nondecreasing in the

second one and admits to condition (2.16). Then problem (1.5), (1.3) has at least

one solution.

E x am p l e 2.1. The integro-differential equation with distributive delay

(2.21) u′′(t) = αu(t) +
β

1 + ‖u‖C′

∫ 1

0

|u′(s)|u
(
t−

t

1 + s

)
ds+ q(t) for t ∈ [0, 1],

where α, β ∈ R+ and α 6= 0, under conditions (1.3) with ω = 1, c2 = 0, has at

least one solution if
∫ 1

0
q(s) ds = 0 and β(α + β) < 8π

2/ ln 2 ≈ 113, 91. Indeed, in

view of Corollary 2.2 the last inequality guarantees the validity of inclusion (2.3),

and then all the assumptions of Corollary 2.5 with σ = 1, p0 ≡ h0 ≡ α, V (y)(t) =

β|y′(t)|/(1 + ‖y‖C′), h ≡ β, g0 ≡ p̃0 ≡ q(t, ̺) ≡ 0 are fulfilled. The solvability of

problem (2.21), (1.3) does not follow from the previously known results.

3. Auxiliary Propositions

Now consider the modification of the well known Wirtinger’s inequality (see The-

orem 258 in [5]).

Proposition 3.1. Let v′′ ∈ L∞(I,R) and conditions (1.11) hold. Then

(3.1)

∫ ω

0

v′2(s) ds 6
( ω

2π

)2
∫ ω

0

(v′′(s))2 ds.
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Lemma 3.1. Let all the conditions of Proposition 2.1 and conditions (1.8), (1.9)

hold. Then problem (1.10), (1.11) has only the trivial solution.

P r o o f. On the contrary, assume that problem (1.10), (1.11) has nonzero solu-

tion v. If v ≡ c (obviously c 6= 0), then v′′ ≡ 0 and in view of (1.10) we get the contra-

diction with (1.9), i.e. v 6≡ const. Therefore due to (1.11) the inequality v′ 6≡ const

holds and then there exist t∗, t
∗ ∈ I such that t∗ < t∗ and v′(t∗) − v′(t∗) 6= 0.

Therefore from (1.10) by (1.8), Schwarz and Cauchy-Schwarz inequalities it follows

that

0 < |v′(t∗)− v′(t∗)| 6

∫ ω

0

∣∣∣∣p0(ξ)v(ξ) +
∫ ω

0

p(ξ, s)v(τ(ξ, s)) ds

∣∣∣∣dξ

6

(∫ ω

0

|p0(ξ)| dξ

∫ ω

0

|p0(ξ)|v
2(ξ) dξ

)1/2

+

(∫ ω

0

∫ ω

0

|p(ξ, s)| ds dξ

∫ ω

0

∫ ω

0

|p(ξ, s)|v2(τ(ξ, s)) ds dξ

)1/2

6 δ1/2
(∫ ω

0

|p0(ξ)| dξ +

∫ ω

0

∫ ω

0

|p(ξ, s)| ds dξ

)1/2

,

where δ =
∫ ω

0
δ0(ξ) dξ, δ0(ξ) = σ

(∫ ω

0
p(ξ, s)v2(τ(ξ, s)) ds+ p0(ξ)v

2(ξ)
)
, and then

(3.2) δ > 0.

Analogously from (1.10) by (1.8), Schwarz and Cauchy-Schwarz inequalities we get

(3.3)

∫ ω

0

(v′′(ξ))2 dξ 6

∫ ω

0

(
|p0(ξ)|

1/2(|p0(ξ)|v
2(ξ))1/2

+

(∫ ω

0

|p(ξ, s)| ds

)1/2(∫ ω

0

|p(ξ, s)|v2(τ(ξ, s)) ds

)1/2)2

dξ

6

∫ ω

0

l0(h0, h)(ξ)δ0(ξ) dξ.

Now note that in view of (1.10), for δ the representation is true:

(3.4) δ = σ

∫ ω

0

v(ξ)v′′(ξ) dξ +

∫ ω

0

∫ ω

0

|p(ξ, s)|v(τ(ξ, s))

(∫ τ(ξ,s)

ξ

v′(η) dη

)
ds dξ.

Due to (3.1) and (3.3), by integration by parts and boundary conditions (1.11) we

find that

(3.5) σ

∫ ω

0

v(ξ)v′′(ξ) dξ = − σ

∫ ω

0

v′2(ξ) dξ 6
1− σ

2

∫ ω

0

v′2(ξ) dξ

6
1− σ

2

( ω

2π

)2 ∫ ω

0

l0(h0, h)(ξ)δ0(ξ) dξ.
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Also by using the Schwarz, Cauchy-Schwarz, (3.1) and (3.3) inequalities we have:

(3.6)

∫ ω

0

∫ ω

0

|p(ξ, s)|v(τ(ξ, s))

(∫ τ(ξ,s)

ξ

v′(η) dη

)
ds dξ

6

∫ ω

0

∫ ω

0

|p(ξ, s)v(τ(ξ, s))||τ(ξ, s) − ξ|1/2 ds dξ

(∫ ω

0

v′2(η) dη

)1/2

6
ω

2π

(∫ ω

0

∫ ω

0

|p(ξ, s)|v2(τ(ξ, s)) ds dξ

∫ ω

0

∫ ω

0

|p(ξ, s)||τ(ξ, s) − ξ| ds dξ

)1/2

×

(∫ ω

0

(v′′(η))2 dη

)1/2

6

( ω

2π

)2(
δ

∫ ω

0

l0(h0, h)(ξ)δ0(ξ) dξ

)1/2

l1(p, τ).

Therefore from (3.2) and (3.4) by estimates (3.5), (3.6), we get

(3.7) 0 < δ 6
ω2

4π
2

(
1− σ

2

∫ ω

0

l0(h0, h)(ξ)δ0(ξ) dξ

+

(
δ

∫ ω

0

l0(h0, h)(ξ)δ0(ξ) dξ

)1/2

l1(h, τ)

)
.

Let nowM0 = ‖h0‖∞,M1 =
∥∥∫ ω

0
h(t, s) ds

∥∥
∞
,M = M0+M1 and N = 1

2 (1−σ)M+

l1(h, τ)M
1/2. Then due to condition (2.2) either

l0(h0, h)(t) < M and N =
4π

2

ω2
, or N <

4π
2

ω2
.

Therefore if N = 4π
2/ω2 (N < 4π

2/ω2), then from (3.7) we get δ < Nδω2/4π
2 = δ

(δ 6 Nδω2/4π
2 < δ). Thus, in both cases we get the contradiction δ < δ. Therefore

our assumption is invalid and v is the trivial solution of problem (1.10), (1.11). �

Lemma 3.2. Let σ ∈ {−1, 1}, τ : I2 → I be measurable functions and (V1, V ) ∈

E(h0, h, P
σ
τ ). Then there exists such positive number ̺0 that for an arbitrary x ∈

C′(I,R) and q ∈ L∞(I,R), any solution u of the equation

(3.8) u′′(t) = V1(x)(t)u(t) +

∫ ω

0

V (x)(t, s)u(τ(t, s)) ds+ q(t)

under boundary conditions (1.3), admits the estimate

(3.9) ‖u‖C′ 6 ̺0(µ(u) + |c1|+ |c2|+ ‖q‖L) if µ(u) = min{|u(t)| : t ∈ I}.
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To prove this lemma, we need Lemma 3.3, which can be proved analogously as

Lemma 1.1 of [7], in which v0, v0k ∈ C(I,R), k ∈ N.

Lemma 3.3. Let y, yk ∈ L(I,R), v0, v0k ∈ L∞(I,R), k ∈ N,

lim
k→∞

‖v0k − v0‖∞ = 0, lim sup
k→∞

‖yk‖L < ∞,

and lim
k→∞

∫ t

0 yk(s) ds =
∫ t

0 y(s) ds uniformly on I. Then

lim
k→∞

∫ t

0

yk(s)v0k(s) ds =

∫ t

0

y(s)v0(s) ds uniformly on t ∈ I.

P r o o f. Assume that Lemma 3.2 is not true. Then for an arbitrary natural k

there exist operators

(3.10) (V0k, Vk) ∈ E(h0, h, P
σ
τ ),

functions xk ∈ C′(I,R), qk ∈ L∞(I,R) and the numbers c1k, c2k ∈ R such that the

problem

u′′

k(t) = V0k(xk)(t)uk(t) +

∫ ω

0

Vk(xk)(t, s)uk(τ(t, s)) ds+ qk(t),

u
(i−1)
k (ω)− u

(i−1)
k (0) = cik, i = 1, 2,

has such a solution uk that ‖uk‖C′ > k(µ(uk) + |c1k| + |c2k| + ‖qk‖L). Then if we

suppose that vk(t) = uk(t)/‖uk‖C′ , q0k(t) = qk(t)/‖uk‖C′ , we get

(3.11) ‖vk‖C′ = 1, µ(vk) + ‖q0k‖L +

2∑

i=1

|v
(i−1)
k (ω)− v

(i−1)
k (0)| 6

1

k
,

and almost everywhere on I the equality

(3.12) v′′k (t) = V0k(xk)(t)vk(t) +

∫ ω

0

Vk(xk)(t, s)vk(τ(t, s)) ds+ q0k(t)

holds. Therefore according to (3.10) and (3.11) we have

(3.13) |v′′k (t)| 6 h0(t) +

∫ ω

0

h(t, s) ds+ |q0k(t)| for t ∈ I.

177



According to (3.11) and (3.13), the sequences (vk)
∞

k=1 and (v′k)
∞

k=1 are uniformly

bounded and equicontinuous on I. By the Arzelà-Ascoli lemma, without loss of gen-

erality it can be assumed that these sequences are uniformly convergent on I. Suppose

v = lim
k→∞

vk and v ∈ C′(I,R). Also due to (3.11), conditions (1.11) hold, and

lim
k→∞

‖vk − v‖C′ = 0, ‖v‖C′ = 1,(3.14)

µ(v) = 0.(3.15)

Set P0k(t) =
∫ t

0
V0k(xk)(s) ds, Pk(t, s) =

∫ s

0
Vk(xk)(t, ξ) dξ, then from inclusion (3.10)

we get

(3.16) P0k(0) = 0, 0 6 σ(P0k(t2)− P0k(t1)) 6

∫ t2

t1

h0(s) ds,

Pk(t, 0) = 0, 0 6 σ(Pk(t, s2)− Pk(t, s1)) 6

∫ s2

s1

h(t, s) ds,

for 0 6 t1 6 t2 6 ω, 0 6 s1 6 s2 6 ω, t ∈ I, and then the sequence (P0k(t))
∞

k=1,

and for an arbitrary fixed t0 ∈ I sequence (Pk(t0, s))
∞

k=1, are uniformly bounded and

equicontinuous on I. Then by the Arzelà-Ascoli lemma, without loss of generality it

can be assumed that these sequences uniformly converge. Therefore if we denote the

limits of these sequences by P0(t) and P (t0, s), we get

(3.17) lim
k→∞

P0k(t) = P0(t), lim
k→∞

Pk(t0, s) = P (t0, s),

uniformly on I, and then from (3.16) it follows that

0 6 σ(P0(t2)− P0(t1)) 6

∫ t2

t1

h0(s) ds,

0 6 σ(P (t0, s2)− P (t0, s1)) 6

∫ s2

s1

h(t0, s) ds.

Consequently, the functions P0 and P (t, ·) are absolutely continuous, and there exist

functions p0, p(t, ·) ∈ L(I,R) such that P0(t) =
∫ t

0
p0(s) ds, P (t, s) =

∫ s

0
p(t, ξ) dξ,

and inequalities (1.8) hold. Then for an arbitrary fixed t0 ∈ I due to (3.14), (3.17)

and (1.8), by Lemma 3.3 with yk(s) = Vk(xk)(t0, s), y(s) = p(t0, s), and v0k(s) =

vk(τ(t0, s)), v0(s) = v(τ(t0, s)), we get

(3.18) lim
k→∞

∫ ω

0

Vk(xk)(t0, s)vk(τ(t0, s)) ds =

∫ ω

0

p(t0, s)v(τ(t0, s)) ds for t0 ∈ I.
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Analogously due to (3.14), (3.17) and (1.8), from Lemma 3.3 it follows

(3.19) lim
k→∞

∫ t

0

V0k(xk)(s)vk(s) ds =

∫ t

0

p0(s)v(s) ds for t ∈ I.

Therefore according to the definition of the set E(h0, h, P
σ
τ ) and conditions (3.10),

(3.11), the functions gk(t) =
∫ ω

0
Vk(xk)(t, s)vk(τ(t, s)) ds are measurable and the

inequality |gk(t)| 6
∫ ω

0 h(t, s) ds holds. Thus, (3.18) by the Lebesgue’s bounded con-

vergence theorem implies that the function g(t) =
∫ ω

0
p(t, s)v(τ(t, s)) ds is integrable

and the equality

(3.20) lim
k→∞

∫ t

0

∫ ω

0

(Vk(xk)(ξ, s)vk(τ(ξ, s)) − p(ξ, s)v(τ(ξ, s))) ds dξ = 0

holds on I. Therefore if we integrate equation (3.12) from 0 to t, and pass to the

limit as k → ∞, due to conditions (3.11), (3.14), (3.19) and (3.20) we find that v is

a solution of problem (1.10), (1.11). Let p0(t) +
∫ ω

0
p(t, s) ds ≡ 0, then v′′ ≡ 0 and

conditions (1.11), (3.15) yield v ≡ 0. If p0(t)+
∫ ω

0
p(t, s) ds 6≡ 0, then conditions (1.8)

and the inclusion (h0, h) ∈ P σ
τ implies that v ≡ 0. Thus, in both cases we get the

contradiction with the second equality of (3.14), which proves our lemma. �

The following definition is the modification of Definition 3 in paper [8].

Definition 3.1. Let the operator L be defined by equality (2.11), and

(3.21) L̃(x, y)(t) = L(x, y)(t) + Ṽ0(x)(t)y(t).

Then we say that the pair of the operator L̃ and boundary condition (1.11) belongs

to the Opial class O2
0 if: for arbitrary p0 ∈ L∞(I,R) and p ∈ L∞(I2,R), for which

there exists such sequence xk ∈ C′(I,R), k ∈ N that for all y ∈ C′(I,R) the equality

(3.22) lim
k→∞

L̃(xk, y)(t) = p0(t)y(t) +

∫ ω

0

p(t, s)y(τ(t, s)) ds

holds on I, problem (1.10), (1.11) has only the zero solution.

Lemma 3.4. Let inclusion (2.13) hold and the operator L̃(x, y) be defined by

equality (3.21). Then the pair of the operator L̃(x, y) and boundary condition (1.11)

belongs to the Opial class O2
0 .

P r o o f. From inclusion (2.13) we get that

(3.23) 0 6 σV0(xk)(t) + σṼ0(xk)(t) 6 h0(t), 0 6 σV (xk)(t, s) 6 h(t, s)
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for t, s ∈ I, and

(3.24) inf{‖L(x, 1) + Ṽ0(x)‖L : x ∈ C′(I,R)} > 0.

But (3.22)–(3.24) results in (1.8) and (1.9), and then due to inclusion (2.3), problem

(1.10), (1.11) has only the zero solution. �

Now consider the following modifications of Corollary 1 of paper [8].

Lemma 3.5. Let the pair of the operator L̃ and conditions (1.11) belong to the

Opial class O2
0 , where L̃ is defined by equality (3.21), F ∈ K(C′, L∞), and there

exist a positive number ̺1 such that for arbitrary λ ∈ (0, 1) every solution u of the

problem

u′′(t) = λL̃(u, u)(t) + (1− λ)(F (u)(t) + q(t)),(3.25)

u(i−1)(ω)− u(i−1)(0) = λci, i = 1, 2,(3.26)

admits to the estimate

(3.27) ‖u(t)‖C′ 6 ̺1.

Then problem (1.2), (1.3) has at least one solution.

4. Proof of main results

P r o o f of Proposition 2.1. Follows from Lemma 3.1 and Definition 2.1. �

P r o o f of Theorem 2.1. In view of the fact that linear problem (1.1), (1.3)

has Fredholm’s property, the proof immediately follows from Proposition 2.1 with

h(t, s) ≡ σp(t, s) and h0(t) ≡ σp0(t). �

P r o o f of Corollary 2.4. By integration by parts, we can rewrite the homoge-

neous problem corresponding to problem (1.6), (1.7) as (1.10), (1.11) with p0 ≡ 0,

τ(t, s) ≡ τ(s) and

p(t, s) =






(t− s)n−3

(n− 3)!
p1(s) for 0 6 s 6 t 6 ω,

0 for 0 6 t < s 6 ω.

Therefore
∫ ω

0 |p(t, s)| ds 6 ((b− a)n−3/(n− 3)!)
∫ t

0 p1(s) ds, and from Corollary 2.1

our corollary immediately follows. �
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P r o o f of Theorem 2.2. Let λ ∈ (0, 1) be an arbitrary fixed number and u be a

solution of problem (3.25), (3.26). Then it is obvious that u is also the solution of

the equation

(4.1) u′′(t) = L(u, u)(t) + λṼ0(u)(t)u(t) + (1− λ)(F (u)(t) − L(u, u)(s) + q(t)).

Also, from inclusion (2.13) and inequality (2.10) it is clear that the function δ :

R+ → R defined by the equality

δ(r) ≡ inf{‖L(x, 1)‖L + ‖Ṽ0(x)‖L : ‖x‖C′ > r, x ∈ C′(I,R)}

is positive and nondecreasing, and therefore there exists r1 > r0 such that

(4.2) r1δ(r1) > 2|c2|.

Now show that

(4.3) µ(u) = min{|u(t)| : t ∈ I} 6 r1.

Assume on the contrary that |u(t)| > r1 on I. Then sgnu(t) = sgnu(0), and by (2.9),

(2.14), (2.15), (3.26), (4.1) and (4.2) we get

|c2| > σc2λ sgnu(0) = σ(u′(ω)− u′(0)) sgnu(0) = σ

∫ ω

0

u′′(s) sgnu(s) ds

=

∫ ω

0

(|L(u, u)(s)|+ λ|Ṽ0(u)(s)u(s)|) ds

+ (1− λ)σ

∫ ω

0

(F (u)(s) − L(u, u)(s) + q(s)) sgnu(s) ds

> λr1δ(r1) + (1− λ)

(∫ ω

0

g0(s) ds+ σ sgnu(0)

∫ ω

0

q(s) ds

)

> λr1δ(r1) + (1− λ)|c2| > |c2|.

The obtained contradiction |c2| > |c2| proves that (4.3) holds.

Let now ̺0 be a number defined in Lemma 3.2. Then due to condition (2.16) there

exists such a constant ̺1 > r0 that the inequality

(4.4) ̺0

(
ω + r1 + |c1|+ |c2|+ ‖q‖L +

∫ ω

0

η(s, ̺) ds

)
< ̺ for ̺ > ̺1

holds. Assume that ‖u‖C′ > ̺1, and note that in view of nonnegativity of the

operator σṼ0(u)(t) we have σṼ0(u)(t) = |Ṽ0(u)(t)|. Therefore on account of (2.12),
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condition (2.13) and nonnegativity of the function η, we get that u is a solution of

the equation

(4.5) u′′(t) = L(u, u)(t) + (λ+ (1− λ)ν(t))Ṽ0(u)(t)u(t) + η1(t, ‖u‖C′),

where

η1(t, ‖u‖C′) = σ(1− λ)(1 + η(t, ‖u‖C′))ν(t) sgn u(t) + (1 − λ)q(t),

ν(t) =
σ(F (u)(t) − L(u, u)(t)) sgnu(t)

|Ṽ0(u)(t)u(t)| + η(t, ‖u‖C′) + 1
,

and due to condition (2.14) the estimations

(4.6) 0 6 ν(t) < 1, |η1(t, ‖u‖C′)| 6 1 + η(t, ‖u‖C′) + |q(t)|

are valid on I. Now note that according to conditions (2.13), (4.6) and the nonneg-

ativity of the operators σṼ0(u)(t) and σV0(u)(t), the estimation

0 6 σ(V0(u)(t) + (λ + (1− λ)ν(t))Ṽ0(u)(t)) 6 σ(V0(u)(t) + Ṽ0(u)(t)) 6 h0(t)

is satisfied on I. Consequently, due to inclusion (2.13), for arbitrary λ ∈ (0, 1) the

inclusion (V1, V ) ∈ E(h0, h, P
σ
τ ), where V1(x)(t) = V0(x)(t)+(λ+(1−λ)ν(t))Ṽ0(x)(t),

is valid too. Then from (4.5) by Lemma 3.2 due to inequality (4.6) we get the

estimation

‖u‖C′ 6 ̺0

(
µ(u) + |c1|+ |c2|+

∫ ω

0

(|q(s)|+ η(s, ‖u‖C′) + 1) ds

)
,

which in view of (4.3) contradicts with inequality (4.4), i.e. our assumption is invalid

and estimation (3.27) holds.

On the other hand, from Lemma 3.4 due to inclusion (2.13) it follows that the pair

of the operator L̃ and conditions (1.11) belongs to the Opial class O2
0 , and therefore

all the assumptions of Lemma 3.5 are fulfilled, from which the solvability of problem

(1.1), (1.3) follows. �

P r o o f of Corollary 2.5. Assume that the operators V0, Ṽ0 are defined by (2.18).

Then due to Remark 2.4 in view of (2.19), inclusion (2.13) holds. Also, from (2.20)

the validity of conditions (2.14) follows, with

F (x)(t) = f

(
t, x(t),

∫ ω

0

V (x)(t, s)x(τ(t, s)) ds

)
,

L(x, y)(t) = p0(t)y(t) +

∫ ω

0

V (x)(t, s)y(τ(t, s)) ds.

Therefore all the assumptions of Theorem 2.2 are fulfilled from which validity of our

corollary immediately follows. �
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