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Conformal Killing graphs in foliated Riemannian

spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho,

Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira

Abstract. In this paper we investigate the geometry of conformal Killing graphs

in a Riemannian manifold M
n+1

f endowed with a weight function f and having
a closed conformal Killing vector field V with conformal factor ψV , that is, graphs
constructed through the flow generated by V and which are defined over an
integral leaf of the foliation V ⊥ orthogonal to V . For such graphs, we establish
some rigidity results under appropriate constraints on the f -mean curvature.
Afterwards, we obtain some stability results for f -minimal conformal Killing

graphs of M
n+1

f according to the behavior of ψV . Finally, related to conformal

Killing graphs immersed in M
n+1

f with constant f -mean curvature, we study
the strong stability.

Keywords: weighted Riemannian manifold; conformal Killing graph; f -mean cur-

vature; Bakry–Émery–Ricci tensor; strong f -stability

Classification: 53C42

1. Introduction

Conformal Killing vector fields are important objects which have been widely

used in order to understand the geometry of submanifolds and, more particu-

larly, of hypersurfaces immersed in Riemannian spaces. In this setting, S. Mon-

tiel in [29] has studied the uniqueness of compact hypersurfaces with constant

mean curvature in a complete Riemannian manifold endowed with a closed con-

formal Killing vector field, obtaining analogous results to the classical theorems

of A.D. Alexandrov [2], [3] and J. J. Jellett-Liebmann [24], [27] concerning hyper-

surfaces in Euclidean space.

Later on, L. J. Aĺıas, M. Dajczer and J.R. Ripoll in [4] extended the also clas-

sical Bernstein’s theorem, see [9], to the context of complete minimal surfaces in

Riemannian spaces of nonnegative Ricci curvature carrying a Killing vector field.

This was done under the assumption that the sign of the angle function between
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a global Gauss mapping and the Killing vector field remains unchanged along

the surface. In fact, their main result only requires the presence of a homothetic

conformal Killing vector field. Next, M. Dajczer, P. Hinojosa and J.H. de Lira

in [16] defined a notion of Killing graph in a class of Riemannian manifolds en-

dowed with a Killing vector field and solved the corresponding Dirichlet problem

for prescribed mean curvature under hypothesis involving domain data and the

Ricci curvature of the ambient space.

In [10], A. Caminha established obstructions to the existence of closed confor-

mal and nonparallel Killing vector fields on complete Riemannian manifolds with

nonpositive Ricci curvature, generalizing a theorem due to T.K. Pan, see [31].

Moreover, he obtained general Bernstein-type theorems for certain complete hy-

persurfaces of Riemannian manifolds furnished with closed conformal Killing vec-

tor fields. Afterwards, M. Dajczer and J.H. de Lira in [15] extended the results

of [16] by considering graphs which are constructed through the flow generated

by a conformal Killing vector field V globally defined in a Riemannian mani-

fold M
n+1

. According to the terminology established in [15], such graphs are

called conformal Killing graphs. In this context, in [18], [17] the first and last

of the authors together with H. F. de Lima studied the geometry of entire con-

formal Killing graphs; more specifically, under a suitable restriction on the norm

of the gradient of the function z which determines such a graph Σ(z), they have

established sufficient conditions to ensure that Σ(z) is totally umbilical and, in

particular, an integral leaf of the distribution V ⊥ of all vector fields orthogo-

nal to V . Afterwards, when the ambient space has constant sectional curvature,

they get lower estimates for the index of minimum relative nullity of Σ(z). More

recently, J. A. Aledo and R.M. Rubio in [1] showed several stability results for

minimal two-sided surfaces immersed in a wide class of 3-dimensional Riemannian

warped products, which includes the class of Riemannian manifold equipped with

a closed conformal Killing vector field, and, as a consequence, the authors were

able to establish some Bernstein-type results.

On the other hand, in the branch of the geometric analysis many problems lead

us to consider Riemannian manifolds endowed with a measure that has a smooth

positive density with respect to the Riemannian one. The resulting spaces are

the weighted manifolds, which are also called manifolds with density or smooth

metric measure spaces in the current literature. More precisely, given a (n + 1)-

dimensional Riemannian manifold M
n+1

with metric tensor g and a smooth

function f : M
n+1

→ R, the weighted manifold M
n+1

f is obtained by considering

in M
n+1

the weighted volume dµ = e−f dM , where dM denotes the standard

volume element of M
n+1

induced by g. For simplicity, we denote such a weighted

manifold by M
n+1

f .
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Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic

heat flows and many others, weighted manifolds are important nontrivial gener-

alizations of Riemannian manifolds and, nowadays, there are several geometric

investigations concerning them. In particular, a theory of Ricci curvature for

weighted manifolds goes back to A. Lichnerowicz, see [25], [26], and it was later

developed by D. Bakry and M. Émery in their seminal work [6]. In this setting, as

a crucial ingredient to understand the geometry of a weighted manifold M
n+1

f ,

they introduced the so-called Bakry–Émery–Ricci tensor, which corresponds to

an extension of the standard Ricci tensor (see definition (2.1)).

The study of variational questions associated to the area functional in weighted

Riemannian manifolds has been a focus of attention in the last years. In this di-

rection, C. Rosales, A. Cañete, V. Bayle and F. Morgan in [32] investigated the

isoperimetric problem for Euclidean space endowed with a continuous density,

showing that, for a radial log-convex density, balls about the origin are isoperi-

metric regions. Afterwards, A. Cañete and C. Rosales in [12] studied smooth

Euclidean solid cones endowed with a smooth homogeneous weight function. In

this context, they proved that the unique compact, orientable, second order min-

ima of the weighted area under variations preserving the weighted volume and

with free boundary in the boundary of the cone are intersections with the cone

of round spheres centered at the vertex. In [23], D. Impera and M. Rimoldi es-

tablished stability properties concerning f -minimal hypersurfaces (that is, with

identically zero f -mean curvature) isometrically immersed in a weighted manifold

with nonnegative Bakry–Émery–Ricci curvature under volume growth conditions.

Meanwhile, K. Castro and C. Rosales in [13] obtained variational characteriza-

tions of critical points and second order minima of the weighted area with or

without a volume constraint in weighted Riemannian manifolds with boundary.

In [22], D. Imprera, J. H. de Lira, S. Pigola and A.G. Setti aimed to obtain

global height estimates for Killing graphs defined over a complete manifold with

nonempty boundary. To this end, they first point out how the geometric analysis

on a Killing graph is naturally related to a weighted manifold structure, where the

weight is defined in terms of the length of the Killing vector field. According to

this viewpoint, the authors introduce some potential theory on weighted manifolds

with boundary and they proved a weighted volume estimate for intrinsic balls on

the Killing graph. Finally, using these tools, they provided the desired estimate

for the weighted height function in the assumption that the Killing graph has

constant weighted mean curvature and the weighted geometry of the ambient

space is suitably controlled.
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Also in the branch of manifolds with density, M. Batista, M.P. Cavalcante and

J. Pyo in [8] showed some general inequalities involving the weighted mean curva-

ture of compact submanifolds immersed in M
n+1

f . As application, they obtained

an isoperimetric inequality for such submanifolds. Moreover, they also proved an

extrinsic upper bound to the first nonzero eigenvalue of the f -Laplacian on closed

submanifolds of M
n+1

f . Concerning the weighted product spaceGn×R, where Gn

stands for the so-called Gaussian space which is nothing but the Euclidian space

Rn endowed with the Gaussian probability density e−f(x) = (2π)−(n+1)/2e−|x|2/2,

x ∈ Rn, D. T. Hieu and T. L. Nam in [21] extended the classical Bernstein’s the-

orem showing that the only weighted minimal graphs Σ(z) of smooth functions

z(x) = t over Gn are the affine hyperplanes t = constant. Afterwards, M. McGo-

nagle and J. Ross in [28] showed that the hyperplane is the only stable, smooth

solution to the isoperimetric problem in the Gn+1. Meanwhile, in the works [14],

[19] it was applied suitable generalized maximum principles in order to obtain new

Bernstein type results concerning complete hypersurfaces immersed in a class of

weighted warped products.

Here, motivated by the works described above, our purpose is to investigate the

geometry of conformal Killing graphs in a weighted Riemannian manifold M
n+1

f

endowed with a complete conformal Killing vector field V , which are defined

via the global flow associated to V over an integral leaf of the distribution V ⊥

(for more details see Section 2). Taking into account the Cheeger–Gromoll type

splitting theorems due to G. Wei and W. Wylie, see [33], we assume that the

weight function f does not depend on the parameter of the flow associated to unit

vector field ν = −V/|V | (see Remark 3.6). In these circumstances, we calculate

a formula for the f -Laplacian of the support function g(N, V ) (cf. Lemma 3.4),

where N is the Gauss map of the conformal Killing graph Σ(z). Afterwards,

in Section 4, under a suitable restriction on the norm of the gradient of the

function z which determines such a graph Σ(z), we establish sufficient conditions

to ensure that Σ(z) is totally umbilical and, in particular, an integral leaf of

V ⊥ (cf. Theorems 4.1, 4.2, 4.5 and 4.6 and Corollaries 4.3, 4.4, 4.7 and 4.8). Our

approach is based on the use of the f -Laplacian of the supported function g(N, V ),

the f -divergence of the tangent part of V on Σ(z), jointly with a weighted version

of Stoke’s theorem to the context of complete weighted Riemannian manifolds (see

Lemma 3.1).

Furthermore, in Section 5 we study the stability of f -minimal conformal Killing

graphs of M
n+1

f according to the behavior of the derivative of the conformal

factor ψV of V , obtaining sufficient conditions to guarantee that an f -minimal

conformal Killing graphs be Lf -stable, where Lf stands for the weighted Jacobi

operator (cf. Theorem 5.3 and Corollary 5.4). Finally, in Section 6 our goal is
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to investigate the strong f -stability of closed conformal Killing graphs in M
n+1

f

with constant f -mean curvature. More specifically, we get sufficient conditions to

a strong f -stable closed conformal Killing graphs be either f -minimal or isometric

to a leaf of V ⊥ (cf. Theorem 6.2 and Corollary 6.3).

2. Preliminaries

Let (M
n+1

, g,∇, dµ ) be a weighted oriented Riemannian manifold, that is,

an oriented Riemannian manifold M
n+1

with metric tensor g, Levi–Civita con-

nection ∇, and endowed with a weighted volume form dµ = e−f dM , where f

is a real-valued smooth function on M
n+1

, which is called weight function, and

dM is the volume element induced by the metric g. For simplicity of notation,

we will denote (M
n+1

, g,∇, dµ) by M
n+1

f . We mean by C∞(M) the ring of real

functions of class C∞ onM
n+1

f and by X(M) the C∞(M)-module of vector fields

of class C∞ on M
n+1

f .

In this setting, the Bakry–Émery–Ricci tensor Ricf of M
n+1

f is defined by

(2.1) Ricf = Ric + Hessf,

where Ric and Hess are the standard Ricci tensor and the Hessian in M
n+1

f ,

respectively.

Along this work, we will consider hypersurfaces x : Σn →֒ M
n+1

f , namely, iso-

metric immersions from a connected, n-dimensional oriented Riemannian mani-

fold Σn into M
n+1

f , and ∇ and g = g|Σn will denote the Levi–Civita connection

of Σn and the induced metric on Σn, respectively. Let N be the unit normal

vector field, called the Gauss map of x : Σn →֒M
n+1

f , globally defined on Σn.

In this setting, let A denote the shape operator of Σn with respect to N . So,

at each p ∈ Σn, A restricts to a self-adjoint linear map Ap : TpΣ → TpΣ which is

defined by Ap(v) = −∇vN for all v ∈ TpΣ. The f -mean curvature of Σn is the

function Hf given by

(2.2) nHf = nH + g(∇f,N),

where H = 1
n tr(A) denotes the classical mean curvature of Σn with respect to N .

The f -divergence on Σn for any X ∈ X(Σ) is defined by

(2.3) divfX = divX − g(∇f,X),
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where div(X) = trace{Y 7→ ∇YX} denotes the divergence relative to Σn. A di-

rect calculation assures us that

(2.4) divf (ϕX) = ϕdivfX + g(∇ϕ,X)

for all X ∈ X(Σ) and any ϕ ∈ C∞(Σ). We define the f -Laplacian (or drift

Laplacian) relative to Σn by

(2.5) ∆f (ϕ) = divf (∇ϕ) = ∆ϕ− g(∇f,∇ϕ)

for all ϕ ∈ C∞(Σ), where ∆ is the standard Laplacian relative to Σn. From (2.4)

and (2.5) we can easily obtain the expression

(2.6) ∆f (̺ϕ) = ̺∆f (ϕ) + ϕ∆f (̺) + 2g(∇̺,∇ϕ),

which is valid for any pair of functions ̺, ϕ ∈ C∞(Σ).

In what follows, let us consider an (n + 1)-dimensional weighted Riemannian

manifoldM
n+1

f endowed with a conformal Killing vector field V whose orthogonal

distribution D is integrable. Thus, there exists a smooth function ψV ∈ C∞(M)

such that

(2.7) LV g = 2ψV g,

where L stands for the Lie derivative of the metric g of M
n+1

f ; the function ψV

is called the conformal factor of V .

In this setting, we denote by Φ: I × Mn → M
n+1

f the flow generated by V ,

where I = (−∞, a) is an interval with a > 0 and Mn is an arbitrarily fixed

integral leaf of D labeled as t = 0 and which we will suppose to be connected

and complete. It may happen that a = ∞, i.e., the vector field V is complete.

Since Φt = Φ(t, .) is a conformal map for any fixed t ∈ R, there exists a positive

function λ ∈ C∞(I×Mn) such that λ(0, u) = 1 and Φ∗
t g(u) = λ2(t, u)g(u) for any

u ∈ Mn.

Throughout this paper, we restrict ourselves to the case where the function λ

depends only on the variable t, that is, λ ∈ C∞(I). Geometrically, as it was

already observed in [15], this hypothesis allows us to relate the induced metrics

in distinct leaves of the foliation orthogonal to V , which we will denote by V ⊥.

In the following, for X,Y ∈ X(M) we write 〈X,Y 〉 = g(X,Y ). From (2.7) we

easily deduce the conformal Killing equation

〈∇XV, Y 〉+ 〈X,∇Y V 〉 = 2ψV 〈X,Y 〉

for any X,Y ∈ X(M).
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An interesting particular case of a conformal Killing vector field V is that in

which

(2.8) ∇XV = ψVX

for all X ∈ X(M); in this case we say that V is closed, an allusion to the fact that

its dual 1-form is closed. Yet more particularly, a closed and conformal Killing

vector field V is said to be parallel if its conformal factor ψV vanishes identically,

and homothetic if ψV is constant.

Let Mn
t = Φt(M

n) be a leaf of V ⊥ furnished with the induced metric. From

(2.8) we get

(2.9) ∇〈V, V 〉 = 2ψV V.

Consequently, |V |2 is constant on the leaves of V ⊥. Moreover, computing covari-

ant derivatives in (2.9), we have

(Hess〈V, V 〉)(X,Y ) = 2X(ψV )〈V, Y 〉+ 2ψ2
V 〈X,Y 〉.

Consequently, since both Hess and the metric 〈 , 〉 are symmetric tensors, we get

X(ψV )〈V, Y 〉 = Y (ψV )〈V,X〉

for all X,Y ∈ X(M). Now, taking Y = V we arrive at

(2.10) ∇ψV =
V (ψV )

|V |2
V = ν(ψV )ν,

where ν = −V/|V | and, hence, ψV is also constant on the leaves of V ⊥.

Furthermore, with a straightforward computation, we verify that the shape

operator At of a leaf Mn
t ∈ V ⊥ with respect to ν is given by

At(X) = ∇Xν =
ψV

|V |
X

for any X ∈ X(Mn
t) and, hence, the leaves M

n
t are totally umbilical hypersurfaces

with constant mean curvature H = H(t) with respect to ν given by

(2.11) H =
ψV

|V |
.

Under the additional condition that the weight function f of M
n+1

f does not

depend on the parameter of the flow associated to unit vector field ν, which

means that 〈∇f, ν〉 = 0 on M
n+1

f , we obtain from (2.2) and (2.11) that the
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f -mean curvature of a leaf Mn
t ∈ V ⊤ is given by

(2.12) Hf =
ψV

|V |
.

At the end of this first section, our purpose will be to give a description of our

objects of study: conformal Killing graphs immersed in a weighted Riemannian

manifold M
n+1

f endowed with closed conformal Killing vector field V . In this

sense, following the ideas established in [15], given a domain Ω in Mn = Mn
0,

we define the conformal Killing graph Σ(z) of a smooth function z on Ω as the

hypersurface of M
n+1

f given by

Σ(z) = {Φ(z(u), u) : u ∈ Ω},

where Φ is the flow generated by V . When Ω = Mn, Σ(z) is said to be entire.

If we assign coordinates x0 = t, x1, . . . , xn to points in M
n+1

f of the form

u = Φ(t, u), where x1, . . . , xn are local coordinates in Mn, then the corresponding

coordinate vector fields are

∂0|u = V (t) and ∂i|u = Φt∗∂i|u for all i ∈ {1, . . . , n}.

Thus, the conformal Killing graph Σ(z) is parameterized in terms of local coor-

dinates by z(x1, . . . , xn), x1, . . . , xn and the tangent space to Σ(z) is spanned by

the vectors

(2.13)
∂z

∂xi
∂0|Φ(z(u),u) + ∂i|Φ(z(u),u) for all i ∈ {1, . . . , n}.

Hence, from (2.13) we see that the metric induced on Σ(z) is given by

λ2(z(u))
( 1

γ
dz2 + dσ2

)
,

where γ = 1/|V (0)|2 and dσ2 stands for the metric of the leaf Mn.

Moreover, denoting by Dz the gradient of the function z with respect the

metric dσ2, with a straightforward computation we verify that

(2.14) N =
1

λ(z(u))
√
γ + |Dz(u)|2

(
Φz(u)∗Dz(u)− γ∂0|Φ(z(u),u)

)

gives an orientation on Σ(z) such that 〈N, V 〉 < 0.

3. Some auxiliary lemmas

This section is devoted to present the analytical machinery that will be used

to establish our main results.
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Let us denote by L1
f (M) the set of integrable functions on the weighted Rie-

mannian manifoldMf with respect to the weighted volume element dµ = e−f dM ,

where dM stands for the volume element induced by the metric of Mf . Since

from (2.3) we have that

divfX = efdiv(e−fX)

for all smooth vector field X on Mf , it is not difficult to see that from Proposi-

tion 2.1 of [10] we get the following extension of a result due to S. T. Yau in [34].

Lemma 3.1. Let X be a smooth vector field on an oriented n-dimensional com-

plete weighted Riemannian manifold Mf with weight function f such that divfX

does not change sign on Mf . If |X | ∈ L1
f (M), then divfX = 0.

The next lemma is due to G. Wei and W. Wylie, see [33], and it extends

Theorem 7 of [34].

Lemma 3.2. All complete noncompact Riemannian manifolds endowed with

a bounded weighted function f and with nonnegative Bakry–Émery–Ricci ten-

sor have at least linear f -volume growth.

In the context of conformal Killing graphs immersed in a weighted Riemannian

manifold, following the same ideas of Lemma 4.3 of [17], see also the proof of

Theorem 4.2 of [18], we obtain the following

Lemma 3.3. Let M
n+1

f be a weighted Riemannian manifold endowed with com-

plete closed conformal Killing vector field V and let Σ(z) be an entire conformal

Killing graph in M
n+1

f , defined on some leaf Mn of the foliation V ⊥. If Σ(z) lies

between two leaves of the foliation V ⊥ then Σ(z) is complete. Moreover, if |Dz| ∈

L1
f (M

n), then the projection V ⊤ of V onto Σ(z) satisfies |V ⊤| ∈ L1
f (Σ(z)).

A particular class of Riemannian manifolds provided with a closed conformal

Killing vector field is the so-called warped product of the type I ×φ Fn, where

I ⊂ R is an open interval with the metric dt2, Fn is an n-dimensional Riemannian

manifold and φ : I → R is positive and smooth. A warped product I ×φ Fn en-

dowed with a weight function f will be called a weighted warped product and it

will be denoted by

(3.1) (I×φ F
n)f .

For such a space, if πI is the canonical projection onto I, then the vector field

V = (φ◦πI) ∂t is conformal Killing and closed, with conformal factor ψV = φ′◦πI ,

where the prime denotes differentiation with respect to t ∈ I. Moreover, see [29],

for t0 ∈ I, the leaf F
n
t0 = {t0} × F

n (also called slice) is totally umbilical, with
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constant mean curvature

H(t0) =
φ′(t0)

φ(t0)

with respect to −∂t.

Conversely, let M
n+1

f be a weighted Riemannian manifold endowed with closed

conformal Killing vector field V . If p ∈ M
n+1

f and M
n
p is the leaf of V ⊥ passing

through p, then we can find a neighborhood Up of p in Mn
p and an open interval

I ⊂ R containing 0 such that the flow Φ of V is defined on Up for every t ∈ I.

Besides, if V is complete, following the ideas in Section 3 of [29], one can prove

that

(3.2)
R×M

n
p →M

n+1

f

(t, u) 7→ Φ(t, u)

is a global parametrization on M
n+1

f , so that M
n+1

f is isometric to the weighted

warped product

(3.3)
(
R×φ M

n
p

)
f
,

where φ(t) = |V (Φ(t, u))|, t ∈ R, and u ∈ Mn
p is an arbitrary point.

In what follows we assume that the weight function f of M
n+1

f does not depend

on the parameter of the flow associated with the unit vector field ν = −V/|V |,

that is, 〈∇f, ν〉 = 0. This condition has already been used in (2.12) for calculating

the f -mean curvature of the leaves of V ⊥. In particular, when the ambient space

is a warped product of the type I ×φ Fn, we will explicit this condition simply

writing

(3.4) I×φ F
n
f ,

and, in this case, from (2.12) we get that the f -mean curvature of the slice {t}×Fn

is given by

(3.5) Hf (t) =
φ′(t)

φ(t)

with respect to the orientation given by −∂t.

In this scenario, we will consider the support function ηV on a conformal Killing

graph Σ(z) immersed in M
n+1

f , which is defined by

(3.6)
ηV : Σ(z) → R

p 7→ ηV (p) = 〈V (p), N(p)〉,
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where N is the Gauss map of Σ(z) given in (2.14). We have that ηV is negative

and

(3.7) ∇ηV = −A(V ⊤),

where A is the shape operator of Σ(z) with respect to N and V ⊤ is the projection

of vector field V on the tangent bundle of Σ(z).

In our next lemma, we present a suitable formula for the drift Laplacian of ηV .

Lemma 3.4. Let M
n+1

f be a weighted Riemannian manifold endowed with closed

conformal Killing vector field V having conformal factor ψV and such that the

weight function f does not depend on the parameter of the flow associated to

ν = −V/|V |. If Σ(z) is a conformal Killing graph in M
n+1

f , with Gauss map N

given in (2.14), and ηV is the smooth function on Σ(z) defined in (3.6) then

(3.8) ∆f (ηV ) = −{Ricf (N,N) + |A|2}ηV − nV ⊤(Hf )− n{ψVHf +N(ψV )},

where A and Hf are the shape operator and the f -mean curvature of Σ(z)

with respect to N , respectively, and Ricf denotes the Bakry–Émery–Ricci tensor

of M
n+1

f .

Proof: According to our previous digression, we have that (up to isometry)

M
n+1

f can be regarded locally as a weighted warped product of the type (3.3). In

this setting, we have that V = φ∂t, ψV = φ′, ν = −∂t, |V | = φ, and, consequently,

〈∇f, ∂t〉 = 0.

Note that, from (2.2) we get

(3.9) n〈∂t,∇H〉 = n〈∂⊤t ,∇H〉 = n〈∂⊤t ,∇Hf 〉 − ∂⊤t 〈∇f,N〉,

where ∂⊤t = ∂t − 〈N, ∂t〉N is the projection of ∂t on the tangent bundle of Σ(z).

On the other hand,

(3.10)

∂⊤t 〈∇f,N〉 = 〈∇∂⊤

t

∇f,N〉+ 〈∇f,∇∂⊤

t

N〉

= 〈∇∂t−〈N,∂t〉N∇f,N〉 − 〈∇f,A(∂⊤t )〉

= 〈∇∂t
∇f,N〉 − 〈N, ∂t〉Hessf(N,N)− 〈∇f,A(∂⊤t )〉.

Now, taking into account that 〈∇f, ∂t〉 = 0 and denoting by ∇̃ the Levi–Civita

connection on Mn
p , we have ∇f = φ−2∇̃f . Then,

(3.11) 〈∇∂t
∇f,N〉 = 〈∇∂t

(φ−2∇̃f), N〉 = 〈−2φ−3φ′∇̃f + φ−2∇∂t
∇̃f,N〉.
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Hence, applying Proposition 7.35 of [30], from (3.11) we get

(3.12)
〈∇∂t

∇f,N〉 = 〈−2φ−3φ′∇̃f + φ−2φ−1φ′∇̃f,N〉

= −φ′φ−3〈∇̃f,N〉 = −φ′φ−1〈∇f,N〉.

Substituting (3.12) in equation (3.10) we get that

(3.13) ∂⊤t 〈∇f,N〉 = −〈∇f,N〉φ−1φ′ − 〈N, ∂t〉Hessf(N,N)− 〈∇f,A(∂⊤t )〉.

From equation (3.9) and (3.13) we conclude that

(3.14)
−nφ〈∂t,∇H〉 = − nφ〈∂⊤t ,∇Hf 〉 − φ′〈∇f,N〉

− φ〈N, ∂t〉Hessf(N,N)− φ〈∇f,A(∂⊤t )〉.

On the other hand, from Proposition 2.1 of [11] we have that

(3.15)
∆〈N,φ∂t〉 = − n〈φ∂t,∇H〉 − n{φ′H +N(φ′)}

− 〈N,φ∂t〉{Ric(N,N) + |A|2}.

So, substituting (3.14) in (3.15) and using (2.1) we obtain

(3.16)
∆〈N,φ∂t〉 = − n〈φ∂t,∇Hf 〉 − 〈N,φ∂t〉{Ricf (N,N) + |A|2}

− n{φ′Hf +N(φ′)} − 〈∇f,A(φ∂⊤t )〉.

Moreover, from (3.7) we verify that

(3.17) ∇〈N,φ∂t〉 = −A(φ∂⊤t ).

We finish the proof using the equations (3.16) and (3.17) into (2.5). �

We conclude this section by providing an explicit expression for the f -diver-

gence of the tangencial component V ⊤ of V along a conformal Killing graph.

Lemma 3.5. Let M
n+1

f be a weighted Riemannian manifold endowed with closed

conformal Killing vector field V having conformal factor ψV and such that the

weight function f does not depend on the parameter of the flow associated to

ν = −V/|V |, and let Σ(z) be a conformal Killing graph in M
n+1

f . Then

(3.18) divfV
⊤ = nψV + nηVHf ,

whereHf is the f -mean curvature of Σ(z) with respect to N and ηV is the smooth

function on Σ(z) defined in (3.6).

Proof: Since 〈∇f, V 〉 = 0, then, writing V = V ⊤ + ηVN , we get

(3.19) 〈∇f, V ⊤〉 = −ηV 〈∇f,N〉.
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On the other hand, from equation (8.4) of [5] we have

(3.20) divV ⊤ = nψV + nηVH,

where H is the standard mean curvature of Σ(z). Hence, from (2.3), (3.20) and

(3.19) we obtain (3.18). �

Remark 3.6. We observe that the following result is a consequence of a Cheeger–

Gromoll type splitting theorem due to G. Wei and W. Wylie (cf. Theorem 6.1

of [33], see also Theorem 1.1 of [20]):

“LetM
n+1

f be a weighted Riemannian manifold that contains a line. If

the Bakry–Émery–Ricci tensor of M
n+1

f is nonnegative and the weight

function f is bounded then f must be constant along the line.”

Consequently, in any weighted Riemannian manifold M
n+1

f endowed with com-

plete closed conformal Killing vector field V , having nonnegative Bakry–Émery–

Ricci tensor and with bounded weight function f , we have that f does not depend

on the parameter of the flow associated with the unit vector field ν = −V/|V |,

that is, 〈∇f, ν〉 = 0. In this case, we can see that the hypotheses adopted in

Lemmas 3.4 and 3.5 on the weight function f are naturally verified.

4. Rigidity results for conformal killing graphs in M
n+1

f

Taking into account (2.12), we establish our first rigidity result:

Theorem 4.1. Let M
n+1

f be a weighted Riemannian manifold endowed with

complete closed conformal Killing vector field V and such that the weight func-

tion f does not depend on the parameter of the flow associated to ν = −V/|V |,

and let Σ(z) be an entire conformal Killing graph in M
n+1

f , defined on some

leaf Mn of the foliation V ⊥, which lies between two leaves of V ⊥. Suppose that

the f -mean curvature Hf (not necessarily constant) of Σ(z) satisfies the following

inequality

(4.1) 0 < Hf ≤ Hf ,

where Hf is the f -mean curvature of Mn given in (2.12). If |Dz| ∈ L1
f (M

n), then

Σ(z) is isometric to a leaf of V ⊥.

Proof: Let θ be the angle between ν and N . From (3.18) and (4.1), we get

(4.2) divfV
⊤ = n|V |{Hf −Hf cos θ} ≥ n(1− cos θ)Hf |V | ≥ 0.
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On the other hand, from Lemma 3.3 we obtain that Σ(z) is complete and |V ⊤| ∈

L1
f (Σ(z)). Consequently, we can apply Lemma 3.1 to guarantee that divfV

⊤ van-

ishes identically on Σ(z). Therefore, returning to (4.2) we conclude that cos θ = 1

on Σ(z), that is, the unit vector fields N and ν determine the same direction on

Σ(z) and, hence, Σ(z) must be isometric to a leaf of the foliation V ⊥. �

A conformal Killing graph is said f -minimal when its f -mean curvature van-

ishes identically on it. Thus, from the analysis of the sign of divf (V
⊤) in the

proof of Theorem 4.1, we obtain the following

Theorem 4.2. Let M
n+1

f be a weighted Riemannian manifold endowed with

complete closed conformal Killing vector field V and such that the weight func-

tion f does not depend on the parameter of the flow associated to ν = −V/|V |,

and let Σ(z) be an entire conformal Killing graph in M
n+1

f , defined on some

leaf Mn of the foliation V ⊥, which lies between two leaves of V ⊥. Suppose that

the f -mean curvature Hf of Σ(z) is constant and satisfies

0 ≤ Hf ≤ Hf ,

where Hf is the f -mean curvature of Mn given in (2.12). If |Dz| ∈ L1
f (M

n), then

Σ(z) is either f -minimal or isometric to a leaf of V ⊥.

We recall that a slab of a warped product I×φ Fn is a region of the type

[t1, t2]×φ F
n = {(t, q) ∈ I×φ F

n : t1 ≤ t ≤ t2}.

Then, in the case where the ambient space in Theorems 4.1 and 4.2 is a weighted

warped product of the type (3.4), noting that Hf admits the expression (3.5), we

get the following results.

Corollary 4.3. Let Σ(z) be an entire conformal Killing graph in a weighted

warped product R ×φ Fn
f , defined on a slice Fn

t0 = {t0} × Fn, t0 ∈ R, which lies

in a slab of R ×φ Fn
f . Suppose that the f -mean curvature Hf (not necessarily

constant) of Σ(z) satisfies the following inequality

0 < φHf ≤ φ′.

If |Dz| ∈ L1
f (F

n
t0), then Σ(z) is isometric to slice {t} × Fn for some t ∈ R.

Corollary 4.4. Let Σ(z) be an entire conformal Killing graph in a weighted

warped product R ×φ Fn
f , defined on a slice Fn

t0 = {t0} × Fn, t0 ∈ R, which lies

in a slab of R×φ F
n
f . Suppose that the f -mean curvature Hf of Σ(z) is constant

and satisfies

0 ≤ φHf ≤ φ′.
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If |Dz| ∈ L1
f (F

n
t0), then Σ(z) is either f -minimal or isometric to slice {t}×Fn for

some t ∈ R.

Continuing with our study, if the f -mean curvature of the conformal Killing

graph and the conformal factor of the conformal Killing vector field have opposite

signs, we have established the following result.

Theorem 4.5. LetM
n+1

f be a weighted Riemannian manifold with nonnegative

Bakry–Émery–Ricci tensor Ricf , endowed with complete closed conformal Killing

vector field V having conformal factor ψV and such that the weight function f

is bounded. Let Σ(z) be an entire conformal Killing graph in M
n+1

f , defined on

some leaf Mn of the foliation V ⊥, which lies between two leaves of V ⊥, and with

Gauss map N given in (2.14). Suppose that ψV and the f -mean curvature Hf

of Σ(z) verify one of the following conditions:

(a) Hf ≥ 0 and ψV ≤ 0 on Σ(z);

(b) Hf ≤ 0 and ψV ≥ 0 on Σ(z).

If the norm of the second fundamental form |A| of Σ(z) is bounded and |Dz| ∈

L1
f (M

n), then Σ(z) is totally geodesic and Ricf in the direction of N vanishes

identically. In addition, if Σ(z) is noncompact and the Bakry–Émery–Ricci tensor

of Σ(z) is also nonnegative, then Σ(z) is isometric to a totally geodesic leaf of V ⊥.

Proof: First of all, we note that f does not depend on the parameter of the flow

associated with ν, see Remark 3.6.

Since the support function ηV defined in (3.6) is negative, from either item

(a) or (b) jointly with equation (3.18) we obtain that divf (V
⊤) does not change

sign on Σ(z). Since Σ(z) lies between two leaves of the foliation V ⊥ and |Dz| ∈

L1
f (M

n), from Lemma 3.3 we obtain that Σ(z) is complete and |V ⊤| ∈ L1
f (Σ(z)).

So, Lemma 3.1 gives divf (V
⊤) = 0 on Σ(z). Therefore, ψV = 0 and Hf = 0

on Σ(z).

Now, considering (3.8), we obtain

∆f (ηV ) = −{Ricf (N,N) + |A|2}ηV ≥ 0

on Σ(z). Moreover, we note that the boundedness of |A| on Σ(z) gives

|∇ηV | ≤ |A||V ⊤| ∈ L1
f (Σ(z)).

Applying again Lemma 3.1, we get ∆f (ηV ) = 0 on Σ(z) and, consequently,

Ricf (N,N) + |A|2 = 0

on Σ(z). Since Ricf (N,N) ≥ 0, we get Ricf (N,N) = 0 and A = 0 on Σ(z), that

is, Σ(z) is totally geodesic.
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Proceeding, in view of (3.7), we obtain that ∇ηV = 0 on Σ(z) and, hence,

ηV = 〈V,N〉 is constant and nonzero on Σ(z). On the order hand, since V is

parallel on Σ(z), from (2.9) we have that 〈V, V 〉 is constant on M
n+1

f . Thus,

(4.3) |V ⊤|2 = |V − 〈V,N〉N |2 = 〈V, V 〉 − 〈V,N〉2

is also constant on Σ(z). Therefore,

(4.4) ∞ >

∫

Σ(z)

|V ⊤| dµ = |V ⊤|volf (Σ(z)),

where volf (Σ(z)) is the weighted volume of Σ(z). If, in addition, we assume Σ(z)

is noncompact and that the Bakry–Émery–Ricci tensor of Σ(z) is also nonnegative,

Lemma 3.2 gives volf (Σ(z)) = ∞ and, consequently, the only possibility that we

have for validity of (4.4) is that |V ⊤| = 0 on Σ(z). Thus, from (4.3) we get

|〈V,N〉| = |V |.

Therefore, Cauchy–Schwarz inequality gives that V is parallel to N and, hence,

Σ(z) must be isometric to a totally geodesic leaf of V ⊥. �

When the f -mean curvature of a conformal Killing graph and the conformal

factor of the conformal Killing vector field have the same sign, we have the fol-

lowing

Theorem 4.6. LetM
n+1

f be a weighted Riemannian manifold with nonnegative

Bakry–Émery–Ricci tensor Ricf , endowed with complete closed conformal Killing

vector field V having conformal factor ψV and such that the weight function f

is bounded. Let Σ(z) be an entire conformal Killing graph in M
n+1

f , defined on

some leaf Mn of the foliation V ⊥, which lies between two leaves of V ⊥, with

Gauss map N given in (2.14), and with norm of the second fundamental form |A|

and f -mean curvature Hf both bounded. Suppose that |Dz| ∈ L1
f (M

n), Hf has

the same sign as ψV and

(4.5)
1

|V |

∂ψV

∂t
≤ −n(Hf )

2,

where t ∈ R is the parameter of the flow associated with the unit vector field

ν = −V/|V |. ThenΣ(z) is totally geodesic and Ricf in the direction of N vanishes

identically. In addition, if Σ(z) is noncompact, 〈V, V 〉 is constant on Σ(z) and

the Bakry–Émery–Ricci tensor of Σ(z) is also nonnegative, then Σ(z) is isometric

to a totally geodesic leaf of V ⊥.
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Proof: We have that f does not depend on the parameter of the flow associated

with ν, see Remark 3.6. From (2.10) we observe that

(4.6) N(ψV ) = 〈N,∇ψV 〉 = −
ν(ψV )

|V |
ηV = −

1

|V |

∂ψV

∂t
ηV ,

where ηV is the negative support function defined in (3.6). Thus, in (3.8) we have

∆f (ηV ) = −n〈∇Hf , V 〉 − {Ricf (N,N) + |A|2}ηV − nψVHf +
n

|V |

∂ψV

∂t
ηV .

From hypothesis (4.5), we get

(4.7) ∆f (ηV ) ≥ −n〈∇Hf , V 〉 − {Ricf (N,N) + |A|2}ηV − nψVHf − n2(Hf )
2ηV .

Now, let us consider on Σ(x) the smooth vector field

X = ∇ηV + nHfV
⊤.

Since Σ(z) lies between two leaves of the foliation V ⊥ and |Dz| ∈ L1
f (M

n), from

Lemma 3.3 we obtain that Σ(z) is complete and |V ⊤| ∈ L1
f (Σ(z)). Then, from

(3.7) we obtain

|X | ≤ {|A|+ n|Hf |}|V
⊤| ∈ L1

f (Σ(z)),

since Hf and |A| are bounded on Σ(z).

Moreover, from (2.3), (2.4), (3.18) and (4.7) we have

(4.8)

divfX = ∆f (ηV ) + n〈∇Hf , V 〉+ nHf divf (V
⊤)

≥ − n〈∇Hf , V 〉 − {Ricf (N,N) + |A|2}ηV

− nψVHf − n2(Hf )
2ηV + n〈∇Hf , V 〉

+ n2ψVHf + n2(Hf )
2ηV

− {Ricf (N,N) + |A|2}ηV + n(n− 1)ψVHf ≥ 0,

where in the last inequality we used that ηV is negative, Ricf is nonnegative and

the assumption that Hf and ψV have the same sign on Σn. Thus, Lemma 3.1

gives divfX = 0 on Σ(z). Therefore, by returning to (4.8) we obtain that

Ricf (N,N) = 0 and Σ(z) is totally geodesic.

Finally, if Σ(z) is noncompact, 〈V, V 〉 is constant on Σ(z) and the Bakry–

Émery–Ricci tensor of Σ(z) is also nonnegative, then (4.3) holds and we can

reason as in the last part of the proof of Theorem 4.5 to conclude that Σ(z) is

isometric to a totally geodesic leaf of V ⊤. �

If the ambient space M
n+1

f in Theorems 4.5 and 4.6 is a weighted warped

product R ×φ Fn
f , described in (3.4), we observe that the hypotheses about the
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Bakry–Émery–Ricci tensor of M
n+1

f and the weight function f can be disre-

garded, because in this case we already have that the weighted function f does

not depend on the parameter of the flow associated with the unit vector field −∂t.

Hence, when M
n+1

f = R ×φ Fn
f we have that Theorems 4.5 and 4.6 can be re-

scripted, respectively, in the following way.

Corollary 4.7. Let R×φF
n
f be a weighted warped product with bounded weight

function f and let Σ(z) be an entire conformal Killing graph in R×φ Fn
f , defined

on a slice Fn
t0 = {t0} × Fn, t0 ∈ R, which lies in a slab of R ×φ Fn

f , and with

Gauss mapN given in (2.14). Suppose that the warped function φ and the f -mean

curvature Hf of Σ(z) verify one of the following conditions:

(a) Hf ≥ 0 and φ′ ≤ 0 on Σ(z);

(b) Hf ≤ 0 and φ′ ≥ 0 on Σ(z).

If the norm of the second fundamental form |A| of Σ(z) is bounded and |Dz| ∈

L1
f (F

n
t0), then Σ(z) is totally geodesic and the Bakry–Émery–Ricci tensor of

R ×φ Fn
f in the direction of N vanishes identically. In addition, if Σ(z) is non-

compact and the Bakry–Émery–Ricci tensor of Σ(z) is nonnegative, then Σ(z) is

isometric to a totally geodesic slice {t} × Fn for same t ∈ R.

Corollary 4.8. Let R×φF
n
f be a weighted warped product with bounded weight

function f and let Σ(z) be an entire conformal Killing graph in R×φ Fn
f , defined

on a slice Fn
t0 = {t0} × Fn, t0 ∈ R, which lies in a slab of R ×φ Fn

f , with Gauss

map N given in (2.14), and with norm of the second fundamental form |A| and

f -mean curvature Hf both bounded. Suppose that |Dz| ∈ L1
f (F

n
t0), Hf has the

same sign as the derivative of the warped function φ and

φ′′ ≤ −nφ (Hf )
2.

Then Σ(z) is totally geodesic and the Bakry–Émery–Ricci tensor of R ×φ Fn
f in

the direction of N vanishes identically. In addition, if Σ(z) is noncompact, 〈V, V 〉

is constant on Σ(z) and the Bakry–Émery–Ricci tensor of Σ(z) is nonnegative,

then Σ(z) is isometric to a totally geodesic slice {t} × Fn, t ∈ R.

5. Stability of f-minimal conformal killing graphs

Let M
n+1

f be a weighted Riemannian manifold with weight function f and

endowed with closed conformal Killing vector field V , and let x : Σ(z) →֒ M
n+1

f

be a conformal Killing graph with Gauss map N defined in (2.14). In this setting,

we denote by dΣ(z) the volume element with respect to the metric induced by

x : Σ(z) →֒ M
n+1

f and we mean by C∞
0 (Σ(z)) the set of all functions of class C∞

on Σ(z) supported compactly.
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It is well known that, given a function ϕ ∈ C∞
0 (Σ(z)) there exists a normal

variation with compact support a fixed boundary

(5.1) xs : Σ(z) →M
n+1

f for s ∈ (−ε, ε),

of x : Σ(z) →֒M
n+1

f , that is,

(i) xs = Id outside a compact subset of Σ(z);

(ii) for s ∈ (−ε, ε), the map xs : Σ(z) → M
n+1

f is an immersion such that

x0(p) = x(p) for all p ∈ Σ(z);

(iii) xs(p) = p for all p ∈ ∂Σ(z).

Moreover, associated with xs : Σ(z) →M
n+1

f we have that the variational normal

field is ϕN and the first variation of the weighted area functional

(5.2)

Af : (−ε, ε) → R

s 7→ Af (s) = Areaf
(
xs(Σ(z))

)
=

∫

Σ(z)

dµs ,

where dµs = e−f dΣ(z)s and dΣ(z)s denotes the volume element of Σ(z) with

respect to the metric induced by xs : Σ(z) →M
n+1

f , is given by (see, for instance,

[13], Lemma 3.2)

(5.3) δϕ(Af ) =
dA

ds
(0) = n

∫

Σ(z)

ϕHf dµ.

As a consequence, x : Σ(z) →֒ M
n+1

f is a f -minimal if and only if δϕ(Af ) = 0

for every smooth function ϕ ∈ C∞
0 (Σ(z)). In other words, f -minimal conformal

killing graphs in M
n+1

f are characterized as critical points of Af .

The stability operator of this variational problem is given by the second vari-

ation formula for the f -area, which in our case is written as follows, see Proposi-

tion 3.5 of [13] for Hf = 0,

(5.4) δ2ϕ(Af ) =
d2A

ds2
(0) = −

∫

Σ(z)

ϕLf (ϕ) dµ

with
Lf = ∆f + |A|2 +Ricf (N,N),

where ∆f is the drift Laplacian operator on Σ(z), N is the Gauss map of Σ(z),

|A| denotes the length of the shape operator A of Σ(z) and Ricf is the Bakry–

Émery–Ricci tensor of M
n+1

f .

For f -minimal conformal Killing graphs in M
n+1

f , the above discussion moti-

vates the following notion of stability.
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Definition 5.1. Let M
n+1

f be a weighted Riemannian manifold with weight

function f and endowed with closed conformal Killing vector field V , and let

x : Σ(z) →֒ M
n+1

f be a f -minimal conformal Killing graph. We say that x :

Σ(z) →֒M
n+1

f is Lf -stable if δ2ϕ(Af ) ≥ 0 for every ϕ ∈ C∞
0 (Σ(z)).

In order to prove our main theorem in this section, we will need to use the

following auxiliary result, which gives a sufficient condition for a f -minimal hy-

persurfaces be Lf -stable.

Lemma 5.2. LetM
n+1

f be a weighted Riemannian manifold with weight function

f and endowed with closed conformal Killing vector field V , and let x : Σ(z) →֒

M
n+1

f be a f -minimal conformal Killing graph. If there exists a positive smooth

function u ∈ C∞(Σ(z)) such that Lf (u) ≤ 0, then x : Σ(z) →֒M
n+1

f is Lf -stable.

Proof: Let us assume that there exists such a function u and take ϕ ∈ C∞
0 (Σ(z)).

Then, we can choose ̺ ∈ C∞
0 (Σ(z)) satisfying ϕ = ̺ u. Hence, from (2.6) and

(5.4) we have

(5.5)

δ2ϕ(Af ) = −

∫

Σ(z)

ϕLf (ϕ) dµ = −

∫

Σ(z)

̺ uLf(̺ u) dµ

= −

∫

Σ(z)

(̺2uLf(u) + ̺ u2∆f (̺) + 2̺ u〈∇̺,∇u〉) dµ

≥ −

∫

Σ(z)

(̺ u2∆(̺) + 2̺ u〈∇̺,∇u〉 − ̺ u2〈∇̺,∇f〉) dµ

= −

∫

Σ(z)

(
̺ u2∆(̺) +

1

2
〈∇̺2,∇u2〉 − ̺ u2〈∇̺,∇f〉

)
dµ.

On the other hand, we can see that

div(u2∇̺2) = 〈∇u2,∇̺2〉+ u2∆(̺2) = 〈∇u2,∇̺2〉+ 2̺ u2∆(̺) + 2u2|∇̺|2.

Therefore, from the weighted version of divergence theorem, see Lemma 2.2

of [12], we get from last equation together with (5.5) that

δ2ϕ(Af ) ≥ −

∫

Σ(z)

(1
2
div(u2∇̺2)− u2|∇̺|2 − ̺ u2〈∇̺,∇f〉

)
dµ

= −

∫

Σ(z)

(1
2
divf (u

2∇̺2)− u2|∇̺|2
)
dµ =

∫

Σ(z)

u2|∇̺|2 dµ ≥ 0

and, therefore, x : Σ(z) →֒M
n+1

f is Lf -stable. �

Now, analyzing the behavior of the conformal factor ψV along a conformal

Killing graph, we will state and prove our main result concerning Lf -stability. In
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what follows, t ∈ R denotes the parameter of the flow associated with the unit

vector field ν = −V/|V |.

Theorem 5.3. Let M
n+1

f be a weighted Riemannian manifold with nonnegative

Bakry–Émery–Ricci tensor, endowed with complete closed conformal Killing vec-

tor field V having conformal factor ψV and whose weight function f is bounded,

and let x : Σ(z) →֒M
n+1

f be a f -minimal conformal Killing graph.

(a) If ∂ψV /∂t ≤ 0 on Σ(z) then x : Σ(z) →֒ M
n+1

f is Lf -stable.

(b) If Σ(z) is compact and ∂ψV /∂t ≥ 0 on Σ(z) then x : Σ(z) →֒ M
n+1

f is

Lf -stable if and only if ψV is constant on Σ(z).

(c) If Σ(z) is compact and ∂ψV /∂t > 0 on Σ(z) then x : Σ(z) →֒ M
n+1

f

cannot be Lf -stable.

Proof: We have that f does not depend on the parameter of the flow associated

with ν, see Remark 3.6. On Σ(z), we consider the smooth positive function

u = −ηV , where ηV is defined in (3.6). Then, from (3.8) and (4.6) we obtain

(5.6) Lf(u) =
n

|V |

∂ψV

∂t
u,

and, with a direct application of Lemma 5.2, the result of item (a) is obtained

immediately.

Now, let us consider (b). Note that in this case C∞
0 (Σ(z)) = C∞(Σ(z)). So, if

x : Σ(z) →֒ M
n+1

f is Lf -stable, from Definition 5.1 and equation (5.6) we get

(5.7) 0 ≤ δ 2
u (Af ) = −

∫

Σ(z)

uLf(u) dµ = −n

∫

Σ(z)

u2

|V |

∂ψV

∂t
dµ ≤ 0,

which guarantees us ∂ψV /∂t = 0 on Σ(z). The converse follows from item (a).

Finally, we prove (c). Assuming the opposite, if we would have x : Σ(z) →֒

M
n+1

f Lf -stable then, from the analysis of signals studied in (5.7), we obtain

0 ≤ −n

∫

Σ(z)

u2

|V |

∂ψV

∂t
dµ < 0,

which is absurd. �

When the ambient space is a weighted warped product of the type (3.4), we

can apply Theorem 5.3 to obtain the following result.

Corollary 5.4. Let x : Σ(z) →֒ R×φF
n
f be a f -minimal conformal Killing graph.

(a) If the warping function φ satisfies φ′′ ≤ 0 on Σ(z) then x : Σ(z) →֒ R×φF
n
f

is Lf -stable.
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(b) If Σ(z) is compact and the warping function φ satisfies φ′′ ≥ 0 on Σ(z)

then x : Σ(z) →֒ R×φ F
n
f is Lf -stable if and only if φ = at+ b on Σ(z) for

some a, b ∈ R.

(c) If Σ(z) is compact and the warping function φ satisfies φ′′ > 0 on Σ(z)

then x : Σ(z) →֒ M
n+1

f cannot be Lf -stable.

6. Stability of constant f-mean curvature conformal killing graphs

Let M
n+1

f be a weighted Riemannian manifold with weight function f and

endowed with closed conformal Killing vector field V , and let x : Σ(z) →֒ M
n+1

f

be a closed (that is, compact and without boundary) conformal Killing graph

with Gauss map N defined in (2.14).

In what follows we consider the set

G =

{
ϕ ∈ C∞(Σ(z)) :

∫

Σ(z)

ϕdµ = 0

}
,

formed by all the smooth functions on Σ(z) with weighted integral mean equal

to zero, where dµ = e−f dΣ(z) and dΣ(z) is the volume element with respect to

the metric induced by x : Σ(z) →֒ M
n+1

f .

According to the ideas established in Lemmas 2.1 and 2.2 of [7], see also Lem-

ma 3.2 of [13], every smooth function ϕ ∈ G induces a normal variation (namely,

a smooth function of form (5.1) checking only item (ii)) of x : Σ(z) →֒M
n+1

f with

variational normal field ϕN and with first variation δϕ(Af ) of the weighted area

functional Af : (−ε, ε) → R, defined in (5.2), given by the expression (5.3). As

a consequence of (5.3), any closed conformal Killing graph x : Σ(z) →֒M
n+1

f with

constant f -mean curvature Hf is a critical point of Af restricted to all functions

ϕ belonging to G. Geometrically, this condition means that the variations under

consideration preserve a certain weighted volume function (for more details, see

Section 3 of [13]). For these critical points, Proposition 3.5 of [13], see also

Proposition 2.5 of [7], asserts that the stability of the corresponding variational

problem is given by the second variation

(6.1) δ2ϕ(Af ) = −

∫

Σ(z)

{∆f (ϕ) + (|A|2 +Ricf (N,N))(ϕ)}ϕdµ

where ∆f is the drift Laplacian operator on Σ(z), N is the Gauss map of Σ(z),

|A| denotes the length of the shape operator A of Σ(z) and Ricf is the Bakry–

Émery–Ricci tensor of M
n+1

f .

From (6.1), let us now note that δ2ϕ(Af ) depends only on ϕ ∈ C∞(Σ(z)). The

following notion of stability now makes sense.
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Definition 6.1. Let M
n+1

f be a weighted Riemannian manifold with weight

function f and endowed with closed conformal Killing vector field V , and let

x : Σ(z) →֒ M
n+1

f be a closed conformal Killing graph with constant f -mean cur-

vature Hf . We say that x : Σ(z) →֒ M
n+1

f is strongly f -stable when δ2u(Af ) ≥ 0

for every ϕ ∈ C∞(Σ(z)).

We are now in position to state and prove the following rigidity result for

strongly f -stable conformal Killing graphs.

Theorem 6.2. LetM
n+1

f be a weighted Riemannian manifold with nonnegative

Bakry–Émery–Ricci tensor, endowed with complete closed conformal Killing vec-

tor field V having conformal factor ψV and whose weight function f is bounded.

Let x : Σ(z) →֒ M
n+1

f be a strongly f -stable closed conformal Killing graph.

Suppose that

(6.2)
∂ψV

∂t
≥ max{ψVHf , 0},

where t ∈ R is the parameter of the flow associated with the unit vector field

ν = −V/|V |. If the set where ψV = 0 has empty interior in Σ(z), then Σ(z) is

either f -minimal or isometric to a leaf of the foliation V ⊥.

Proof: As seen in Remark 3.6, we have that f does not depend on t ∈ R. Let

us consider in M
n+1

f the global parametrization (3.2). Since x : Σ(z) →֒M
n+1

f is

strongly f -stable, it follows from Definition 6.1 and (6.1) that

(6.3) −

∫

Σ(z)

{∆f (ϕ) + {Ricf (N,N) + |A|2}ϕ}ϕdµ ≥ 0

for all ϕ ∈ C∞(Σ(z)). In particular, since Hf is constant on Σ(z), taking the

negative function ηV defined in (3.6) we get from (3.8) that

∆f (ηV ) + {Ricf (N,N) + |A|2}ηV = −n{ψVHf +N(ψV )}.

Thus, from (6.3) we have that

(6.4)

∫

Σ(z)

{ψVHf +N(ψV )}ηV dµ ≥ 0.

On the other hand, it follows from (2.10) that

N(ψV ) = 〈N,∇ψV 〉 = ν(ψV )〈N, ν〉 = −
∂ψV

∂t
cos θ,
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where θ is the angle between N and −ν. Substituting the above into (6.4), we

finally arrive at ∫

Σ(z)

(
ψVHf −

∂ψV

∂t
cos θ

)
|V | cos θ dµ ≥ 0.

Now, from (6.2) we obtain

0 ≤

∫

Σ(z)

{
ψVHf −

∂ψV

∂t
cos θ

}
|V | cos θ dµ

≤

∫

Σ(z)

(1− cos θ)
∂ψV

∂t
|V | cos θ dµ ≤ 0.

Hence,

(1− cos θ)
∂ψV

∂t
= 0 and

∂ψV

∂t
= −ψVHf

on Σ(z). But, since Hf is constant on Σ(z), Σ(z) is either f -minimal or Hf 6= 0

on Σ(z). If this last case occurs, the condition on the zero set of ψV on Σ(z)

together with the above give ∂ψV /∂t 6= 0 on a dense subset of Σ(z) and, hence,

cos θ = 1 on this set. By continuity, cos θ = 1 on Σ(z). Therefore, in this case,

Σ(z) must be a leaf of the foliation V ⊥. �

We close our paper observing that, when the ambient space is a weighted

warped product of the type (3.4), we can apply Theorem 6.2 to obtain the fol-

lowing result.

Corollary 6.3. Let x : Σ(z) →֒ R×φ Fn
f be a strongly f -stable closed conformal

Killing graph. Suppose that the warped function φ satisfies

φ′′ ≥ max{φ′Hf , 0}.

If the set where φ′ = 0 has empty interior in Σ(z), then Σ(z) is either f -minimal

or isometric to the slice {t0} × F
n for some t0 ∈ R.
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Brazil

E-mail: marco.velasquez@mat.ufcg.edu.br

E-mail: andre@mat.ufcg.edu.br

E-mail: henrique@mat.ufcg.edu.br

M. S. Santos:
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