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α-filters and α-order-ideals in distributive

quasicomplemented semilattices

Ismael Calomino, Sergio Celani

Abstract. We introduce some particular classes of filters and order-ideals in dis-
tributive semilattices, called α-filters and α-order-ideals, respectively. In par-
ticular, we study α-filters and α-order-ideals in distributive quasicomplemented
semilattices. We also characterize the filters-congruence-cokernels in distributive
quasicomplemented semilattices through α-order-ideals.
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lator; order-ideal; filter
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1. Introduction

If A = 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and a, b ∈ A, then the

annihilator of a relative to b is the set 〈a, b〉 = {x ∈ A : a∧x ≤ b}. In [13] M. Man-

delker studied the properties of relative annihilators and prove that a lattice A is

distributive if and only if 〈a, b〉 is an ideal of A for all a, b ∈ A. These results were

generalized by J. Varlet in [21] to the class of distributive semilattices. In partic-

ular, the annihilator of a relative to 0 is the set a◦ = 〈a, 0〉 = {x ∈ A : a∧ x = 0},

called annihilator of a or annulet of a. This concept was studied by W. Cornish

in [8], [9], where introduces the notion of α-ideal in distributive lattices. A gener-

alization of the concept of α-ideal in 0-distributive semilattices and 0-distributive

lattices were studied in [16], [17].

On the other hand, in [20], [19], [10] the class of distributive quasicomplemented

lattices was studied as a generalization of the variety of distributive pseudocomple-

mented lattices. A bounded distributive latticeA is quasicomplemented if for each

a ∈ A, there is b ∈ A such that a◦◦ = b◦, where a◦◦ = {x ∈ A : ∀ y ∈ a◦(x∧y = 0)}.

Clearly, this class of lattices is not a variety, and in general, the element b is non-

unique. This concept can be generalized to bounded semilattices in [12], [15], [18].

The main aim of this paper is to introduce and study the notions of α-filter and

α-order-ideal in bounded distributive semilattices, which generalizes the results
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given in [8], [9]. In particular, we investigate α-filters and α-order-ideals in the

class of distributive quasicomplemented semilattices and we give some results on

filters-congruence-cokernels through α-order-ideals.

The paper is organized as follows. In Section 2 we recall some necessary def-

initions and results to make the paper self-contained. We recall the notion of

annihilator and its properties in terms of irreducible and maximal filters given

in [4], [5]. In Section 3 we present the concepts of α-filter and α-order-ideal in

bounded distributive semilattices and give some properties. We prove a separation

theorem between filters and α-order-ideals by means of irreducible α-filters. In

Section 4 we study α-filters and α-order-ideals in distributive quasicomplemented

semilattices. We prove that the set of all α-filters is a Heyting algebra isomor-

phic to the Heyting algebra of α-order-ideals. Finally, in Section 5, we study the

filters-congruence-cokernels in distributive quasicomplemented semilattices. We

prove that a subset I is an α-filter-congruence-cokernel if and only if it is an

α-order-ideal.

2. Preliminaries

We give some necessary notations and definitions. Let 〈X,≤〉 be a poset.

A subset U ⊆ X is said to be increasing (decreasing, respectively), if for all

x, y ∈ X such that x ∈ U (y ∈ U) and x ≤ y, we have y ∈ U (x ∈ U). The set

of all subsets of X is denoted by P(X) and the set of all increasing subsets of X

is denoted by Pi(X). For each Y ⊆ X , the increasing (decreasing) set generated

by Y is [Y ) = {x ∈ X : ∃ y ∈ Y (y ≤ x)} ((Y ] = {x ∈ X : ∃ y ∈ Y (x ≤ y)},

respectively). If Y = {y}, then we will write [y) and (y] instead of [{y}) and

({y}], respectively.

A meet-semilattice with greatest element, or simply semilattice, is an algebra

A = 〈A,∧, 1〉 of type (2, 0) such that the operation “∧” is idempotent, commuta-

tive, associative and a ∧ 1 = a for all a ∈ A. So, the binary relation “≤” defined

by a ≤ b if and only if a ∧ b = a is an order. A bounded semilattice is an algebra

A = 〈A,∧, 0, 1〉 of type (2, 0, 0) such that 〈A,∧, 1〉 is a semilattice and a ∧ 0 = 0

for all a ∈ A.

Let A be a semilattice. A filter is a subset F of A such that 1 ∈ F , F is

increasing, and if a, b ∈ F , then a∧b ∈ F . The filter generated by a subset X ⊆ A

is the set F (X) = {a ∈ A : ∃x1, . . . , xn ∈ X(x1 ∧ . . . ∧ xn ≤ a)}. If X = {a},

then F ({a}) = [a). Denote by Fi(A) the set of all filters of A. Since 1 ∈ A, it

follows that 〈Fi(A),⊆〉 is a lattice. A proper filter P is irreducible if for every

F1, F2 ∈ Fi(A) such that P = F1 ∩ F2, then P = F1 or P = F2. Note that

a filter F is irreducible if and only if for every a, b /∈ F , there exists c /∈ F and

f ∈ F such that a ∧ f ≤ c and b ∧ f ≤ c. The set of all irreducible filters of A
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is denoted by X(A). A proper filter U is maximal if for any G ∈ Fi(A) such that

U ⊆ G, we have G = U or G = A. Denote by Xm(A) the set of all maximal filters

of A. A subset I of A is an order-ideal if I is decreasing, and for every a, b ∈ I,

there exists c ∈ I such that a ≤ c and b ≤ c. We denote by Id(A) the set of all

order-ideals of A. Finally, a proper order-ideal I is prime if a ∧ b ∈ I implies

a ∈ I or b ∈ I. The following result was proved in [2].

Theorem 1. Let A be a semilattice. Let F ∈ Fi(A) and I ∈ Id(A) such that

F ∩ I = ∅. Then there exists P ∈ X(A) such that F ⊆ P and P ∩ I = ∅.

We are interested in a particular class of semilattices.

Definition 2. Let A be a semilattice. We say that A is distributive if for every

a, b, c ∈ A such that a ∧ b ≤ c, there exist a1, b1 ∈ A such that a ≤ a1, b ≤ b1 and

c = a1 ∧ b1.

We denote by DS and DS01 the class of distributive semilattices and the class

of bounded distributive semilattices, respectively. Note that DS is not a variety.

A lattice is distributive if and only if it is distributive as a semilattice, see [7], [11].

The next theorem was proved by G. Grätzer in [11].

Theorem 3. Let A be a semilattice. The following conditions are equivalent:

(1) The semilattice A is distributive.

(2) 〈Fi(A),⊆〉, considered as a lattice, is distributive.

In [6] it was proved that if A is a distributive semilattice, then the structure

Fi(A) = 〈Fi(A),⊻,⊼,→, {1}, A〉 is a Heyting algebra where the least element

is {1}, the greatest element is A, G ⊻H = F (G ∪H), G ⊼H = G ∩H and

G→ H = {a ∈ A : [a) ∩G ⊆ H}

for all G,H ∈ Fi(A).

Remark 4. If A ∈ DS, then every maximal filter U is irreducible. Indeed, let

F1, F2 ∈ Fi(A) be such that U = F1 ∩ F2. Suppose that U ⊂ F1 and U ⊂ F2.

Since U is maximal, we have F1 = F2 = A and U = A, which is a contradiction

because U is proper. Thus, Xm(A) ⊆ X(A).

Let A be a bounded semilattice and a ∈ A. The annihilator of a is the set

a◦ = {x ∈ A : a ∧ x = 0}.

The annihilators were studied by several authors in [13], [4], [17], [5], [9], [10]. In

general, a◦ is a decreasing subset, but not an order-ideal. Later, A is distributive

if and only if a◦ is an order-ideal for all a ∈ A. For more details see [21], [7]. We

note that if A is pseudocomplemented, i.e., if for every a ∈ A there exists a∗ ∈ A

such that a ∧ x = 0 if and only if x ≤ a∗, then a◦ = (a∗].
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If X ⊆ A, then we define the annihilator of X as the set

X◦ = {x ∈ A : ∀ y ∈ X(x ∧ y = 0)} =
⋂

{x◦ : x ∈ X}.

In particular, a◦◦ = {x ∈ A : ∀ y ∈ a◦(x ∧ y = 0)} =
⋂
{x◦ : x ∈ a◦} for all

a ∈ A. In the following result we remember some properties of the annihilators

in bounded distributive semilattices.

Lemma 5. Let A ∈ DS01. Let a, b ∈ A and P ∈ X(A). We have the following

properties:

(1) If a ∈ b◦, then b◦◦ ⊆ a◦.

(2) (a ∧ b)◦◦ = a◦◦ ∩ b◦◦.

(3) a◦ ∩ P = ∅ if and only if there exists Q ∈ X(A) such that P ⊆ Q and

a ∈ Q.

(4) a◦ ∩ P = ∅ if and only if there exists U ∈ Xm(A) such that P ⊆ U and

a ∈ U .

(5) U ∈ Xm(A) if and only if U ∈ Fi(A) and ∀ a ∈ A (a /∈ U ⇐⇒ a◦∩U 6= ∅).

(6) If U ∈ Xm(A), then ∀ a ∈ A (a /∈ U ⇐⇒ a◦◦ ∩ U = ∅).

Proof: We only prove (1) and (2). The rest can be seen in [4], [5].

(1) Let x ∈ b◦◦ =
⋂
{y◦ : y ∈ b◦}. In particular, a ∈ b◦ and x ∈ a◦. Then

b◦◦ ⊆ a◦.

(2) Let x ∈ (a∧ b)◦◦. Let y ∈ a◦. Since a∧ b ≤ a, we have a◦ ⊆ (a∧ b)◦. Thus,

y ∈ (a∧ b)◦ and as x ∈ (a∧ b)◦◦, it follows that y ∧ x = 0, i.e., x ∈ a◦◦. Similarly,

x ∈ b◦◦ and (a ∧ b)◦◦ ⊆ a◦◦ ∩ b◦◦.

Conversely, let x ∈ a◦◦ ∩ b◦◦. If y ∈ (a ∧ b)◦, then y ∧ (a ∧ b) = (y ∧ a) ∧ b = 0

and y ∧ a ∈ b◦. Since x ∈ b◦◦, x ∧ (y ∧ a) = (x ∧ y) ∧ a = 0 and x ∧ y ∈ a◦.

Again, as x ∈ a◦◦, we have x ∧ (x ∧ y) = x ∧ y = 0 and x ∈ (a ∧ b)◦◦. So,

a◦◦ ∩ b◦◦ ⊆ (a ∧ b)◦◦. �

Let A ∈ DS01. Consider 〈X(A),⊆〉 and the map ϕA : A→ Pi(X(A)) given by

ϕA(a) = {P ∈ X(A) : a ∈ P}. It follows that A is isomorphic to the subalgebra

ϕA[A] = {ϕA(a) : a ∈ A} of Pi(X(A)). Later, for each F ∈ Fi(A), we define

φ[F ] = {P ∈ X(A) : F ⊆ P}.

So, φ[F ] =
⋂
{ϕA(a) : a ∈ F}. Also, if Y ⊆ A, then

ψ[Y ] = {P ∈ X(A) : Y ∩ P 6= ∅} =
⋃

{ϕA(a) : a ∈ Y }.

Remark 6. Let A ∈ DS01. By Lemma 5, we have that:

(1) ϕA(a)c ∩ Xm(A) = ψ[a◦] ∩ Xm(A).

(2) ϕA(a) ∩Xm(A) = ψ[a◦◦] ∩ Xm(A).
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3. α-filters and α-order-ideals in DS01

In this section we introduce the classes of α-filters and α-order-ideals in bounded

distributive semilattices. In particular, we give a separation theorem between fil-

ters and α-order-ideals by means of irreducible α-filters.

Definition 7. Let A ∈ DS01 and F ∈ Fi(A). We say that F is an α-filter if

a◦◦ ∩ F 6= ∅ implies that a ∈ F for all a ∈ A.

Denote by Fiα(A) and Xα(A) the set of all α-filters and irreducible α-filters

of A, respectively.

Example 8. Let A ∈ DS01. It follows that the set D(A) = {a ∈ A : a◦ = {0}},

called the set of dense elements , is a filter of A. Then, D(A) is an α-filter. Indeed,

if a◦◦∩D(A) 6= ∅, then there exists x ∈ a◦◦ such that x◦ = {0}. So, by Lemma 5,

a◦ ⊆ x◦ = {0} and a ∈ D(A). Moreover, the α-filter D(A) is the smallest α-

filter of A. Let F ∈ Fiα(A). If a ∈ D(A), then a◦ = {0} and a◦◦ = A. Then

a◦◦ ∩ F 6= ∅ and since F is an α-filter, we have a ∈ F . Therefore, D(A) ⊆ F for

all F ∈ Fiα(A).

Lemma 9. Let A ∈ DS01 and I ∈ Id(A). Then

FI = {a ∈ A : ∃x ∈ I(a◦ ⊆ x◦◦)}

is an α-filter.

Proof: It is clear that 1 ∈ FI and FI is an increasing subset of A. Let a, b ∈ FI .

Then there exist x, y ∈ I such that a◦ ⊆ x◦◦ and b◦ ⊆ y◦◦. So, x◦ ⊆ a◦◦ and

y◦ ⊆ b◦◦. By Lemma 5, x◦ ∩ y◦ ⊆ a◦◦ ∩ b◦◦ = (a ∧ b)◦◦. As I is an order-ideal,

there is z ∈ I such that x ≤ z and y ≤ z. It follows that z◦ ⊆ x◦ ∩ y◦ ⊆ (a∧ b)◦◦,

i.e., (a∧b)◦ ⊆ z◦◦ and a∧b ∈ FI . Thus, FI ∈ Fi(A). We see that FI is an α-filter.

Let a ∈ A be such that a◦◦ ∩ FI 6= ∅. Then there is b ∈ a◦◦ such that b ∈ FI .

Then a◦ ⊆ b◦ and there is x ∈ I such that b◦ ⊆ x◦◦. So, a◦ ⊆ x◦◦ and a ∈ FI .

Therefore, FI is an α-filter. �

Lemma 10. Let A ∈ DS01 and F ∈ Fi(A). We have the following properties:

(1) If φ[F ] ⊆ Xm(A), then F is an α-filter.

(2) Xm(A) ⊆ Xα(A).

Proof: (1) Let a ∈ A be such that a◦◦ ∩ F 6= ∅. If a /∈ F , by Theorem 1 there

exists P ∈ X(A) such that F ⊆ P and a /∈ P . So, P ∈ φ[F ] and P ∈ Xm(A).

Since a /∈ P , by Lemma 5, we have a◦◦ ∩ P = ∅ and a◦◦ ∩ F = ∅, which is

a contradiction. Then a ∈ F and F is an α-filter.

(2) It follows by Lemma 5. �

Remark 11. Let A ∈ DS01 and P ∈ X(A). If A is pseudocomplemented, then

a◦ = (a∗] and a◦◦ = (a∗∗]. Thus, the condition a◦◦ ∩ P 6= ∅ is equivalent to
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a∗∗ ∈ P and by the results developed in [3], P is maximal if and only if a∗∗ ∈ P

implies that a ∈ P for all a ∈ A. Then, if A is pseudocomplemented, we have

that Xm(A) = Xα(A). In particular, this result is also valid if A is a distributive

pseudocomplemented lattice, see [1].

Theorem 12. Let A ∈ DS01 and X ⊆ A. Then

(⋆) Fα(X) = {a ∈ A : a◦◦ ∩ F (X) 6= ∅}

is the smallest α-filter containing X .

Proof: Since 1◦◦ = A, we have 1◦◦ ∩ F (X) 6= ∅ and 1 ∈ Fα(X). Let a, b ∈ A be

such that a ≤ b and a ∈ Fα(X). It follows that a◦◦ ⊆ b◦◦ and a◦◦ ∩ F (X) 6= ∅.

Thus, b◦◦ ∩F (X) 6= ∅ and b ∈ Fα(X). Let a, b ∈ Fα(X). So, a◦◦ ∩F (X) 6= ∅ and

b◦◦ ∩ F (X) 6= ∅, i.e., there exist f1, f2 ∈ F (X) such that f1 ∈ a◦◦ and f2 ∈ b◦◦.

Then, by Lemma 5, we have f1 ∧ f2 ∈ a◦◦ ∩ b◦◦ ∩ F (X) = (a ∧ b)◦◦ ∩ F (X), i.e.,

(a∧b)◦◦∩F (X) 6= ∅ and a∧b ∈ Fα(X). Then Fα(X) ∈ Fi(A). We see that Fα(X)

is an α-filter. Let a ∈ A be such that a◦◦ ∩ Fα(X) 6= ∅. So, there exists x ∈ a◦◦

such that x◦◦ ∩ F (X) 6= ∅. Then x◦◦ ⊆ a◦◦ and a◦◦ ∩ F (X) 6= ∅. Therefore,

a ∈ Fα(X) and Fα(X) is an α-filter. Since a ∈ a◦◦, it follows that X ⊆ Fα(X).

Finally, let H ∈ Fiα(A) be such that X ⊆ H . If a ∈ Fα(X), then a◦◦ ∩F (X) 6= ∅

and a◦◦ ∩H 6= ∅. As H is an α-filter, a ∈ H and Fα(X) ⊆ H . �

It is easy to see that (⋆) is equivalent to

Fα(X) = {a ∈ A : ∃ f ∈ F (X)(a◦ ⊆ f◦)}.

Throughout this paper we will use the two characterizations. Moreover, by The-

orem 12, a filter F is an α-filter if and only if Fα(F ) = F . If X = {a}, we write

simply Fα({a}) = [a)α. Note that

[a)α = {b ∈ A : b◦◦ ∩ [a) 6= ∅} = {b ∈ A : a ∈ b◦◦} = {b ∈ A : b◦ ⊆ a◦}.

Lemma 13. Let A ∈ DS01 and a, b ∈ A. We have the following properties:

(1) If a ≤ b, then [b)α ⊆ [a)α.

(2) [a)α = A if and only if a = 0.

(3) [a)α = D(A) if and only if a ∈ D(A).

(4) If a ∧ b = 0, then [a)α ⊻ [b)α = A.

(5) [a)α = [b)α if and only if a◦ = b◦.

(6) If [a)α = [b)α, then [a ∧ c)α = [b ∧ c)α for all c ∈ A.

Proof: It is left to the reader. �

We have the following result that characterizes the α-filters.
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Proposition 14. Let A ∈ DS01 and F ∈ Fi(A). The following conditions are

equivalent:

(1) F ∈ Fiα(A).

(2) If a ∈ F , then [a)α ⊆ F .

(3) If [a)α = [b)α and a ∈ F , then b ∈ F .

(4) F =
⋃
{[a)α : a ∈ F}.

Proof: (1) ⇒ (2) If b ∈ [a)α, then b◦ ⊆ a◦ and a◦◦ ⊆ b◦◦. Since a ∈ a◦◦, we

have a◦◦ ∩ F 6= ∅. So, b◦◦ ∩ F 6= ∅ and as F is an α-filter, b ∈ F . Then [a)α ⊆ F .

(2) ⇒ (3) It is immediate.

(3) ⇒ (4) Since [a) ⊆ [a)α for all a ∈ A, we have F ⊆
⋃
{[a)α : a ∈ F}.

Conversely, if b ∈
⋃
{[a)α : a ∈ F}, then there exists a ∈ F such that b ∈ [a)α,

i.e., b◦ ⊆ a◦ and a◦◦ ⊆ b◦◦. So, a◦◦ = a◦◦ ∩ b◦◦ = (a ∧ b)◦◦ and [a)α = [a ∧ b)α.

By hypothesis, a ∧ b ∈ F and b ∈ F . Therefore, F =
⋃
{[a)α : a ∈ F}.

(4) ⇒ (1) Let b ∈ A be such that b◦◦ ∩ F 6= ∅. Then there is f ∈ F such that

f ∈ b◦◦. So, b◦ ⊆ f◦. As F =
⋃
{[a)α : a ∈ F}, there exists a ∈ F such that

f ∈ [a)α, i.e., f
◦ ⊆ a◦. Thus, b◦ ⊆ a◦ and b ∈ [a)α ⊆ F . We conclude that F is

an α-filter. �

Now, we define the notion of α-order-ideal.

Definition 15. Let A ∈ DS01 and I ∈ Id(A). We say that I is an α-order-ideal

if a◦◦ ⊆ I for all a ∈ I.

Denote by Idα(A) the set of all α-order-ideals of A.

Example 16. If A ∈ DS01, then a
◦ is an α-order-ideal for all a ∈ A.

Example 17. Let A ∈ DS01 and F ∈ Fi(A). We consider the set

IF = {a ∈ A : ∃ f ∈ F (a ∈ f◦)}.

Then IF is an α-order-ideal. It is easy to see that IF is decreasing. Let a, b ∈ IF .

So, there exist f1, f2 ∈ F such that a ∈ f◦

1 and b ∈ f◦

2 . As F is a filter, f =

f1 ∧ f2 ∈ F . It follows that a, b ∈ f◦. Since A is distributive, f◦ is an order-ideal

and there exists c ∈ f◦ such that a ≤ c and b ≤ c. It is clear that c ∈ IF and

IF is an order-ideal. Now, we prove that IF is an α-order-ideal. Let a ∈ IF .

Then there is f ∈ F such that a ∈ f◦. If x ∈ a◦◦, then x ∈
⋂
{y◦ : y ∈ a◦}. By

Lemma 5, f◦◦ ⊆ a◦ and f ∈ a◦. Thus, x ∈ f◦ and x ∈ IF . Therefore, a◦◦ ⊆ IF .

In addition, note that if F is proper, then F ∩ IF = ∅. If a ∈ F ∩ IF , then there

is f ∈ F such that a ∈ f◦. By Lemma 5, f◦◦ ⊆ a◦ and f ∈ a◦, i.e., f ∧a = 0 ∈ F ,

which is a contradiction.

Lemma 18. Let A ∈ DS01 and I ∈ Id(A). If X(A) − ψ[I] ⊆ Xm(A), then I is

an α-order-ideal.
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Proof: Let a ∈ I and suppose that a◦◦ * I, i.e., there is x ∈ a◦◦ such that x /∈ I.

By Theorem 1, there exists P ∈ X(A) such that x ∈ P and P ∩ I = ∅. Thus,

P ∈ X(A) − ψ[I] and P ∈ Xm(A). It follows that x ∈ a◦◦ ∩ P , i.e., a◦◦ ∩ P 6= ∅.

Then, by Lemma 5, we have a ∈ P which is a contradiction. Therefore, a◦◦ ⊆ I

and I is an α-order-ideal. �

Proposition 19. Let A ∈ DS01 and I ∈ Id(A). The following conditions are

equivalent:

(1) I ∈ Idα(A).

(2) If a◦ = b◦ and a ∈ I, then b ∈ I.

(3) I =
⋃
{a◦◦ : a ∈ I}.

Proof: (1) ⇒ (2) Let a, b ∈ A be such that a◦ = b◦ and a ∈ I. So, a◦◦ = b◦◦

and since I is an α-order-ideal, we have a◦◦ ⊆ I. Then b◦◦ ⊆ I and b ∈ I.

(2) ⇒ (3) As a ∈ a◦◦ for all a ∈ A, it is immediate that I ⊆
⋃
{a◦◦ : a ∈ I}.

Inversely, if x ∈
⋃
{a◦◦ : a ∈ I}, then there is b ∈ I such that x ∈ b◦◦. Thus, by

Lemma 5, x◦◦ ⊆ b◦◦ and x◦◦ = (x∧ b)◦◦, i.e., x◦ = (x∧ b)◦. Since b ∈ I, x∧ b ∈ I

and by hypothesis, x ∈ I. Therefore, I =
⋃
{a◦◦ : a ∈ I}.

(3) ⇒ (1) Let b ∈ I and x ∈ b◦◦. Then x ∈
⋃
{a◦◦ : a ∈ I} = I, i.e., x ∈ I. So,

b◦◦ ⊆ I and I is an α-order-ideal. �

In [14] the author develops a theorem of separation in 0-distributive posets.

Now, we prove a separation theorem between filters and α-order-ideals by means of

irreducible α-filters in the class of bounded distributive semilattices. The following

theorem will be used in Theorem 24.

Theorem 20. Let A ∈ DS01. Let F ∈ Fi(A) and I ∈ Idα(A) such that F∩ I = ∅.

Then there exists P ∈ Xα(A) such that F ⊆ P and P ∩ I = ∅.

Proof: Let us consider the set F = {H ∈ Fi(A) : F ⊆ H and H ∩ I = ∅}. Since

F ∈ F , we have F 6= ∅. The union of a chain of elements of F is also in F . Then,

by Zorn’s lemma, there exists a filter P maximal in F . We prove that P ∈ Xα(A).

Let F1, F2 ∈ Fi(A) be such that P = F1 ∩F2. So, F1, F2 /∈ F , i.e., F1 ∩ I 6= ∅ and

F2 ∩ I 6= ∅. Then there exist x, y ∈ I such that x ∈ F1 and y ∈ F2. As I is an

order-ideal, there is z ∈ I such that x ≤ z and y ≤ z. Thus, z ∈ P ∩ I, which is

a contradiction. Then P is irreducible. Now, we prove that P is an α-filter. Let

a ∈ A be such that a◦◦ ∩ P 6= ∅ and suppose that a /∈ P . Let F = F (P ∪ {a}).

Then F /∈ F and F ∩ I 6= ∅, i.e., there exists p ∈ P such that p∧ a ∈ I. Since I is

an α-order-ideal, (p∧ a)◦◦ ⊆ I. On the other hand, as a◦◦ ∩P 6= ∅, there is b ∈ A

such that b ∈ a◦◦ ∩ P . It follows that

p ∧ b ∈ p◦◦ ∩ a◦◦ = (p ∧ a)◦◦ ⊆ I.
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So, p ∧ b ∈ P ∩ I which is a contradiction. Therefore, P is an irreducible α-

filter. �

Corollary 21. LetA ∈ DS01. Then every proper α-order-ideal is the intersection

of prime α-order-ideals.

Proof: Let I be a proper α-order-ideal of A. For each a /∈ I, we have [a)∩I = ∅.

By Theorem 20, there exists Pa ∈ Xα(A) such that a ∈ Pa and Pa ∩ I = ∅. Since

A is distributive, P c
a is an order-ideal. As Pa is an α-filter, we have that P c

a is

a prime α-order-ideal. Thus, I =
⋂
{P c

a
: Pa ∈ Xα(A) and a /∈ I}. �

4. Distributive quasicomplemented semilattices

The concept of quasicomplement in bounded distributive lattices was studied

by T. Speed in [19] and W. Cornish in [10] as a generalization of the class of dis-

tributive pseudocomplemented lattices. In this section we give a characterization

of distributive quasicomplemented semilattices and study the concepts of α-filter

and α-order-ideal in distributive quasicomplemented semilattices.

Definition 22. Let A ∈ DS01. We say that A is quasicomplemented if for each

a ∈ A, there exists b ∈ A such that a◦◦ = b◦.

We denote by QDS the class of distributive quasicomplemented semilattices.

Theorem 23. Let A ∈ DS01. The following conditions are equivalent:

(1) A ∈ QDS.

(2) For every a ∈ A, there exists b ∈ A such that

ψ[a◦◦] ∩ Xm(A) = ψ[b◦] ∩ Xm(A).

Proof: (1) ⇒ (2) If a ∈ A, then there exists b ∈ A such that a◦◦ = b◦. It is

immediate to see that ψ[a◦◦] ∩ Xm(A) = ψ[b◦] ∩ Xm(A).

(2) ⇒ (1) Let a ∈ A. Then, by hypothesis, there exists b ∈ A such that

ψ[a◦◦] ∩ Xm(A) = ψ[b◦] ∩ Xm(A). We prove that a◦◦ = b◦. Let x ∈ a◦◦ and

suppose that x /∈ b◦. By Theorem 1, there exists P ∈ X(A) such that b◦ ∩ P = ∅

and x ∈ P . So, by Lemma 5, there exists U ∈ Xm(A) such that P ⊆ U and

b ∈ U . Then x ∈ a◦◦ ∩ U , i.e., U ∈ ψ[a◦◦] ∩ Xm(A) = ψ[b◦] ∩ Xm(A). It follows

that b◦ ∩ U 6= ∅ and b /∈ U , which is a contradiction. Thus, x ∈ b◦ and a◦◦ ⊆ b◦.

Now, let x ∈ b◦ and suppose that x /∈ a◦◦ =
⋂
{y◦ : y ∈ a◦}. Then there is y ∈ a◦

such that x /∈ y◦. By Theorem 1, there exists P ∈ X(A) such that y◦∩P = ∅ and

x ∈ P . So, by Lemma 5, there exists U ∈ Xm(A) such that P ⊆ U and y ∈ U .

Then x ∈ b◦ ∩ U , i.e., U ∈ ψ[b◦] ∩ Xm(A) = ψ[a◦◦] ∩ Xm(A) and a◦◦ ∩ U 6= ∅.

Thus, there exists z ∈ a◦◦ such that z ∈ U . On the other hand, y ∈ a◦ ∩ U and
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z ∧ y = 0 ∈ U . Then U = A, which is a contradiction. It follows that x ∈ a◦◦ and

b◦ ⊆ a◦◦. Therefore, a◦◦ = b◦ and A is quasicomplemented. �

Now, we will see some consequences of Theorem 20. We define operations

of infimum “⊓”, supremum “⊔”, and implication “⇒” in the set of all α-filters

Fiα(A) as follows:

G ⊓H = G ∩H,

G ⊔H = Fα(G ⊻H),

G⇒ H = Fα(G→ H)

for each pair G,H ∈ Fiα(A). By Theorem 12, G ⊓ H,G ⊔ H,G ⇒ H ∈ Fiα(A)

for all G,H ∈ Fiα(A). By Example 8, we consider the structure

Fiα(A) = 〈Fiα(A),⊔,⊓,⇒, D(A), A〉.

Theorem 24. Let A ∈ QDS. Then Fiα(A) is a Heyting algebra.

Proof: Let G,H ∈ Fiα(A). It is immediate that G ⊓ H is the infimum of G

and H . We prove that G ⊔H = Fα(G ⊻H) is the supremum of G and H . Note

that Fα(G⊻H) = Fα(G∪H). It is clear that G⊔H is an upper bound of G and H .

Let K ∈ Fiα(A) be such that G ⊆ K and H ⊆ K. If a ∈ G ⊔ H = Fα(G ⊻H),

then a◦◦ ∩ F (G ∪H) 6= ∅, i.e., there are g ∈ G and h ∈ H such that g ∧ h ∈ a◦◦.

On the other hand, g, h ∈ K and g ∧ h ∈ K. So, a◦◦ ∩K 6= ∅ and since K is an

α-filter, we have a ∈ K. Then G ⊔H is the supremum of G and H .

We see that G ⊓H ⊆ K if and only if G ⊆ H ⇒ K for all G,H,K ∈ Fiα(A).

Suppose that G⊓H ⊆ K. If x ∈ G, then [x)∩H ⊆ G∩H ⊆ K, i.e., [x)∩H ⊆ K.

So, x ∈ H → K. Thus, x ∈ Fα(H → K) = H ⇒ K and G ⊆ H ⇒ K.

Reciprocally, we assume that G ⊆ H ⇒ K. Let x ∈ G ⊓ H . Then x ∈ G and

by hypothesis, x ∈ H ⇒ K = Fα(H → K) and there exists f ∈ H → K, i.e.,

[f) ∩ H ⊆ K, such that x◦ ⊆ f◦. Suppose that x /∈ K. Since K is an α-filter,

we have x◦◦ ∩K = ∅. As A is quasicomplemented, there exists y ∈ A such that

x◦◦ = y◦. So, y◦ ∈ Idα(A) and by Theorem 20 there exists P ∈ Xα(A) such that

K ⊆ P and P ∩y◦ = ∅, i.e., P ∩x◦◦ = ∅. It follows that f◦◦ ⊆ x◦◦ and x, f ∈ x◦◦.

Then x, f ∈ P c and since A is distributive, P c is an order-ideal. Then there is

p ∈ P c such that x ≤ p and f ≤ p. On the other hand, x ∈ H and p ∈ H . Thus,

p ∈ [f) ∩ H ⊆ K ⊆ P and p ∈ P , which is a contradiction. Then x ∈ K and

G ⊓H ⊆ K. Therefore, Fiα(A) is a Heyting algebra. �

Remark 25. Let A ∈ DS01. If A is pseudocomplemented, R(A) = {a∗ : a ∈ A}

is the set of all regular elements of A. So, R(A) = {a ∈ A : a = a∗∗} and

a∗∗ ∈ R(A) for all a ∈ A. If we consider the binary operation a g b = (a∗ ∧ b∗)∗
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for each a, b ∈ A, then we have that

R(A) = 〈R(A),g,∧, ∗, 0, 1〉

is a Boolean algebra, see [7]. On the other hand, recall that the set of all filters

of a Boolean algebra has a structure of Heyting algebra, see [1]. We denote

by Fi(R(A)) = 〈Fi(R(A)),⊻,⊼,→, {1},R(A)〉 the Heyting algebra of filters of

the Boolean algebra R(A). Then, Fiα(A) is isomorphic to the Heyting algebra

Fi(R(A)). If we define λ : Fiα(A) → Fi(R(A)) given by λ(F ) = F ∩R(A), then λ

is well-defined, λ(F ⊓G) = λ(F )⊼λ(G), λ(F ⊔G) = λ(F )⊻λ(G) and λ(F ⇒ G) =

λ(F ) → λ(G) for all F,G ∈ Fiα(A). Let F,G ∈ Fiα(A) such that λ(F ) = λ(G)

and a ∈ F . Since a ≤ a∗∗, we have a∗∗ ∈ F . So, a∗∗ ∈ F ∩R(A) = λ(F ) = λ(G),

i.e., a∗∗ ∈ G. As G is an α-filter, a ∈ G and F ⊆ G. The other inclusion is similar

and λ is 1-1. Let H ∈ Fi(R(A)). Then Fα(H) ∈ Fiα(A) and

a ∈ λ(Fα(H)) ⇐⇒ a ∈ Fα(H) ∩R(A)

⇐⇒ a∗∗ ∈ H and a ∈ R(A)

⇐⇒ a ∈ H.

Thus, λ is onto and therefore λ is an isomorphism.

In every distributive pseudocomplemented lattice the filter of dense elements

is the intersection of maximal filters, see [1]. We see that the filter D(A) is the

intersection of irreducible α-filters in any distributive quasicomplemented semi-

lattice.

Lemma 26. Let A ∈ QDS. Then D(A) =
⋂
{P : P ∈ Xα(A)}.

Proof: By Example 8, D(A) ⊆ F for all F ∈ Fiα(A). In particular, we have

D(A) ⊆
⋂
{P : P ∈ Xα(A)}. We prove the other inclusion. Suppose there is

a ∈
⋂
{P : P ∈ Xα(A)} such that a /∈ D(A). Since D(A) is an α-filter, a◦◦ ∩

D(A) = ∅. As A is quasicomplemented, there exists b ∈ A such that a◦◦ = b◦. So,

b◦ ∈ Idα(A) and by Theorem 20 there exists Q ∈ Xα(A) such that D(A) ⊆ Q and

Q∩b◦ = ∅, i.e., Q∩a◦◦ = ∅. It follows that a /∈ Q, which is a contradiction because

a ∈
⋂
{P : P ∈ Xα(A)}. Therefore, we have D(A) =

⋂
{P : P ∈ Xα(A)}. �

In Lemma 10 we proved that every maximal filter is an α-filter. Now, we see

that in the class QDS the reciprocal is also valid.

Lemma 27. Let A ∈ QDS. Then Xm(A) = Xα(A).

Proof: By Lemma 10, Xm(A) ⊆ Xα(A). We prove the other inclusion. Let

P ∈ Xα(A) and a ∈ A be such that a /∈ P . Since A is quasicomplemented, there

is b ∈ A such that a◦◦ = b◦. So, b ∈ a◦. Note that [a) ∩ [b) ⊆ D(A). Indeed, if
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x ∈ [a)∩ [b) and y ∈ x◦, then a∧y = 0 and b∧y = 0, i.e., y ∈ a◦ and y ∈ b◦ = a◦◦.

Thus, y = 0 and x◦ = {0}. So, [a) ∩ [b) ⊆ D(A) and by Lemma 26, [a) ∩ [b) ⊆ P .

Since P is irreducible and a /∈ P , we have b ∈ P . It follows that b ∈ a◦ ∩ P , i.e.,

a◦∩P 6= ∅. Conversely, it is easy to see that if a◦∩P 6= ∅, then a /∈ P . Therefore,

by Lemma 5, P ∈ Xm(A). �

Let A ∈ DS01 and I ∈ Id(A). We consider

Iα(I) = {a ∈ A : ∃x ∈ I(a ∈ x◦◦)} = {a ∈ A : ∃x ∈ I(x◦ ⊆ a◦)}.

It is clear that Iα((a]) = a◦◦ for all a ∈ A.

Theorem 28. Let A ∈ QDS and I ∈ Id(A). Then Iα(I) is the smallest α-order-

ideal containing I.

Proof: It is easy to see that I ⊆ Iα(I) and that Iα(I) is decreasing. Let a, b ∈

Iα(I). Then there exist x, y ∈ I such that a ∈ x◦◦ and b ∈ y◦◦. As I is an order-

ideal, there is z ∈ I such that x ≤ z and y ≤ z. So, x◦◦ ⊆ z◦◦ and y◦◦ ⊆ z◦◦. Then

a, b ∈ z◦◦. On the other hand, since A is quasicomplemented, there is wz ∈ A

such that z◦◦ = w◦

z . Thus, a, b ∈ w◦

z and as w◦

z is an order-ideal, there is c ∈ w◦

z

such that a ≤ c and b ≤ c. It follows that z ∈ I and c ∈ z◦◦, i.e., c ∈ Iα(I). Then

Iα(I) is an order-ideal. We prove that Iα(I) is an α-order-ideal. Let a ∈ Iα(I).

Then there is x ∈ I such that x◦ ⊆ a◦. So, a◦◦ ⊆ x◦◦. If y ∈ a◦◦, then y ∈ x◦◦ and

y ∈ Iα(I), i.e., a
◦◦ ⊆ Iα(I) and Iα(I) is an α-order-ideal. Finally, let H ∈ Idα(A)

such that I ⊆ H . If a ∈ Iα(I), then there is x ∈ I such that a ∈ x◦◦. Thus, x ∈ H

and since H is an α-order-ideal, x◦◦ ⊆ H . Therefore, a ∈ H and Iα(I) ⊆ H . We

proved that Iα(I) is the smallest α-order-ideal containing I. �

The following technical result will be useful.

Lemma 29. Let A ∈ QDS. Let P ∈ Xm(A) and a, b ∈ A. If (a◦ ∩ b◦)◦ ∩P 6= ∅,

then a ∈ P or b ∈ P .

Proof: As A is quasicomplemented, there exist ã, b̃ ∈ A such that a◦ = (ã)◦◦

and b◦ = (b̃ )◦◦. So,

(a◦ ∩ b◦)◦ ∩ P = ((ã)◦◦ ∩ (b̃ )◦◦)◦ ∩ P = ((ã ∧ b̃)◦◦)◦ ∩ P = (ã ∧ b̃)◦ ∩ P 6= ∅.

Then, by Lemma 5, ã ∧ b̃ /∈ P and ã /∈ P or b̃ /∈ P . If ã /∈ P , then (ã)◦ ∩ P 6= ∅

and a◦◦ ∩ P 6= ∅. It follows by Lemma 5 that a ∈ P . Analogously, if b̃ /∈ P , then

b ∈ P . Therefore, we conclude that a ∈ P or b ∈ P . �

On Idα(A) we define the binary operations

I ⋒ J = {a ∈ A : ∃ (x, y) ∈ I × J [a ∈ (x◦ ∩ y◦)◦]}
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and I ⋓ J = I ∩ J for all I, J ∈ Idα(A). We consider

Idα(A) = 〈Idα(A),⋒,⋓, {0}, A〉.

Theorem 30. Let A ∈ QDS. Then Idα(A) is a bounded distributive lattice.

Proof: Let I, J ∈ Idα(A). It is clear that I⋓J ∈ Idα(A) and I⋓J is the infimum

of I and J . We prove that I ⋒J ∈ Idα(A). By definition, I ⋒J is decreasing. Let

a, b ∈ I ⋒ J . Then there exist (x1, y1), (x2, y2) ∈ I × J such that a ∈ (x◦1 ∩ y
◦

1)
◦

and b ∈ (x◦2∩y
◦

2)
◦. Since I and J are order-ideals, there is (x, y) ∈ I×J such that

x1, x2 ≤ x and y1, y2 ≤ y. So, (x◦1∩y
◦

1)
◦ ⊆ (x◦∩y◦)◦ and (x◦2∩y

◦

2)
◦ ⊆ (x◦∩y◦)◦. It

follows that a, b ∈ (x◦ ∩ y◦)◦. Since A is quasicomplemented, there exist x̃, ỹ ∈ A

such that x◦ = (x̃)◦◦ and y◦ = (ỹ)◦◦. Then

(x◦ ∩ y◦)◦ = ((x̃)◦◦ ∩ (ỹ)◦◦)◦ = ((x̃ ∧ ỹ)◦◦)◦ = (x̃ ∧ ỹ)◦

and a, b ∈ (x̃ ∧ ỹ)◦. As (x̃ ∧ ỹ)◦ is an order-ideal, there is c ∈ (x̃ ∧ ỹ)◦ such that

a ≤ c and b ≤ c, i.e., I ⋒ J is an order-ideal. Let a ∈ I ⋒ J . Then there exists

(x, y) ∈ I × J such that a ∈ (x◦ ∩ y◦)◦. So, a◦◦ ⊆ (x◦ ∩ y◦)◦. It follows that

a◦◦ ⊆ I⋒J and I⋒J is an α-order-ideal. Now, we see that I⋒J is the supremum

of I and J . Let H ∈ Idα(A) such that I ⊆ H and J ⊆ H . If a ∈ I ⋒ J , then

there exists (x, y) ∈ I × J such that a ∈ (x◦ ∩ y◦)◦. In particular, x, y ∈ H .

Suppose that a /∈ H . Then, by Theorem 20, there exists P ∈ Xα(A) such that

a ∈ P and P ∩H = ∅. By Lemma 27, Xα(A) = Xm(A) and P ∈ Xm(A). Also,

a ∈ (x◦ ∩ y◦)◦ ∩ P , i.e., (x◦ ∩ y◦)◦ ∩ P 6= ∅ and by Lemma 29 we have x ∈ P or

y ∈ P . In both cases, P ∩H 6= ∅ which is a contradiction. Then I ⋒ J ⊆ H and

I ⋒ J is the supremum of I and J .

Finally, we see that Idα(A) is distributive. Let I, J,H ∈ Idα(A). We prove

that I ⋓ (J ⋒ H) ⊆ (I ⋓ J) ⋒ (I ⋓ H). Let a ∈ I ⋓ (J ⋒ H). If we suppose that

a /∈ (I ⋓J)⋒ (I ⋓H), then by Theorem 20 and Lemma 27 there exists P ∈ Xm(A)

such that a ∈ P and P ∩ [(I ∩ J) ⋒ (I ∩ H)] = ∅. So, P ∩ (I ∩ J) = ∅ and

P ∩ (I ∩H) = ∅. On the other hand, since a ∈ J ⋒H , there exists (x, y) ∈ J ×H

such that a ∈ (x◦ ∩ y◦)◦. Then (x◦ ∩ y◦)◦ ∩ P 6= ∅ and by Lemma 29, x ∈ P or

y ∈ P . Thus, x ∧ a ∈ P ∩ (I ∩ J) or y ∧ a ∈ P ∩ (I ∩H) which is a contradiction.

Therefore, a ∈ (I ⋓J)⋒ (I ⋓H) and Idα(A) is a bounded distributive lattice. �

Actually, Idα(A) is a Heyting algebra as we will see later. Following Lemma 9

and Example 17, we have the following result.

Lemma 31. Let A ∈ QDS. We have the following properties:

(1) If F ∈ Fiα(A), then F = FIF .

(2) If I ∈ Idα(A), then I = IFI
.
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Proof: (1) If a ∈ FIF , then there is x ∈ IF such that a◦ ⊆ x◦◦. So, there

exists f ∈ F such that x ∈ f◦. By Lemma 5, f◦◦ ⊆ x◦ and x◦◦ ⊆ f◦. It follows

that f◦◦ ⊆ a◦◦. Since f ∈ f◦◦, we have f ∈ a◦◦. As a◦◦ ∩ F 6= ∅ and F is an

α-filter, a ∈ F . Thus, FIF ⊆ F . Reciprocally, let a ∈ F . We take a◦◦. Since

A is quasicomplemented, there is x ∈ A such that a◦◦ = x◦, i.e., a◦ = x◦◦. As

x ∈ x◦◦, then x ∈ a◦ and a ∈ F . So, x ∈ IF . On the other hand, since a◦ ⊆ x◦◦

and x ∈ IF , we have a ∈ FIF and F ⊆ FIF . Thus, F = FIF .

(2) Let a ∈ IFI
. Then there is f ∈ FI such that a ∈ f◦. So, there exists x ∈ I

such that f◦ ⊆ x◦◦. Since x ∈ I and I is an α-order-ideal, we have x◦◦ ⊆ I. It

follows that a ∈ f◦ ⊆ x◦◦, i.e., a ∈ I and IFI
⊆ I. Conversely, let a ∈ I and we

take a◦◦. As A is quasicomplemented, there exists x ∈ A such that a◦◦ = x◦.

Then x◦ ⊆ a◦◦ and x ∈ FI . Later, a ∈ x◦ and x ∈ FI , i.e., a ∈ IFI
. Therefore,

I = IFI
. �

The following observation will be useful.

Remark 32. Let L = 〈L,∨L,∧L, 0, 1〉 be a bounded distributive lattice. Let

H = 〈H,∨H ,∧H ,→H , 0, 1〉 be a Heyting algebra and h : L → H an isomorphism

between bounded distributive lattices. If for each a, b ∈ L we define the binary

operation a→L b = h−1(h(a) →H h(b)), then we have

a ≤ b→L c ⇐⇒ a ≤ h−1(h(b) →H h(c))

⇐⇒ h(a) ≤ h(b) →H h(c)

⇐⇒ h(a) ∧H h(b) ≤ h(c)

⇐⇒ h(a ∧L b) ≤ h(c)

⇐⇒ a ∧L b ≤ c

for all a, b, c ∈ L. Then L = 〈L,∨L,∧L,→L, 0, 1〉 is a Heyting algebra.

Theorem 33. Let A ∈ QDS. Then the Heyting algebras Idα(A) and Fiα(A)

are isomorphic.

Proof: Let f : Idα(A) → Fiα(A) be the mapping given by f(I) = FI . For

Lemma 9, f is well defined. On the other hand, by Lemma 31, f is 1-1 and onto.

We prove that f is an isomorphism between bounded distributive lattices.

Let I1, I2 ∈ Idα(A). We see that FI1⋓I2 = FI1 ⊓ FI2 . If a ∈ FI1⋓I2 , then there

is x ∈ I1 ∩ I2 such that a◦ ⊆ x◦◦. Since x ∈ I1, a ∈ FI1 . Analogously, a ∈ FI2 .

So, a ∈ FI1 ∩ FI2 and FI1⋓I2 ⊆ FI1 ⊓ FI2 . Reciprocally, if a ∈ FI1 ⊓ FI2 , then

there is x ∈ I1 such that a◦ ⊆ x◦◦ and there is y ∈ I2 such that a◦ ⊆ y◦◦. By

Lemma 5, we have a◦ ⊆ x◦◦ ∩ y◦◦ = (x∧ y)◦◦ and x∧ y ∈ I1 ∩ I2, i.e., a ∈ FI1⋓I2 .

Therefore, f(I1 ⋓ I2) = f(I1) ⊓ f(I2).
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Now, we prove that FI1⋒I2 = FI1 ⊔ FI2 . If a ∈ FI1⋒I2 , then there exists

x ∈ I1 ⋒ I2 such that a◦ ⊆ x◦◦. So, there is y ∈ I1 and there is z ∈ I2 such that

x ∈ (y◦ ∩ z◦)◦. We take y◦◦ and z◦◦. Since A is quasicomplemented, there exist

f1, f2 ∈ A such that y◦◦ = f◦

1 and z◦◦ = f◦

2 . It follows that f1 ∈ FI1 and f2 ∈ FI2 .

If we consider f = f1 ∧ f2, then f ∈ FI1 ⊻ FI2 . On the other hand, by Lemma 5,

(y◦ ∩ z◦)◦ = (f◦◦

1 ∩ f◦◦

2 )◦ = ((f1 ∧ f2)
◦◦)◦ = f◦

and since x ∈ (y◦ ∩ z◦)◦, we have x ∈ f◦ and x◦◦ ⊆ f◦. Then a◦ ⊆ f◦ and

a ∈ FI1 ⊔ FI2 . Thus, FI1⋒I2 ⊆ FI1 ⊔ FI2 . Conversely, if a ∈ FI1 ⊔ FI2 , then

there is f ∈ FI1 ⊻ FI2 such that a◦ ⊆ f◦. So, there exists f1 ∈ FI1 and there

exists f2 ∈ FI2 such that f1 ∧ f2 ≤ f , i.e., there exists (y, z) ∈ I1 × I2 such

that f◦

1 ⊆ y◦◦ and f◦

2 ⊆ z◦◦. Then, by Lemma 5, y◦ ∩ z◦ ⊆ (f1 ∧ f2)◦◦. Again,

as A is quasicomplemented, there is g ∈ A such that (f1 ∧ f2)
◦◦ = g◦. Thus,

g ∈ g◦◦ ⊆ (y◦ ∩ z◦)◦ and g ∈ I1 ⋒ I2. However, since a◦ ⊆ f◦ ⊆ (f1 ∧ f2)◦, it

follows that a◦ ⊆ g◦◦. Then a ∈ FI1⋒I2 and FI1 ⊔FI2 ⊆ FI1⋒I2 . We conclude that

f(I1 ⋒ I2) = f(I1) ⊔ f(I2).

Finally, by Remark 32, we define for each I1, I2 ∈ Idα(A) the operation I1  

I2 = f−1(f(I1) ⇒ f(I2)). Then the structure

Idα(A) = 〈Idα(A),⋒,⋓, , {0}, A〉

is a Heyting algebra and f(I1  I2) = f(I1) ⇒ f(I2) for all I1, I2 ∈ Idα(A).

Therefore, f is an isomorphism between Heyting algebras. �

Remark 34. If L is a bounded distributive lattice, then we know that the set of

all ideals Id(L) of L is a Heyting algebra, see [1], where

(•) I  J = {x ∈ A : ∀ i ∈ I(x ∧ i ∈ J)},

for all I, J ∈ Id(L). Let a ∈ I  J . If x ∈ a◦◦ and i ∈ I, then x◦◦ ⊆ a◦◦ and

a ∧ i ∈ J . By Lemma 5 and since J is an α-order-ideal, we have

(x ∧ i)◦◦ = x◦◦ ∩ i◦◦ ⊆ a◦◦ ∩ i◦◦ = (a ∧ i)◦◦ ⊆ J,

i.e., x ∧ i ∈ J . So, x ∈ I  J and a◦◦ ⊆ I  J . Therefore, I  J is an

α-order-ideal and we have a characterization of the implication given by (•).

5. Filters-congruence-cokernels in QDS

In this section we study filters-congruence-cokernels of a distributive quasicom-

plemented semilatticeA and we shall also describe the smallest filter-congruence θ

in A such that I = |0|θ for some α-order-ideal I.
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Let A ∈ DS01. If F ∈ Fi(A), it is easy to see that the relation

θ(F ) = {(a, b) ∈ A×A : ∃ f ∈ F (a ∧ f = b ∧ f)}

is a congruence on A. We say that a congruence θ on A is a filter-congruence

if there is F ∈ Fi(A) such that θ = θ(F ). In particular, if F ∈ Fiα(A), we

say that θ is an α-filter-congruence. There are congruences that are not filter-

congruences, see [5]. If θ is a congruence on A, then the equivalence class |0|θ =

{a ∈ A : (a, 0) ∈ θ} is called the cokernel of θ. A subset X ⊆ A is called congru-

ence-cokernel if there exists a congruence θ on A such that X = |0|θ.

Now, we prove that for each α-order-ideal I of A, there exists an α-filter FI

such that I = |0|θ(FI).

Theorem 35. Let A ∈ QDS and I ∈ Idα(A). Then θ(FI) is the smallest α-

filter-congruence such that I = |0|θ(FI).

Proof: We consider the α-filter FI of Lemma 9. First, we see that a◦ ∩ FI 6= ∅

for all a ∈ I. Suppose there is a ∈ I such that a◦ ∩ FI = ∅. Since a◦ is an order-

ideal, by Theorem 1 there exists P ∈ X(A) such that FI ⊆ P and a◦ ∩ P = ∅.

By Lemma 5, there exists Q ∈ Xm(A) such that P ⊆ Q and a ∈ Q. It is easy to

prove that a◦ ∩Q = ∅. On the other hand, since A is quasicomplemented, there

is b ∈ A such that a◦◦ = b◦. In particular, b◦ ⊆ a◦◦ and a ∈ I, i.e., b ∈ FI and

b ∈ Q. So, b ∈ b◦◦ = a◦. Then a, b ∈ Q and a∧b = 0 ∈ Q, which is a contradiction

because Q is maximal. Therefore, a◦ ∩ FI 6= ∅ for all a ∈ I.

Now, we see that I = |0|θ(FI). If a ∈ I, then a◦ ∩ FI 6= ∅. So, there is

f ∈ FI such that a ∧ f = 0. It follows that (a, 0) ∈ θ(FI) and a ∈ |0|θ(FI). Then

I ⊆ |0|θ(FI). Reciprocally, if a ∈ |0|θ(FI), then there is f ∈ FI such that a∧f = 0.

Thus, there exists x ∈ I such that f◦ ⊆ x◦◦ and a ∈ f◦. It follows that a ∈ x◦◦

and as I is an α-order-ideal, x◦◦ ⊆ I. Then a ∈ I and |0|θ(FI) ⊆ I.

Let F ∈ Fiα(A) be such that I = |0|θ(F ). It is enough to show that FI ⊆ F .

If a ∈ FI , then there is x ∈ I such that a◦ ⊆ x◦◦. Also, since I = |0|θ(F ) we

have x ∈ |0|θ(F ) and there exists f ∈ F such that x ∧ f = 0, i.e., f ∈ x◦. So,

x◦◦ ⊆ f◦. Then a◦ ⊆ f◦ and f ∈ a◦◦ ∩ F . Thus, as a◦◦ ∩ F 6= ∅ and F is an

α-filter, a ∈ F and FI ⊆ F . We conclude that θ(FI) ⊆ θ(F ) and θ(FI) is the

smallest α-filter-congruence such that I = |0|θ(FI). �

Theorem 36. Let A ∈ QDS and I ⊆ A. The following conditions are equivalent:

(1) I is an α-order-ideal.

(2) I is an α-filter-congruence-cokernel.

Proof: (1) ⇒ (2) By Lemma 9, FI is an α-filter and by Theorem 35 we have

I = |0|θ(FI). So, I is an α-filter-congruence-cokernel.
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(2) ⇒ (1) If I is an α-filter-congruence-cokernel, then there is F ∈ Fiα(A)

such that I = |0|θ(F ). We prove that I is an α-order-ideal. It follows that I is

decreasing. Let a, b ∈ I. Then (a, 0), (b, 0) ∈ θ(F ), i.e., there exist f1, f2 ∈ F such

that a ∧ f1 = 0 and b ∧ f2 = 0. Let f = f1 ∧ f2 ∈ F . So, a, b ∈ f◦ and since f◦ is

an order-ideal, there is c ∈ f◦ such that a ≤ c and b ≤ c. Thus, (c, 0) ∈ θ(F ) and

c ∈ |0|θ(F ) = I. Hence, I is an order-ideal. Let a ∈ I. We see that a◦◦ ⊆ I. Since

a ∈ I = |0|θ(F ), there is f ∈ F such that a ∧ f = 0, i.e., f ∈ a◦. If x ∈ a◦◦, then

a◦ ⊆ x◦ and f ∈ x◦. So, x ∧ f = 0 and x ∈ |0|θ(F ) = I. Therefore, a◦◦ ⊆ I and I

is an α-order-ideal. �
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