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Abstract. The Pell sequence (Pn)
∞

n=0 is the second order linear recurrence defined by
Pn = 2Pn−1 + Pn−2 with initial conditions P0 = 0 and P1 = 1. In this paper, we in-
vestigate a generalization of the Pell sequence called the k-generalized Pell sequence which
is generated by a recurrence relation of a higher order. We present recurrence relations,
the generalized Binet formula and different arithmetic properties for the above family of
sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers
are also deduced.
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1. Introduction

There are many integer sequences which are used in almost every field of modern

sciences. For instance, the Fibonacci sequence (Fn)
∞

n=0 is one of the most famous

and curious numerical sequences in mathematics and has been widely studied in the

literature. The Fibonacci sequence has been generalized in many ways, some by

preserving the initial conditions, and others by preserving the recurrence relation.

Dresden and Du in [4] consider a generalization of the Fibonacci sequence consist-

ing of a recurrence relation of higher order. Specifically, they consider, for an integer

k > 2, the k-generalized Fibonacci sequence which is like the Fibonacci sequence but
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starting with 0, 0, . . . , 0, 1 (a total of k terms) and each term afterwards is the sum

of the k preceding terms. In [4], a Binet-style formula that can be used to produce

the k-generalized Fibonacci numbers and interesting arithmetic properties of these

numbers is given. The k-generalized Fibonacci numbers and their properties have

been studied by various authors (for more details see [2], [12], [13], [14], [16]). Other

generalizations of the Fibonacci sequence have also been studied (see, for example,

[3], [8], [15]).

Also, there is the Pell sequence, which is as important as the Fibonacci sequence.

The Pell sequence (Pn)
∞

n=0 is defined by the recurrence Pn = 2Pn−1 + Pn−2 for all

n > 2 with P0 = 0 and P1 = 1. Further details about the Pell sequence can be found,

for instance, in [1], [5], [9], [11].

In this paper we study, for an integer k > 2, a generalization of the Pell se-

quence which is generated by a recurrence relation of higher order; i.e., we con-

sider the k-generalized Pell sequence or, for simplicity, the k-Pell sequence P (k) =

(P
(k)
n )∞n=−(k−2) given by the recurrence

(1.1) P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + . . .+ P

(k)
n−k for all n > 2,

with the initial conditions P
(k)
−(k−2) = P

(k)
−(k−3) = . . . = P

(k)
0 = 0 and P

(k)
1 = 1.

We shall refer to P
(k)
n as the nth k-Pell number. We note that this generalization is

in fact a family of sequences where each new choice of k produces a distinct sequence.

For example, the usual Pell sequence (Pn)
∞

n=0 is obtained for k = 2. Below we present

the values of these numbers for the first few values of k and n > 1.

k Name First nonzero terms
2 Pell 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, . . .
3 3-Pell 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . .
4 4-Pell 1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, . . .
5 5-Pell 1, 2, 5, 13, 34, 89, 232, 605, 1578, 4116, 10736, 28003, 73041, . . .

Table 1. First nonzero k-Pell numbers

Generalized Pell numbers and their properties have been studied by some au-

thors (see [8], [7], [10]). In [7], Kiliç presented some relations involving the usual

Fibonacci and k-Pell numbers showing that the k-Pell numbers can be expressed as

the summation of the usual Fibonacci numbers. The authors of [10] gave a new gen-

eralization of the Pell numbers in matrix representation and showed that the sums

of the generalized Pell numbers could be derived directly using this representation.

The first interesting fact about the k-Pell sequence, showed by Kiliç in [7], is that

the first terms in P (k) are Fibonacci numbers. In fact, Kiliç proved (in our notation)
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that

(1.2) P (k)
n = F2n−1 for all 1 6 n 6 k + 1,

while the next term is P
(k)
k+2 = F2k+3 − 1. In addition, it was also proved in [7] that

if k + 2 6 n 6 2k + 2, then

(1.3) P (k)
n = F2n−1 −

n−k−1
∑

j=1

F2j−1F2(n−k−j).

In this paper, we investigate the k-generalized Pell sequences and present recurrence

relations, the generalized Binet formula, and different arithmetic properties for P (k).

Some interesting identities involving the Fibonacci and generalized Pell numbers

are also deduced and some well-known properties of P (2) are generalized to the

sequence P (k). We also exhibit a good approximation to the nth k-Pell number and

show the exponential growth of P (k).

2. Preliminary results

First of all, we denote the characteristic polynomial of the k-Pell sequence P (k) by

Φk(x) = xk − 2xk−1 − xk−2 − . . .− x− 1.

In 2013, Wu and Zang (see [17]) showed that if a1, a2, . . . , am are positive integers

satisfying a1 > a2 > . . . > am, then for the polynomial

p(x) = xm − a1x
m−1 − a2x

m−2 − . . .− am−1x− am,

we have:

(i) The polynomial p(x) has exactly one positive real zero α with a1 < α < a1 +1;

(ii) The other m− 1 zeros of p(x) lie within the unit circle in the complex plane.

From the above we deduce that Φk(x) has exactly one positive real zero, and that

it is located between 2 and 3. Throughout this paper, γ := γ(k) denotes that single

zero which is a Pisot number of degree k, since the other zeros of the characteristic

polynomial Φk(x) are strictly inside the unit circle. To simplify notation, we shall

omit the dependence on k of γ whenever no confusion may arise. This important

property of γ leads us to call it the dominant root of P (k). Since γ is a Pisot number

of minimal polynomial Φk(x), it follows that this polynomial is irreducible over Q[x].
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We now consider, for each integer k > 2, the function hk(x) defined by

(2.1) hk(x) = (x− 1)Φk(x) = xk+1 − 3xk + xk−1 + 1.

Since P (k) is a linear recurrence of order k with characteristic polynomial Φk(x) and

Φk(x) divides hk(x), we deduce that P
(k) is also a linear recurrence of order k + 1

with characteristic polynomial hk(x). Hence, we obtain our first result of the paper,

which is a “shift formula”, that will be used in the sequel.

Theorem 2.1. Let k > 2 be integer. Then

P (k)
n = 3P

(k)
n−1 − P

(k)
n−2 − P

(k)
n−k−1 for all n > 3.

One can use Theorem 2.1 and mathematical induction to give alternative proofs

of expressions (1.2) and (1.3) (details are left to the reader). Another application of

Theorem 2.1 will enable us to derive an extended version of (1.3) in the following

form:

Theorem 2.2. Let k > 2 be an integer. Then

P (k)
n = F2n−1 −

n−k−1
∑

j=1

F2jP
(k)
n−k−j for all n > k + 2.

Note that Theorem 2.2 immediately shows that the nth k-Pell number does not

exceed the Fibonacci number with index 2n− 1, i.e.,

P (k)
n < F2n−1 holds for all k > 2 and n > k + 2.

P r o o f. We shall prove Theorem 2.2 by induction on n. According to (1.3), we

have

P
(k)
k+2 = F2k+3 − 1 = F2k+3 − F2P

(k)
1 ,

and

P
(k)
k+3 = F2k+5 − 5 = F2k+5 − F2P

(k)
2 − F4P

(k)
1 .

Then the result holds for n = k + 2 and n = k + 3. Let s > k + 4 be an integer and

suppose that

P
(k)
l = F2l−1 −

l−k−1
∑

j=1

F2jP
(k)
l−k−j holds for all k + 4 6 l 6 s.
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We have to prove that

P
(k)
s+1 = F2s+1 −

s−k
∑

j=1

F2jP
(k)
s+1−k−j .

Indeed, by Theorem 2.1 and the induction hypothesis we get

P
(k)
s+1 = 3F2s−1 − 3

s−k−1
∑

j=1

F2jP
(k)
s−k−j − F2s−3 +

s−k−2
∑

j=1

F2jP
(k)
s−1−k−j − P

(k)
s−k,

which implies

P
(k)
s+1 = 3F2s−1 − F2s−3 − 3

s−k−1
∑

j=2

F2jP
(k)
s−k−j +

s−k−2
∑

j=1

F2jP
(k)
s−1−k−j

− 3F2P
(k)
s−k−1 − P

(k)
s−k.

From the above we have, after some elementary algebra, that

P
(k)
s+1 = F2s+1 −

s−k−2
∑

j=1

(3F2j+2 − F2j)P
(k)
s−k−(j+1) − 3P

(k)
s−k−1 − P

(k)
s−k,

and therefore

P
(k)
s+1 = F2s+1 −

s−k
∑

j=3

F2jP
(k)
s+1−k−j − F4P

(k)
s−k−1 − F2P

(k)
s−k.

Consequently

P
(k)
s+1 = F2s+1 −

s−k
∑

j=1

F2jP
(k)
s+1−k−j .

This proves Theorem 2.2. �

3. Main results

This section is devoted to stating and proving the main results of the paper. These

results are concerned with the generalized Binet formula for P (k) and its exponential

growth, in which we demonstrate that the k-Pell numbers grow at an exponential rate

equal to the dominant root γ, extending a result known for the usual Pell numbers.

We also show that a good approximation to the nth k-Pell number is just the term

of the Binet-style formula involving the dominant root.

We summarize the main results in the following theorem.
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Theorem 3.1. Let k > 2 be an integer. Then

(a) For all n > 2− k, we have

P (k)
n =

k
∑

i=1

gk(γi)γ
n
i and |P (k)

n − gk(γ)γ
n| < 1

2
,

where γ := γ1, γ2, . . . , γk are the roots of characteristic polynomial Φk(x) and

(3.1) gk(z) :=
z − 1

(k + 1)z2 − 3kz + k − 1
.

(b) For all n > 1, we have

(3.2) γn−2 6 P (k)
n 6 γn−1.

In order to prove Theorem 3.1, we establish some lemmas which give us interesting

properties of the dominant root of P (k), and which we believe are of independent

interest.

3.1. Generalized Binet formula. In [6], Kalman proved that if (an)n>0 is a

linear recurrence sequence of order k > 2 with initial conditions (a0, a1, . . . , ak−1) =

(0, 0, . . . , 0, 1) and recurrence

an+k = ck−1an+k−1 + . . .+ c1an+1 + c0an for all n > 0,

where c0, c1, . . . , ck−1 are constants, then

an =

k
∑

i=1

αn
i

P ′(αi)
,

where P (t) = tk−ck−1t
k−1− . . .−c1t−c0 is the characteristic polynomial of (an)n>0

and α1, α2, . . . , αk are the roots of P (t).

If we put an = P
(k)
n−(k−2) for all n > 0, then we have that P (t) = Φk(t) and

h′

k(γi) = (γi − 1)Φ′

k(γi) for all 1 6 i 6 k,

where hk(x) is given by (2.1). So, by using Kalman’s result above, we obtain

P (k)
n =

k
∑

i=1

γi − 1

(k + 1)γ2
i − 3kγi + k − 1

γn
i .

This proves the first part of (a) in Theorem 3.1.
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3.2. Properties of the dominant root. First of all, if we consider the function

gk(x) defined in (3.1) as a function of a real variable, then it is not difficult to see

that gk(x) has a vertical asymptote in

ck :=
3k +

√
5k2 + 4

2(k + 1)
,

and is positive and continuous in (ck,∞). Further,

g′k(x) = − k(x2 − 2x+ 2) + (x− 1)2

(k(x2 − 3x+ 1) + x2 − 1)2

is negative in (ck,∞), so gk(x) is decreasing in (ck,∞). Put

ak =
3k +

√
5k2 + 4

2(k + 1)
+

1

k
for all k > 2.

We next show that the sequence (ak)k>2 is increasing. To do this, let f be the real

function defined by

f(x) =
3x+

√
5x2 + 4

2(x+ 1)
+

1

x
.

It is then a simple matter to show that

f ′(x) =
5x− 4

2(x+ 1)2
√
5x2 + 4

+
3

2(x+ 1)2
− 1

x2
= 0

implies that 4(x+1)2(5x4− 10x3+3x2− 8x− 4) = 0. Thus, f has a critical point at

x0 = 2.14813 . . . and is increasing in [x0,∞). This, of course, tells us that (ak)k>2 is

an increasing sequence. In addition, note that

lim
k→∞

ck = lim
k→∞

3k +
√
5k2 + 4

2(k + 1)
= lim

k→∞

3 +
√
5 + 4k−2

2 + 2k−1
= ϕ2,

where ϕ = 1
2 (1 +

√
5). Thus, lim

k→∞

ak = lim
k→∞

(ck + k−1) = ϕ2, and ck 6 ϕ2 − k−1 for

all k > 2. Finally, taking into account that k < ϕk−2 for all k > 6, it is easy to see

that ϕ2 − k−1 < ϕ2(1− ϕ−k) for all k > 6.

We summarize what we have proved so far in the following lemma.

Lemma 3.1. Keep the above notation and let k > 2 be an integer. Then

(a) The function gk(x) is positive, decreasing and continuous in the interval (ck,∞)

and gk(x) has a vertical asymptote in ck.

(b) If k > 2, then ck 6 ϕ2 − k−1. In addition, if k > 6, then the inequalities

ck 6 ϕ2 − k−1 < ϕ2(1− ϕ−k)

hold.
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Recall that each choice of k produces a distinct k-generalized Pell sequence which

in turn has an associated dominant root γ(k). For the convenience of the reader, let

us denote by (γ(k))k>2 the sequence of the dominant roots of the k-Pell family of

sequences.

We have the following lemma in which we prove that this dominant root is strictly

increasing as k increases. We also prove, in the second part of the lemma, that this

dominant root approaches ϕ2 as k approaches infinity, and that it is larger than

ϕ2(1 − ϕ−k). The rest of the statements of the lemma are some technical results

which will be used later.

Lemma 3.2. Let k, l > 2 be integers. Then

(a) If k > l, then γ(k) > γ(l).

(b) ϕ2(1− ϕ−k) < γ(k) < ϕ2.

(c) If k > 6, then

ck 6 ϕ2 − k−1 < ϕ2(1− ϕ−k) < γ(k) < ϕ2.

(d) gk(ϕ
2) = 1/(ϕ+ 2).

(e) 0.276 < gk(γ(k)) < 0.5.

Before proving this, we note, as an immediate consequence of the preceding lemma,

that

lim
k→∞

γ(k) = ϕ2.

P r o o f. To prove (a), we proceed by contradiction by assuming that γ(k) 6 γ(l);

hence 1/γ(l)i 6 1/γ(k)i holds for all i > 1. Taking into account that Φl(γ(l)) = 0,

one has that

γ(l)l = 2γ(l)l−1 + γ(l)l−2 + . . .+ γ(l) + 1,

and, of course, the same conclusion remains valid for γ(k). From this, we get that

1 =
2

γ(l)
+

1

γ(l)2
+

1

γ(l)3
+ . . .+

1

γ(l)l

<
2

γ(k)
+

1

γ(k)2
+

1

γ(k)3
+ . . .+

1

γ(k)k
= 1,

which is a contradiction.

We next prove (b). First, we turn back to expression (2.1), which we rewrite here

as follows

(3.3) hk(x) = (x − 1)Φk(x) = xk−1(x2 − 3x+ 1) + 1.
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Notice here that ϕ2 is a root of x2−3x+1. It then follows from (3.3) that hk(ϕ
2) = 1

and therefore Φk(ϕ
2) = 1/ϕ > 0. In the above we have used the fact that ϕ2−1 = ϕ.

Since Φk(2) = 1− 2k−1 < 0, and recalling that Φk(x) has just one positive real zero,

we find that 2 < γ < ϕ2.

On the other hand, by using once more the fact that ϕ2 is a root of x2 − 3x + 1

and evaluating expression (3.3) at γ, we get the relations

ϕ4 − 3ϕ2 + 1 = 0 and γ2 − 3γ + 1 =
−1

γk−1
.

Subtracting the two expressions above and rearranging some terms, one obtains

(ϕ2 − γ)(ϕ2 + γ − 3) =
1

γk−1
.

From this, and using the facts that ϕ2 + γ − 3 > 1/ϕ and ϕ < γ, which are easily

seen, we get that ϕ2 − γ < ϕ2/ϕk and so ϕ2(1 − ϕ−k) < γ. This finishes the proof

of (b).

The proof of (c) is a direct combination of the second part of this lemma and

Lemma 3.1 (b). To prove (c), we observe that

gk(ϕ
2) =

ϕ2 − 1

(k + 1)ϕ4 − 3k(ϕ+ 1) + k − 1
=

ϕ

3ϕ+ 1
=

1

ϕ+ 2
,

where we used the facts that ϕ2 = ϕ+ 1, ϕ4 = 3ϕ+ 2 and ϕ(ϕ+ 2) = 3ϕ+ 1.

We now prove (d). Since gk(x) is decreasing in the interval (ck,∞) and the ine-

quality ck 6 ϕ2 − k−1 < γ(k) < ϕ2 holds for all k > 6, we have

1

ϕ+ 2
= gk(ϕ

2) < gk(γ(k)) < gk(ϕ
2 − k−1).

But

gk(ϕ
2 − k−1) =

ϕ2 − k−1 − 1

(k + 1)(ϕ2 − k−1)2 − 3k(ϕ2 − k−1) + k − 1

=
ϕ− k−1

ϕ− 2ϕk−1 − k−1 + k−2 + 2
<

1

2
,

where the last inequality holds for all k > 6. Hence, 0.276 < gk(γ(k)) < 0.5 holds

for all k > 6. Finally, computationally we get that

k 2 3 4 5
gk(γ(k)) 0.35 . . . 0.30 . . . 0.29 . . . 0.28 . . .

which shows that 0.276 < gk(γ(k)) < 0.5 also holds for all k > 2. This finishes the

proof of the lemma. �
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3.3. Sequence of errors. For a fixed integer k > 2 and n > 2−k, define E
(k)
n to

be the error of the approximation of the nth k-Pell number with the dominant term

of the Binet-style formula of P (k) given in Theorem 3.1 (a), i.e.,

(3.4) E(k)
n = P (k)

n − gk(γ)γ
n,

for γ the dominant root of Φk(x) and gk(x) defined as in (3.1).

Given a polynomial f , the set of all possible linear recurrence sequences of real

numbers having the characteristic equation f(x) = 0 is a vector space over the real

numbers. Since P (k) and (γn)n satisfy the characteristic equation Φk(x) = 0, it

follows from (3.4) that the sequence (E
(k)
n )n satisfies the same recurrence relation as

the k-Pell sequence. We record this as follows.

Lemma 3.3. Let k > 2 be an integer. Then

E(k)
n = 2E

(k)
n−1 + E

(k)
n−2 + . . .+ E

(k)
n−k for all n > 2.

Furthermore, if n > 3, then

E(k)
n = 3E

(k)
n−1 − E

(k)
n−2 − E

(k)
n−k−1.

The last result of this subsection is the following.

Lemma 3.4. For a fixed integer k > 2 we have

lim
n→∞

E(k)
n = 0.

P r o o f. Using the fact that lim
n→∞

|γj |n = 0 for all 2 6 j 6 k and taking into

account that

|E(k)
n | 6

k
∑

j=2

|gk(γj)||γj |n,

we deduce that

lim
n→∞

|E(k)
n | = 0.

This proves the lemma. �

To conclude this subsection, we prove the second part of Theorem 3.1 (a). Indeed,

with the notation above, we have to prove that

|E(k)
n | < 1

2 for all k > 2 and n > 2− k.

In order to do this, we prove the following three claims:

Claim 3.1. |E(k)
n | < 1

2 for all 2− k 6 n 6 0.

208



Claim 3.2. |E(k)
1 | < 1

2 .

Claim 3.3. |E(k)
n | < 1

2 for all n > 2.

P r o o f of Claim 3.1. Because of the initial conditions of P (k), we have that

P
(k)
n = 0 for all 2 − k 6 n 6 0, so E

(k)
n = −gk(γ)γ

n for all 2 − k 6 n 6 0. For the

case n = 0, we have, by Lemma 3.2 (e), that |E(k)
0 | = gk(γ) <

1
2 . If 2− k 6 n 6 −1,

then γn < γ−1 < 1 and therefore gk(γ)γ
n < gk(γ) < 1

2 for all k > 2. This proves

Claim 3.1. �

P r o o f of Claim 3.2. First, note that E
(k)
1 = P

(k)
1 − gk(γ)γ = 1 − gk(γ)γ. By

Lemma 3.2 (e) we have that 0.276γ < gk(γ)γ < 1
2γ. However, 0.66 < 0.276γ(2) 6

0.276γ and 1
2γ < 1

2ϕ
2 < 1.31, and so 0.66 < gk(γ)γ < 1.31. Thus, −0.31 <

1− gk(γ)γ < 0.34, which implies that |E(k)
1 | = |1− gk(γ)| < 1

2 for all k > 2. So, the

proof of Claim 3.2 is complete. �

P r o o f of Claim 3.3. Suppose for the sake of contradiction that |E(k)
n | > 1

2 for

some integer n > 2, and let n0 be the smallest positive integer such that |E(k)
n0

| > 1
2 .

Since |E(k)
n0−1| < 1

2 and |E(k)
n0−k| < 1

2 we get |E
(k)
n0−1 + E

(k)
n0−k| < 1. According to

Lemma 3.3, E
(k)
n0+1 = 3E

(k)
n0

− (E
(k)
n0−1 + E

(k)
n0−k) and so

|E(k)
n0+1| > 3|E(k)

n0
| − |E(k)

n0−1 + E(k)
n0

|.

Hence

|E(k)
n0+1| − |E(k)

n0
| > 2|E(k)

n0
| − |E(k)

n0−1 + E
(k)
n0−k| > 0

giving

|E(k)
n0+1| > |E(k)

n0
|.

Since n0 − k+1 < n0, we infer that |E(k)
n0−k+1| < 1

2 6 |E(k)
n0

| < |E(k)
n0+1| and therefore

|E(k)
n0

+ E
(k)
n0−k+1| < 2|E(k)

n0+1|. By using this and Lemma 3.3, we obtain

|E(k)
n0+2| > 3|E(k)

n0+1| − |E(k)
n0

+ E
(k)
n0−k+1| > 3|E(k)

n0+1| − 2|E(k)
n0+1|.

Hence, |E(k)
n0+2| > |E(k)

n0+1|.
Now suppose that |E(k)

n0
| < |E(k)

n0+1| < . . . < |E(k)
n0+i−1| for some integer i > 4. We

distinguish two cases according to whether n0+ i−k− 1 < n0 or n0 6 n0+ i−k− 1.

First, if n0 + i− k − 1 < n0, then we get

|E(k)
n0+i−k−1| < 1

2 6 |E(k)
n0

| < |E(k)
n0+1| < . . . < |E(k)

n0+i−1|.

If n0 6 n0 + i− k − 1 < n0 + i − 1, then we obtain that |E(k)
n0+i−k−1| < |E(k)

n0+i−1|.

209



In any case, we have that the inequality

|E(k)
n0+i−k−1| < |E(k)

n0+i−1|

always holds. For this reason

|E(k)
n0+i−2 + E

(k)
n0+i−k−1| < 2|E(k)

n0+i−1|.

From Lemma 3.3 once more, we have that E
(k)
n0+i = 3E

(k)
n0+i−1−(E

(k)
n0+i−2+E

(k)
n0+i−k−1)

and so

|E(k)
n0+i| > 3|E(k)

n0+i−1| − |E(k)
n0+i−2 + E

(k)
n0+i−k−1|

> 3|E(k)
n0+i−1| − 2|E(k)

n0+i−1| = |E(k)
n0+i−1|.

Consequently,

|E(k)
n0+i| > |E(k)

n0+i−1| > . . . > |E(k)
n0+1| > |E(k)

n0
|,

contradicting Lemma 3.4, which says that the error must eventually go to 0. This

proves Claim 3.3 and therefore the proof of the second part of Theorem 3.1 (a). �

3.4. Exponential growth. We begin by mentioning that for the Fibonacci se-

quence it is well-known that

(3.5) ϕn−2 6 Fn 6 ϕn−1 holds for all n > 1.

Similarly, by induction and using the Binet formula for the Pell sequence (namely,

the case k = 2), one can easily prove that

(3.6) γn−2 6 Pn 6 γn−1 holds for all n > 1.

In the above, the value of γ is γ(2) = 1+
√
2. This of course exhibits an exponential

growth of the Fibonacci and Pell numbers. We finally prove (3.2), which shows that

the above inequality (3.6) holds for the k-Pell sequence as well. This will be done

using induction on n.

To begin with, we show that inequality (3.2) holds for n = 1, 2, . . . , k. It is clear

that the result is true for n = 1 because γ > 1, so we assume that 2 6 n 6 k. In this

case, we deduce by (1.2) that P
(k)
n = F2n−1, so we need to show that

(3.7) γn−2 6 F2n−1 6 γn−1 for 2 6 n 6 k.
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By Lemma 3.2 (b) and (3.5), we get

γn−2 < ϕ2(n−2) < ϕ2n−3
6 F2n−1

and therefore the left-hand side of the above inequality (3.7) holds. Then, it remains

to prove that

(3.8) F2n−1 6 γn−1 holds for 2 6 n 6 k.

Computationally, one checks that the inequality (3.8) holds true for 2 6 k 6 6, so

we may assume that k > 7. Now, by making use of the famous Binet formula for the

Fibonacci numbers, we get

F2n−1 =
ϕ2n−1 + ϕ−(2n−1)

√
5

=
ϕ2n−1

√
5

(

1 +
1

ϕ4n−2

)

.

Since ϕ2(n−1)(1 − ϕ−k)n−1 < γn−1 because ϕ2(1 − ϕ−k) < γ by Lemma 3.2 (b), it

suffices to prove that

ϕ2n−1

√
5

(

1 +
1

ϕ4n−2

)

6 ϕ2(n−1)(1− ϕ−k)n−1,

which is equivalent to

(3.9) 1 +
1

ϕ4n−2
6

√
5

ϕ
(1− ϕ−k)n−1.

Using the fact that the function x → (1−ϕ−x)x−1 is increasing for x > 7 and taking

into account that 2 6 n 6 k and k > 7, we deduce that

1 +
1

ϕ4n−2
6 1 +

1

ϕ6
= 1.05572 . . . ,

whereas

√
5

ϕ
(1− ϕ−k)n−1 >

√
5

ϕ
(1− ϕ−k)k−1 >

√
5

ϕ
(1 − ϕ−7)6 = 1.11987 . . .

This proves inequality (3.9). Thus, we have proved that inequality (3.2) holds for

the first k nonzero terms of P (k).

Finally, suppose that (3.2) holds for all terms P
(k)
m with m 6 n−1 for some n > k.

It then follows from the recurrence relation of P (k) that

2γn−3 + γn−4 + . . .+ γn−k−2 6 P (k)
n 6 2γn−2 + γn−3 + . . .+ γn−k−1.
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So

γn−k−2(2γk−1 + γk−2 + . . .+ 1) 6 P (k)
n 6 γn−k−1(2γk−1 + γk−2 + . . .+ 1),

which combined with the fact that γk = 2γk−1+γk−2+. . .+1 gives the desired result.

Thus, inequality (3.2) holds for all positive integers n. So, the proof of Theorem 3.1

is now complete.

A c k n ow l e d g em e n t s. The authors would like to thank the anonymous ref-

eree for carefully examining this paper and providing a number of important com-
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