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On the hyperspace Cn(X)/CnK(X)

José G. Anaya, Enrique Castañeda-Alvarado,

José A. Mart́ınez-Cortez

Abstract. Let X be a continuum and n a positive integer. Let Cn(X) be the
hyperspace of all nonempty closed subsets of X with at most n components,
endowed with the Hausdorff metric. For K compact subset of X, define the
hyperspace CnK(X) = {A ∈ Cn(X) : K ⊂ A}. In this paper, we consider the
hyperspace Cn

K
(X) = Cn(X)/CnK(X), which can be a tool to study the space

Cn(X). We study this hyperspace in the class of finite graphs and in general,
we prove some properties such as: aposyndesis, local connectedness, arcwise
disconnectedness, and contractibility.

Keywords: hyperspace; continuum; containment hyperspace; aposyndesis; finite
graph; Peano continuum; contractibility

Classification: 54B15, 54B20, 54F15

1. Introduction

In this paper, the set of positive integers is denoted by N and a map is a con-

tinuous function. A continuum is a nonempty compact connected metric space.

Given a continuumX , a subcontinuum of X is a subset ofX which is a continuum.

Given n ∈ N, we consider the following hyperspaces of X :

◦ 2X = {A ⊂ X : A is nonempty and closed};

◦ C(X) = {A ∈ 2X : A is connected};

◦ Fn(X) = {A ∈ 2X : A has at most n points};

◦ Cn(X) = {A ∈ 2X : A has at most n components}.

All are endowed with the Hausdorff metric, see the definition below. Note that

C(X) = C1(X).

The hyperspace Cn(X) is called n-fold hyperspace of X , his topological struc-

ture is different to other hyperspaces, see [15] and [16].

On the other hand, in 1979 S. B. Nadler Jr., see [21], began the study of hy-

perspace suspension when the author considered the quotient space HS(X) =

C(X)/F1(X), which he called the hyperspace suspension of X . Later, in 2004,
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202 J.G. Anaya, E. Castañeda-Alvarado, J.A. Mart́ınez-Cortez

R. Escobedo, M. de J. López and S. Maćıas extended the study of hyperspace sus-

pension in [9]. Subsequently, in the same year, S. Maćıas generalized the study of

hyperspace suspension, considering the quotient space HSn(X) = Cn(X)/Fn(X),

which he called the n-fold hyperspace suspension of X , see [17], continuing with

the study in 2006, see [18]. In the year 2008, J. C. Maćıas analyzes the quotient

space PHSn(X) = Cn(X)/F1(X), which he called the n-fold pseudo-hyperspace

suspension of X , see [13]. J. Camargo and S. Maćıas in 2016 considered the quo-

tient space Cn
1 (X) = Cn(X)/C1(X), and they show several of their properties,

see [4].

Following this line of research, given a closed subset K of a continuum X

and a hyperspace H(X) ∈ {2X , C(X), Fn(X), Cn(X)}. We consider the quotient

space
H(X)

HK(X)
,

whereHK(X) is the containment hyperspace forK inH(X) defined by {A∈H(X):

K ⊂ A} and considered as a subspace of H(X).

The fact that H(X)/HK(X) is a continuum follows from [22, Theorem 3.10,

page 40]. Let πK denote the quotient map πK : H(X) → H(X)/HK(X), and

HK = πK(HK(X)).

In this paper we study some topological properties of the quotient space

Cn
K(X) = Cn(X)/CnK(X) such as local connectedness, arcwise disconnected-

ness, contractibility, unicoherence, homogeneity and aposyndesis. Throughout

the article you can see how this space be a good tool to study hyperspace Cn(X).

The paper is divided into six sections. In Section 2 we provide the basic defini-

tions, notation and some basic results of cut points. In Section 3, for the class of

finite graphs, we calculate the dimension of space Cn
K(X), and the relationship

it has with cones, suspensions and space Cn(X). In Section 4 we give conditions

on K under which the space Cn
K(X) is aposyndetic and finitely aposyndetic, in

particular, we prove that X is aposyndetic if and only if Cn
K(X) is aposyndetic

for each K ∈ F1(X), see Theorem 4.6. Section 5 is devoted to the study of the

connectedness of Cn
K(X) as well as the local connectedness, in particular, we

characterize the local connectedness of X in terms of the local connectedness of

Cn
K(X), see Theorem 5.3. Also, we present results of the arcwise disconnectedness

of Cn
K(X)−{CnK}, which allow to give a characterization of the indecomposable

continua, see Theorem 5.8. Finally, in Section 6 we analyze the non-contractibility,

homogeneity and when Cn
K(X) contains n-cells.

Remark 1.1. Let n ∈ N. If K = X , then Cn
K(X) is homeomorphic to Cn(X).
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Remark 1.2. Let n ∈ N and K ∈ 2X . Then

πK |Cn(X)−CnK(X) : Cn(X)− CnK(X) −→ Cn
K(X)− {CnK}

is a homeomorphism.

2. Preliminaries

An arc is any topological space homeomorphic to I = [0, 1] and a simple closed

curve is any topological space homeomorphic to the unit circle S1. We will denote

by ClZ(A), IntZ(A) and Bd(A), the closure, interior and boundary of A in Z,

respectively. When two topological spaces Y and Z are homeomorphic is denoted

as Y ≈ Z.

Let X be a continuum with metric d and ε > 0. For any x ∈ X and any

A ∈ 2X , we define the open ball in X of radius ε and center x as

Bd
ε (x) = {y ∈ X : d(x, y) < ε},

and the generalized open d-ball in X about A of radius ε,

Nd(A, ε) =
⋃

x∈A

Bd
ε (x).

The hyperspace 2X is considered with the Hausdorff metric Hd induced by d, see

[12, Definition 2.1, page 11], defined as follows: For any A,B ∈ 2X ,

Hd(A,B) = inf{ε > 0: A ⊂ Nd(B, ε) and B ⊂ Nd(A, ε)}.

A map f : X → Y between continua induces a natural map f∗ : 2X → 2Y

defined by

f∗(A) = f(A) for each A ∈ 2X .

Thus, if H(X) ∈ {2X , C(X), Fn(X), Cn(X)}, then the induced map H(f) :

H(X) → H(Y ) is the map H(f) = f∗|H(X), see [12, Theorem 13.3, page 106].

Let A, B ∈ 2X . An order arc from A to B is a mapping α : I → 2X such that

α(0) = A, α(1) = B, and α(r) is a proper subset of α(s) whenever r < s, see [20,

1.2–1.8, page 57–59] for the definition and existence.

A Whitney map for C(X) is a map µ : C(X) → [0,∞) that satisfies the fol-

lowing two conditions:

(1) µ(A) < µ(B) for any A,B ∈ C(X) such that A ⊂ B and A 6= B;

(2) µ(A) = 0 if and only if A ∈ F1(X).
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Given a continuum X , for any finitely many subsets U1, . . . , Ur of X , we define

〈U1, . . . , Ur〉 as

{A ∈ 2X : A ⊂
r
⋃

i=1

Ui, A ∩ Ui 6= ∅ for each i = 1, . . . , r}.

The set

{〈U1, . . . , Ur〉 : for each i ∈ {1, . . . , r}, Ui is an open set of X , r ∈ N}

is a base for some topology for 2X , called the Vietoris topology. This topology

matches with the topology induced by the Hausdorff metric, see [12, Theorem 3.2,

page 18]. Given n ∈ N we write 〈U1, . . . , Ur〉n instead of 〈U1, . . . , Ur〉 ∩ Cn(X).

A Peano continuum is a locally connected continuum. If p ∈ X , then X

is said to be connected im kleinen at p provided that every neighborhood of p

contains a connected neighborhood of p. A continuum X is unicoherent provided

that whenever A and B are subcontinua of X , such that A ∪ B = X , A ∩ B is

connected. By [16, Theorem 4.8, page 244], Cn(X) is unicoherent. Note that,

given K ∈ 2X , πK is monotone and by [22, Proposition 3.7, page 39], πK is

a closed map. Thus, by [6, Corollary 7, page 211] we have following result.

Theorem 2.1. Let n ∈ N. If X is a continuum and K ∈ 2X , then Cn
K(X) is

unicoherent.

2.1 Cut points. Given a connected topological space Z, a cut set of Z is a sub-

set S of Z such that Z − S is not connected. A cut point of Z is a point p ∈ Z

such that {p} is a cut set of Z.

Proposition 2.2. Let X be a continuum, n ∈ N and p ∈ X . Then, p is a cut

point of X if and only if Cn{p}(X) is a cut set of Cn(X).

Proof: If p ∈ X is a cut point, then there are disjoint nonempty open sub-

sets U , V such that X −{p} = U ∪ V . Since 〈U〉n and 〈X −{p}, V 〉n are disjoint

nonempty open subsets of Cn(X), it is enough to prove that Cn(X)−Cn{p}(X) =

〈U〉n ∪ 〈X − {p}, V 〉n.

Let A ∈ Cn(X)−Cn{p}(X). Then p /∈ A and A ⊂ X−{p} = U∪V . If A∩V 6= ∅

then A ∈ 〈X − {p}, V 〉n, otherwise, A ∈ 〈U〉n. Thus Cn(X) − Cn{p}(X) ⊂

〈U〉n ∪ 〈X − {p}, V 〉n.

On the other hand, if A ∈ 〈U〉n ∪ 〈X − {p}, V 〉n, then A ⊂ U , or, A ⊂

X − {p} = U ∪ V and A ∩ V 6= ∅. Thus, A ⊂ X − {p}, i.e. p /∈ A. Then

〈U〉n ∪ 〈X − {p}, V 〉n ⊂ Cn(X) − Cn{p}(X). Therefore, Cn{p}(X) is a cut set

of Cn(X).

Now, suppose thatX−{p} is connected then Cn(X)−Cn{p}(X) = Cn(X−{p})

is connected. This is a contradiction. Therefore, p is a cut point of X . �
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Corollary 2.3. Let X be a continuum, n ∈ N and p ∈ X . Then p is a cut point

of X if and only if Cn{p} is a cut point of Cn
{p}(X).

A continuum X is said to be colocally connected at p ∈ X , provided that p has

a local base of open sets whose complements are connected. A continuum X is

said to be colocally connected, if X is colocally connected at each of its points.

Proposition 2.4. If X is colocally connected at p ∈ X , then p is not a cut point

of X .

Proof: Suppose that p is a cut point of X , then there exist U,W nonempty open

subsets of X such that X−{p} = U ∪W and U ∩W = ∅. Let u ∈ U and w ∈ W .

Let δ = 1
2 min{d(p, u), d(p, w)} > 0. Since X is colocally connected at p, there

exists {Vα}α∈J a local base of open subsets at p, where J is an index set. Then

there exists α ∈ J such that p ∈ Vα ⊂ Bd
δ (p). Thus X − Bd

δ (p) ⊂ X − Vα ⊂

X − {p}. Since X − Vα is connected, we may assume that X − Vα ⊂ U . Note

that u,w ∈ X − Bd
δ (p). So, u,w ∈ U and w ∈ U ∩W . This is a contradiction.

Therefore p is not a cut point of X . �

3. Finite graphs

A free arc in a continuum X is an arc A in X such that A without its end

points is an open set in X . A Hilbert cube is any space homeomorphic to
∏∞

j=1 Ij
with the product topology, where Ij = I for each j ∈ N.

A finite graph X is a continuum which can be written as the union of finitely

many arcs any two of which are either disjoint or intersect only in one or both of

their end points. If X is a finite graph, the arcs and the end points of the arcs

are called edges and vertices, respectively. Given m ∈ N, m ≥ 3, a simple m-od Y

is a finite graph which is the union of m arcs J1, . . . , Jm such that there exists

a point v ∈ Y with the property Ji ∩ Jj = {v}, if i 6= j, and v is an end point

of Ji for each i = 1, . . . ,m. The point v is called the core of Y . A simple 3-od

is called a simple triod.

The order of a point p in a finite graph X , will be defined using the classic

Menger definition. Given a point p ∈ X and m,n ∈ N, the order of p in X ,

denoted by ordX(p), is defined as ordX(p) ≤ n, if for every ε > 0 there exists an

open set G containing p with diameter of G less than ε such that Bd(G) consists

of at most n points. Define ordX(p) = n if ordX(p) ≤ n and ordX(p) is not

less than or equal to m for each m < n. A point q ∈ X is called an end point

of X provided that ordX(q) = 1. A point q ∈ X is called a ramification point

of X provided that ordX(q) ≥ 3. The set of ramification points of X is denoted

by R(X) and the set of end points of X is denoted by E(X). For an arc or
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a simple closed curve, the set of ramification points is empty. In any other case

we assume that each vertex of X is either an end point of X or a ramification

point of X . With this restriction the two end points of an edge of X may coincide

in this case the edge is a simple closed curve.

We write dim(X) to denote the dimension of the space X ; and for p ∈ X ,

dimp(X) stands for the dimension of the space X at the point p. First, define

dim(X) = −1 when X = ∅. Now, assume inductively that we have defined

dimp(X) ≤ n − 1 and dim(X) ≤ n − 1 for some integer n ≥ 0. Then define

dimp(X) ≤ n when p has arbitrarily small open neighborhoods inX whose bound-

aries have dimension less than or equal to n − 1, and define dim(X) ≤ n when

dimp(X) ≤ n for all p ∈ X . Now define dimp(X) = n when dimp(X) ≤ n

and dimp(X) 6≤ n − 1, and we define dim(X) = n when dim(X) ≤ n and

dim(X) 6≤ n − 1. Finally, define dim(X) = ∞ when dim(X) 6≤ n for any in-

teger n.

The following result is a consequence of [16, Theorem 7.1, page 250].

Corollary 3.1. Let X be a locally connected continuum such that X is not

a finite graph and let K ∈ 2X . If X − {x} contains a subcontinuum without free

arcs for some x ∈ K, then Cn
K(X) contains a Hilbert cube for every n ∈ N.

Lemma 3.2. Let X be a continuum and n ∈ N. If Cn(X) ≈ Cn
K(X) for all

K ∈ F1(X), then X does not contain cut points.

Proof: Let p ∈ X . Since Cn(X) is homeomorphic to Cn
{p}(X), by [16, Theo-

rem 5.1, page 245], Cn
{p}(X) is colocally connected at each point. By Proposi-

tion 2.4, Cn{p} is not a cut point of Cn
{p}(X). Then, by Corollary 2.3, p is not

a cut point of X . �

The following lemma is a consequence of [23, Exercise 7.4, page 36].

Lemma 3.3. Let X be a continuum, K ∈ 2X and n ∈ N. Then

dim(Cn
K(X)) = dim(Cn(X)− CnK(X)).

Given a finite graph X and n ∈ N, by [19, Theorem 2.4, page 791], for A ∈

Cn(X), dimA(Cn(X)) = 2n+
∑

p∈(R(X)∩A)(ordX(p) − 2). Let x ∈ X . We con-

sider

Dn
x = {dimA(Cn(X)) : A ∈ 〈X − {x}〉n}.

Since X is a finite graph, by [15, Theorem 5.1, page 270], dimA(Cn(X)) < ∞ for

every A ∈ Cn(X) and ∅ 6= Dn
x ⊂ N. Let On

x = maxDn
x . Now, if K ∈ 2X , define

Mn
K = max{On

x : x ∈ K} and we have the following lemma.
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Lemma 3.4. Let X be a finite graph and n ∈ N. If K ∈ 2X , then

dim(Cn
K(X)) = Mn

K ≤ dim(Cn(X)).

Proof: By Lemma 3.3, we will prove that dim(Cn(X) − CnK(X)) = Mn
K . Let

A ∈ Cn(X) − CnK(X). Since K 6⊂ A, there exists x ∈ K − A such that A ⊂

X −{x}. Thus dimA(Cn(X)) ∈ Dn
x . We have that dimA(Cn(X)) ≤ On

x ≤ Mn
K ≤

dimX(Cn(X)). On the other hand, assume that On
x0

= max{On
x : x ∈ K}, then

there exists B ∈ 〈X − {x0}〉n such that On
x0

= dimB(Cn(X)). Since x0 ∈ K,

B ∈ Cn(X)− CnK(X). Therefore dim(Cn
K(X)) = Mn

K . �

The following corollary is a consequence of [19, Theorem 2.4, page 791] and

Lemma 3.4.

Corollary 3.5. Let X be a finite graph and n ∈ N.

(1) If K ⊂ R(X), then dim(Cn
K(X)) < dim(Cn(X)).

(2) If K ⊂ E(X), then dim(Cn
K(X)) = dim(Cn(X)).

The following example shows what happens if R(X) is contained in K. Let X

be a continuum homeomorphic to the capital letter H . Without loss of generality

we may assume that

X = {(0, y) ∈ R
2 : − 1 ≤ y ≤ 1} ∪ {(x, 0) ∈ R

2 : 0 ≤ x ≤ 1}

∪ {(1, y) ∈ R
2 : − 1 ≤ y ≤ 1}.

Let p = (0, 0), q = (1, 0), r =
(

1
2 , 0

)

, a1 = (0,−1), a2 = (1,−1), a3 = (0, 1),

a4 = (1, 1). Note that p, q ∈ R(X) and a1, a2, a3, a4 ∈ E(X).

Example 3.6. If X is homeomorphic to the capital letter H , then

a) dim(Cn
K(X)) < dim(Cn(X)) for K = {p, q, r} and n = 1.

b) dim(Cn
K(X)) = dim(Cn(X)) for K = {p, q, r} and n ≥ 2.

c) dim(Cn
K(X)) = dim(Cn(X)) for K = {p, q, a1} and n ≥ 1.

Proof: Note that Dn
p = Dn

q = {2n, 2n+ 1} and Dn
a1

= {2n, 2n+ 1, 2n+ 2} for

every n ≥ 1. We have

Dn
r =

{

{2, 3} if n = 1,

{2n, 2n+ 1, 2n+ 2} if n ≥ 2.

Thus, On
p = On

q = 2n + 1 and On
a1

= 2n + 2 for n ≥ 1. Also, On
r = 3 and

On
r = 2n+ 2 for n = 1 and n ≥ 2, respectively. So that

Mn
{p,q,r} =

{

3 if n = 1,

2n+ 2 if n ≥ 2,
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andMn
{p,q,a1}

= 2n+2 for n ≥ 1. Therefore, if K = {p, q, r}, then dim(C1
K(X)) =

3 < dim(C(X)) and dim(Cn
K(X)) = 2n+ 2 = dim(Cn(X)) for every n ≥ 2. And,

if K = {p, q, a1}, then dim(Cn
K(X)) = 2n+ 2 = dim(Cn(X)) for every n ≥ 1. �

Given a continuuum X , the set of cut points of X is denoted by Cut(X). In

the following, the set of subsets of Cut(X) with only one point is denoted by

F1(Cut(X)), in the same way we denote F1(E(X)).

Theorem 3.7. Let X be a finite graph and n ∈ N. If Cn
K(X) ≈ Cn(X) for all

K ∈ 2X − F1(Cut(X)), then |R(X)| ≤ 1.

Proof: Suppose that |R(X)| > 1. Since X is a finite graph, we have that R(X)

is finite. By (1) of Corollary 3.5 for K = R(X), dim(Cn
K(X)) < dim(Cn(X)).

This is a contradiction. �

Let Y be a simple m-od with edges J1, . . . , Jm and core v. Note that

C(Y ) = C{v}(Y ) ∪

( m
⋃

i=1

C(Ji)

)

.

Furthermore, for any i, j ∈ {1, . . . ,m}, C(Ji) ∩ C(Jj) = {{v}} with i 6= j,

C{v}(Y ) ∩ C(Ji) = C{v}(Ji), and C{v}(Y ) ∩
(
⋂m

i=1 C(Ji)
)

= {{v}}. A tree is

a finite graph without simple closed curves.

Corollary 3.8. Let X be a tree and n ∈ N. If Cn
K(X) ≈ Cn(X) for all K ∈

2X − F1(Cut(X)), then X is an arc or a simple m-od.

Proof: By Theorem 3.7, |R(X)| ≤ 1. If X has a ramification point, then X is

a simple m-od for some m ∈ N. On the other hand, if ordX(p) ≤ 2 for every

p ∈ X , since X is a tree, by [22, Proposition 9.5, page 142], X is an arc. �

Given a topological space Y , the cone over Y , which we will denote by Cone(Y ),

is the quotient space Y × I/Y × {1} obtained from Y × I by shrinking Y × {1}

to a point. The point Y × {1} and the subset Y × {0} of Cone(Y ) are called

the vertex and the base of Cone(Y ), respectively. We will denote by vY and

B(Y ) the vertex and the base of Cone(Y ), respectively. The suspension over Y ,

which we will denote by Σ(Y ), is the quotient space obtained from Y × [−1, 1] by

shrinking Y × {−1} and Y × {1} to two different points which are called vertices

of Σ(Y ). Note that Σ(Y ) ≈ Cone(Y )/B(Y ). We will denote by q : Cone(Y ) →

Cone(Y )/B(Y ) the quotient map.

As consequence of the proof of [1, Theorem 5.5, page 356] we have the following

proposition.
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Proposition 3.9. Let n ∈ N. Suppose that X = Cone(Y ) for some com-

pact metric space Y . Then, Cn(X) is homeomorphic to Cone(Z), where Z =
⋃

p∈B(Y ) Cn{p}(X).

Theorem 3.10. Assume that X is an arc or a simple m-od. If K ∈ F1(E(X)),

then C1
K(X) is homeomorphic to C(X).

Proof: Suppose that X = I. By [12, Exercise 14.24, page 118], CK(X) is

an arc. Then C(X) − CK(X) is homeomorphic to I × [0, 1). Thus, C1
K(X) is

homeomorphic to C(X). Note that, in this case, C1
K(X) is a 2-dimensional cell.

Now, suppose that for some m ∈ N, X is a simple m-od with edges J1, . . . , Jm.

Assume that K = {e}, where e ∈ J1. Note that CK(X) = C{e}(J1) ∪ CJ1
(X)

and C{e}(J1) ∩ CJ1
(X) = {J1}. By Proposition 3.9, C(X) is homeomorphic to

Cone(Z), where

Z =
⋃

p∈E(X)

C{p}(X).

On the other hand, by [12, Exercise 14.24, page 118], C{e}(J1) is an arc in C(J1).

Also, C{v}(X) is an m-cell, where v is the core of X , see [14, Theorem 3 and The-

orem 4, page 3071]. By [8, 5.2, page 271], CJ1
(X) is a (m − 1)-cell in C{v}(X).

Note that CJ1
(X)∩C(Ji) = ∅ for each i 6= 1. Since C(J1)/C{e}(J1) is homeomor-

phic to C(J1), and C{v}(X)/CJ1
(X) is homeomorphic to C{v}(X), we conclude

that C1
K(X) is homeomorphic to C(X). �

As consequence of Proposition 3.9, we have the following result.

Corollary 3.11. Let n ∈ N. Then Cn
K(I) is homeomorphic to Σ(CnK(I)) for

K ∈ {{0}, {1}}.

Proof: We only prove this for K = {0}. Since I ≈ Cone({0}), by Proposi-

tion 3.9, there exists a homeomorphism h : Cn(I) → Cone(Z), where Z = CnK(I).

Note that the following diagram is commutative

h

Cn(I) −→ Cone(Z)

πK ↓ ↓ q

Cn
K(I) −→ Cone(Z)/B(Z) ≈ Σ(Z)

The fact that Cn
K(I) is homeomorphic to Σ(CnK(I)) follows from the Transgres-

sion lemma, see [22, Exercise 3.22, page 45]. �

Theorem 3.12. Let X be a finite graph and n ∈ N. If Cn(X) ≈ Cn
K(X) for all

K ∈ 2X , then X is a simple closed curve.

Proof: Since Cn(X) ≈ Cn
K(X), by Theorem 3.7, |R(X)| ≤ 1. By Lemma 3.2,

X does not contain cut points. Suppose that R(X) = {p}. Since p is the only
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ramification point of X , p is a cut point of X . This is a contradiction. Thus

R(X) = ∅.

Since X is a finite graph and ordX(x) ≤ 2 for every x ∈ X , by [22, Proposi-

tion 9.5, page 142], X is an arc or a simple closed curve. But X does not contain

cut points, then X is not an arc. Therefore, X is a simple closed curve. �

To finish this section we focus on case n = 1 in the class of finite graphs. In

the following theorem, the set of subsets of (0, 1) with only one point is denoted

by F1((0, 1)).

Theorem 3.13. If X is a finite graph, C1
K(X) is homeomorphic to Cone(X) if

only if

(1) X = I and K ∈ 2X − F1((0, 1)), or

(2) X = S1 and K ∈ 2X .

Proof: Assume that h : Cone(X) → C1
K(X) is a homeomorphism. Since X is

a finite graph, dim(Cone(X)) = 2. Thus, dim(C1
K(X)) = 2. Note that for every

y ∈ Cone(X), y is not a cut point. Then h(y) is not a cut point of C1
K(X), in

particular, CK is not a cut point of C1
K(X).

Suppose that K = {z} for some z ∈ X . Since CK is not a cut point of C1
K(X),

by Corollary 2.3, z is not a cut point of X . Then z is an end point or z belongs

to a simple closed curve in X .

On the other hand, suppose that K ∈ 2X such that |K| ≥ 2. Let C ∈ C(X)

such that K ⊂ C. Assume that p ∈ X is a ramification point. If p ∈ X − C,

since X is a finite graph, there exists Cp ∈ C(X) such that p ∈ Cp ⊂ X − C and

dimCp
(C(X)) ≥ 3. Moreover, Cp /∈ CK(X). Thus, h−1(Cp) ∈ Cone(X) this is

a contradiction because dim(Cone(X)) = 2.

Now, if p ∈ C, there exists q ∈ K such that p 6= q. Since X is a metric space,

there are disjoint open sets U and V such that p ∈ U and q ∈ V . By locally

connectedness, there is Cp ∈ C(X) such that p ∈ Cp ⊂ U . Note that K 6⊂ Cp,

thus Cp /∈ CK(X) and dimCp
(C(X)) ≥ 3. This is a contradiction. Therefore,

X does not contain ramification points.

By both cases and [22, Proposition 9.5, page 142], we have that X is the arc I

or S1.

Conversely, let X = I and K ∈ 2X − F1((0, 1)). Suppose that K = {0} or

K = {1}. By [12, Exercise 14.24, page 118], CK(X) is an arc. Then C(X) −

CK(X) is homeomorphic to I×[0, 1). Thus, C1
K(X) is homeomorphic to Cone(X).

If K ∈ 2X−F1(X), let a = minK and b = maxK, note that a 6= b. First, assume

that a = 0 or b = 1. By [12, Exercise 14.24, page 118], CK(X) is an arc, then

C1
K(X) is homeomorphic to Cone(X). Now, assume that a 6= 0 and b 6= 1. Then
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C(X)− CK(X) = 〈[0, b)〉1 ∪ 〈(a, 1]〉1 which is homeomorphic to I × [0, 1). Thus,

C1
K(X) is homeomorphic to Cone(X).

Finally, let X = S1 and K ∈ 2X . If K ∈ F1(X), by [11, Ejemplo 3.2, page 31],

CK(X) is homeomorphic to a 2-cell in C(X). Thus, C1
K(X) is homeomorphic

to a 2-cell, which is homeomorphic to Cone(X). In the other case, by Theo-

rem 6.3, CK(X) is contractible in C(X) such that CK(X) ∩ F1(X) = ∅. Then

C(X) − CK(X) is homeomorphic to S1 × [0, 1). Thus, C1
K(X) is homeomorphic

to Cone(X). �

As consequence of [12, Example 5.2, page 35] we have the following result.

Corollary 3.14. For each K,L ∈ 2S
1

, C1
K(S1) is homeomorphic to C1

L(S
1).

Moreover, C1
K(S1) is homeomorphic to a 2-cell.

Question 3.15. If n ≥ 2, then is Cn
A(S

1) homeomorphic to Cn
B(S

1) for every

A,B ∈ C(S1) ( or 2S
1

)?

4. Aposyndesis

In this section we show that for every n ∈ N, Cn
K(X) is finitely aposyndetic for

some K ∈ 2X .

Proposition 4.1. Let X be a continuum and n ∈ N. If K ∈ 2X , then Cn
K(X) is

colocally connected at A for every A ∈ Cn
K(X)− {CnK}.

Proof: Let A ∈ Cn
K(X) − {CnK} and let A ∈ Cn(X) such that πK(A) = A.

Note that A /∈ CnK(X). By [16, Theorem 5.1 page 245], there exists a local base

{Vα} of open subsets at A whose complements are connected. We may assume

that Vα ⊂ Cn(X)− CnK(X) for all α. By Remark 1.2, {πK(Vα)} is a local base

of open subsets at A. Since πK(Cn(X) − Vα) = Cn
K(X) − πK(Vα) is connected,

Cn
K(X) is colocally connected at A. �

Let p, q ∈ X , p 6= q. A continuum X is aposyndetic at p with respect to q

provided that there exists a subcontinuum M of X such that p ∈ IntX(M) and

q ∈ X − M . If for each q ∈ X − {p}, X is aposyndetic at p with respect to q,

then X is aposyndetic at p. If X is aposyndetic at each of its points then X is

aposyndetic. A continuum X is finitely aposyndetic provided that for each finite

subset F of X and point x of X not in F , there exists a subcontinuum W of X

such that x ∈ IntX(W ) ⊂ W ⊂ X − F .

Remark 4.2. If X is colocally connected at y, then X is aposyndetic at x with

respect to y for each x ∈ X − {y}.

By Proposition 4.1 and Remark 4.2, we have the following result.
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Lemma 4.3. Let n ∈ N. If X is a continuum and K ∈ 2X , then

◦ Cn
K(X) is aposyndetic at CnK ;

◦ Cn
K(X) is aposyndetic at A 6= CnK with respect to any B 6= CnK .

Theorem 4.4. If X is a continuum and n ∈ N, then Cn
K(X) is aposyndetic for

each K ∈ 2X − F1(X).

Proof: Let A ∈ Cn
K(X). By Lemma 4.3, we prove that Cn

K(X) is aposynde-

tic at A with respect to CnK . Let A ∈ Cn(X) such that πK(A) = A. Since

A 6= CnK , K 6⊂ A, and there exists k0 ∈ K − A. We consider A0 = {k0} and

A = A1 ∪ · · · ∪ Am, where Ai is a component of A for every i = 1, . . . ,m with

1 ≤ m ≤ n. Since X is a metric space, 1) holds:

1) For each i = 0, . . . ,m there exists Wi an open subset of X such that

Ai ⊂ Wi, and ClX(Wi) ∩ ClX(Wj) = ∅ for any i, j ∈ {0, . . . ,m} with i 6= j. In

consequence 2) holds:

2) A ∈ U = 〈W1, . . . ,Wm〉n and ClCn(X)(U) ∩ CnK(X) = ∅.

3) For every component D of U , we have D∩Fn(X) 6= ∅. Moreover, Fn(X)∩

ClCn(X)(U) 6= ∅.

To prove 3), let D be a component of U . Since D is a connected subset

of Cn(X), by [10, Lemma 1, page 1578], D0 =
⋃

{A : A ∈ D} has at most n

components, we may suppose that D0 = D1 ∪ · · · ∪ Dl with 1 ≤ l ≤ n. Thus,

{d1, . . . , dl} ∈ D ∩ Fn(X) where di ∈ Di for every i = 1, . . . , l. Note that Di

is a component of Wji for some ji ∈ {1, . . . ,m}. By the boundary bumping

theorem, see [22, Theorem 5.6, page 74] for every i ∈ {1, . . . , l} there exists

di ∈ ClX(Di) ∩ Bd(Wji). We conclude 4).

4) There exists {d1, . . . , dl} ∈ ClCn(X)(D) such that for each i = 1, . . . , l there

exists j ∈ {1, . . . ,m} with di ∈ Bd(Wj).

Suppose that K ∈ Fn(X). The existence of a subcontinuum of Fn(X) −

FnK(X), see the proof of Theorem 10 of [5], and 4), give the proof of 5) and 6).

5) For each D there exists MD a subcontinuum of Fn(X) − FnK(X) such

that MD ∩ F1(X) 6= ∅ and {d1, . . . , dl} ∈ MD.

6) M = ClCn(X)

(
⋃

{MD : D is component of U}
)

∪F1(X) is a subcontinuum

of Fn(X)− FnK(X).

Thus, C = ClCn(X)(U) ∪M is a subcontinuum of Cn(X)−CnK(X) such that

A ∈ IntCn(X)(C).

Now, if K /∈ Fn(X), Fn(X) ∩ CnK(X) = ∅. By 2) and 3) C = ClCn(X)(U) ∪

Fn(X) is a subcontinuum of Cn(X)− CnK(X) such that A ∈ IntCn(X)(C). This

completes the proof. �

By Theorem 2.1, Theorem 4.4 and [3, Corollary 1, page 586] we have the

following result.
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Corollary 4.5. Let n ∈ N. If X is a continuum and K ∈ 2X − F1(X), then

Cn
K(X) is finitely aposyndetic.

Theorem 4.6. Let X be a continuum and n ∈ N. Then X is aposyndetic if and

only if Cn
K(X) is aposyndetic for each K ∈ F1(X).

Proof: Let K ∈ F1(X). By Lemma 4.3, we prove that Cn
K(X) is aposyndetic at

A ∈ Cn
K(X)−{CnK} with respect to CnK . Let A ∈ Cn(X) such that πK(A) = A,

suppose that A = A1 ∪ · · · ∪ Am, where Ai ∈ C(X) for each i = 1, . . . ,m and

m ≤ n. Assume that K = {x0} for some x0 ∈ X . Since A /∈ CnK(X), then

Ai ⊂ X − {x0} for every i = 1, . . . ,m. Let i ∈ {1, . . . ,m} and let a ∈ Ai.

Since X is aposyndetic, there exists M i
a a subcontinuum of X such that a ∈

IntX(M i
a) ⊂ M i

a ⊂ X − {x0}. Then Ci = {Int(M i
a) : a ∈ Ai} is an open cover

of Ai. Since Ai is compact, there exists li ∈ N such that Ai ⊂
⋃li

j=1 IntX(M i
aj
).

For each i = 1, . . . ,m, let Ui =
⋃li

j=1 IntX(M i
aj
), note that Ui ⊂ X − {x0} and

A ∈ 〈U1, . . . , Um〉n. Thus, W = ClCn(X)(〈U1, . . . , Um〉n) is a subcontinuum of

Cn(X) − CnK(X). Then πK(W) is a subcontinuum of Cn
K(X) − {CnK} such

that A ∈ IntCn
K
(X)(πK(W)). Therefore Cn

K(X) is aposyndetic at A.

Conversely, let p, q ∈ X with p 6= q. We may assume that K = {q}. Since

Cn
K(X) is aposyndetic, there exists W a subcontinuum of Cn

K(X) such that

P = πK({p}) ∈ IntCn
K
(X)(W) and CnK ∈ Cn

K(X) −W. Then π−1
K (W) is a sub-

continuum of Cn(X) − CnK(X). Note that {p} ∈ π−1
K (W). By [10, Lemma 1,

page 1578], M =
⋃

π−1
K (W) is a subcontinuum of X such that p ∈ IntX(M).

Since π−1
K (W) ⊂ Cn(X) − CnK(X), q /∈ M . Thus, X is aposyndetic at p for

every p ∈ X . �

As consequence of Theorem 4.4 and Theorem 4.6 we conclude the following

result.

Corollary 4.7. Let X be a continuum and n ∈ N. Then X is aposyndetic if and

only if Cn
K(X) is aposyndetic for each K ∈ 2X .

Let Σ(Z) be the suspension over Z where Z =
{

1
n
∈ R : n ∈ N

}

∪ {0}. Denote

by v1, v−1 the vertices of Σ(Z), L0 = {0} × (−1, 1) and p = (0, 0). Now, we

consider Y defined by identifying v1, v−1 in Σ(Z) to one point denoted by v.

Note that Y is a continuum not aposyndetic at x ∈ q(L0).

Example 4.8. The continuum Y is not aposyndetic and Cn
K(Y ) is aposyndectic

for K = {p} and Cn
L(Y ) is not aposyndetic for L = {v}.

Proof: Let n ∈ N and K = {p}. By Lemma 4.3, we prove that Cn
K(Y ) is

aposyndetic at A with respect to CnK . Let A ∈ Cn(X) such that πK(A) = A.

Note that Y is colocally connected at p. Since A 6= CnK , p /∈ A. There exists U an
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open subset such that p ∈ U ⊂ ClY (U) ⊂ Y −A and Y −U is a continuum. Thus,

〈Y −U〉n is a subcontinuum of Cn(Y )−CnK(Y ) such that A ∈ 〈Y −ClY (U)〉n ⊂

〈Y − U〉n. Therefore Cn
K(Y ) is aposyndetic.

Now, we prove that Cn
L(Y ) is not aposyndetic at P = πL({p}) with respect

to CnL. LetW be a subcontinuum of Cn
L(Y ) such that P ∈ IntCn

L
(Y )(W). Suppose

that CnL /∈ W, then π−1
L (W) is a subcontinuum of Cn(Y )− CnL(Y ). Note that

{p} ∈ π−1
L (W). By [10, Lemma 1, page 1578], M =

⋃

π−1
L (W) is a subcontinuum

of Y such that p ∈ IntY (M). Then v ∈ M , this is a contradiction. Therefore,

Cn
L(Y ) is not aposyndetic. �

5. Connectedness and arcwise disconnectedness

Theorem 5.1. If X is a continuum and n ∈ N, then Cn
K(X) is an arcwise

connected continuum for each K ∈ 2X .

Proof: Let K ∈ 2X . By [16, Theorem 3.1, page 240], Cn(X) is an arcwise

connected continuum. Since πK is a map, we have that Cn
K(X) is an arcwise

connected continuum. �

Lemma 5.2. Let X be a continuum, K ∈ 2X and n ∈ N. If Cn(X) − CnK(X)

is locally connected, then X is locally connected.

Proof: Let x ∈ X . Suppose that x /∈ K, let V be an open subset of X such

that x ∈ V . Thus, W = V ∩ (X −K) is an open subset of X containing x, then

{x} ∈ 〈W 〉n ⊂ Cn(X) − CnK(X). Since Cn(X) − CnK(X) is locally connected,

there exists an open connected subset U of Cn(X) − CnK(X) such that {x} ∈

U ⊂ ClCn(X)(U) ⊂ 〈W 〉n. Let ε > 0 be such that BH
ε ({x})∩Cn(X) ⊂ U . Let H =

⋃

ClCn(X)(U). By [20, Lemma 1.49, page 102], H is a subcontinuum of X . Note

that x ∈ H ⊂ W ⊂ V . For y ∈ Bε(x), we have that {y} ∈ BH
ε ({x})∩Cn(X) ⊂ U .

Thus, {y} ∈ U and y ∈ H . Then, x ∈ IntX(H) ⊂ W ⊂ V .

Now, suppose that x ∈ K and K /∈ F1(X), then there exists z ∈ K such that

z 6= x. Let V be an open subset of X such that x ∈ V . Since W = V ∩ (X −{z})

is an open subset of X containing x and {x} ∈ 〈W 〉n ⊂ Cn(X) − CnK(X), we

proceed as before.

Finally, if K = {x}, by [22, Corollary 5.13, page 78] and the previous argument,

X cannot be connected im kleinen at only one point. Then, we have that X is

connected im kleinen at each of its points. Therefore X is locally connected. �

Theorem 5.3. Let n ∈ N and K ∈ 2X . Then, X is a Peano continuum if only if

Cn
K(X) is a Peano continuum.
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Proof: Since X is locally connected, by [16, Theorem 3.2, page 240], Cn(X) is

locally connected. By [22, Proposition 3.7, page 39], πK is a closed map. By [22,

Proposition 8.16, page 127], Cn
K(X) is locally connected.

Now, suppose that Cn
K(X) is locally connected. Since Cn

K(X) − {CnK} is

locally connected, by Remark 1.2, Cn(X) − CnK(X) is locally connected. By

Lemma 5.2, X is locally connected. �

The following result is a consequence of Theorem 5.3.

Corollary 5.4. Let X be a continuum. Then the following are equivalent:

(1) X is a Peano continuum;

(2) Cn
K(X) is a Peano continuum for every n ∈ N and every K ∈ 2X ;

(3) Cn
K(X) is a Peano continuum for some n ∈ N and every K ∈ 2X ;

(4) Cn
K(X) is a Peano continuum for every n ∈ N and some K ∈ 2X ;

(5) Cn
K(X) is a Peano continuum for some n ∈ N and some K ∈ 2X .

Theorem 5.5. Let X be a continuum and n ∈ N. If K ∈ 2X − F1(X), then

Cn(X)− CnK(X) is connected.

Proof: Let K ∈ 2X − F1(X). Note that CnK(X) ∩ F1(X) = ∅. Let A ∈

Cn(X)−CnK(X). Suppose that A = A1∪ · · · ∪Am, where m ≤ n and Ai ∈ C(X)

for each i ∈ {1, . . . ,m}. Take an element ai in Ai for each i ∈ {1, . . . ,m}. There

exists α : I → Cn(X) an order arc such that α(0) = {a1, . . . , am} and α(1) = A.

Since K 6⊂ A, there exists k0 ∈ K−A and K 6⊂ α(t) for every t ∈ I. Assume that

a1 ∈ K ∩ α(0). For each i ∈ {1, . . . ,m− 1} let γi : X → Cn(X) given by γi(x) =

{x} ∪ (α(0)−{a1, . . . , ai}). Then γi is well defined and is a map. Let Γi = γi(X).

Note that {k0, a1} 6⊂ γi(x) for every i ∈ {1, . . . ,m−1} and every x ∈ X . Thus, Γi

is a connected subset of Cn(X)−CnK(X). Since α(0)−{a1, . . . , ai−1} ∈ Γi−1 ∩ Γi

for every i ∈ {2, . . . ,m − 1}, Γ =
⋃m−1

i=1 Γi is a connected subset of Cn(X)

containing α(0) and {am}. Thus, A ∈ α(I) ∪ Γ ∪ F1(X) which is connected

subset of Cn(X)− CnK(X). Therefore Cn(X)− CnK(X) is connected. �

Proposition 5.6. Let X be a continuum, n ∈ N and K ∈ 2X . If A is a sub-

continuum of X − {x} for some x ∈ K, then Cn
K(X) − πK(Cn(A)) is arcwise

connected.

Proof: Since A ∈ C(X) − CK(X), by [16, Theorem 6.1, page 246], Cn(X) −

Cn(A) is arcwise connected. Then, πK(Cn(X)− Cn(A)) = Cn
K(X)− πK(Cn(A))

is arcwise connected. �

Proposition 5.7. Let X be a continuum, n ∈ N and K ∈ 2X . If A ∈ Cn
K(X)−

{CnK} is such that Cn
K(X)−{A} is not arcwise connected then π−1

K (A) ∈ C(X).
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Proof: Let A ∈ Cn
K(X)−{CnK}. Then π−1

K (A) ∈ Cn(X). Since π−1
K (Cn

K(X)−

{A}) = Cn(X)−{π−1
K (A)} and Cn

K(X)−{A} is not arcwise connected, Cn(X)−

{π−1
K (A)} is not arcwise connected. Thus, by [16, Theorem 6.2, page 246],

π−1
K (A) ∈ C(X). �

Theorem 5.8. Let X be a continuum. Then, for any K ∈ 2X the following

statements are equivalent:

(1) X is indecomposable;

(2) 2X/2XK − {2K} is not arcwise connected;

(3) for each n ∈ N, Cn
K(X)− {CnK} is not arcwise connected;

(4) C1
K(X)− {C1K} is not arcwise connected.

Proof: Let K ∈ 2X . We first prove that (1) ⇒ (3). Let x and y be points in

different composants of X . Since X is an indecomposable continuum, for any

function α : I → Cn(X) such that α(0) = {x} and α(1) = {y}, there exists t0 ∈ I

such that K ⊂ α(t0). Then α(t0) ∈ CnK(X). Thus, α(I) 6⊂ Cn(X) − CnK(X).

By Remark 1.2, we conclude that Cn
K(X)− {CnK} is not arcwise connected. In

the same manner we can see that (1) ⇒ (2) and (4).

Now, we will prove that (3) ⇒ (1). Assume X is decomposable. Let X1

and X2 be proper subcontinua of X such that X = X1 ∪ X2. Let r ∈ X1 −X2

and q ∈ X2 −X1. By Remark 1.2, it is enough to prove that Cn(X)−CnK(X) is

arcwise connected for K = {r, q}. Consider p ∈ X1∩X2, note that {p} ∈ Cn(X)−

CnK(X). Now, let A ∈ Cn(X) − CnK(X). Suppose that A = A1 ∪ · · · ∪ Am,

where Ai ∈ C(X) for each i = 1, . . . ,m, without loss of generality we may assume

that there exist 1 ≤ s ≤ t ≤ m such that:

(a) Al ⊂ X1 where 1 ≤ l ≤ s;

(b) Al ⊂ X2 where s+ 1 ≤ l ≤ t; and

(c) Al ∩ (X1 ∩X2) 6= ∅ and Al 6⊂ Xi for i = 1, 2, where t+ 1 ≤ l ≤ m.

For (a), we will construct an arc from A to {p} ∪
(
⋃m

i=s+1 Ai

)

. Since Cs(X1) is

arcwise connected and A1 ∪ · · · ∪ As, {p} ∈ Cs(X1), there exists an arc α : I →

Cs(X1) such that α(0) = A1 ∪ · · · ∪As and α(1) = {p}. Now, define the function

γ1 : I → Cn(X) by γ1(t) = α(t) ∪
(
⋃m

i=s+1 Ai

)

. Then γ1 is well defined and is

a map. Since q /∈ X1, K 6⊂ γ1(t) for every t ∈ I. Thus, A1 = γ1(I) is an arc such

that A1 ⊂ Cn(X)− CnK(X) containing A and {p} ∪
(
⋃m

i=s+1 Ai

)

.

For (b), we will construct an arc from {p}∪
(
⋃m

i=s+1 Ai

)

to {p}∪
(
⋃m

i=t+1 Ai

)

.

Since Ct−s(X2) is arcwise connected and As+1 ∪ · · · ∪ At, {p} ∈ Ct−s(X2), there

exists an arc β : I → Ct−s(X2) such that β(0) = As+1 ∪ · · · ∪At and β(1) = {p}.

Define γ2 : I → Cn(X) by γ2(t) = β(t) ∪ {p} ∪
(
⋃m

i=t+1 Ai

)

. Then γ2 is well

defined and is a map. Moreover, K 6⊂ γ2(t) for every t ∈ I. Thus, A2 = γ2(I)
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is an arc such that A2 ⊂ Cn(X) − CnK(X) containing {p} ∪
(
⋃m

i=s+1 Ai

)

and

{p} ∪
(
⋃m

i=t+1 Ai

)

.

Note that {p} ∪
⋃m

i=s+1 Ai ∈ A1 ∩ A2, then A1 ∪ A2 ⊂ Cn(X) − CnK(X) is

arcwise connected.

For (c), we will construct an arc from {p} to {p} ∪
(
⋃m

i=t+1 Ai

)

. For each

j ∈ {t + 1, . . . ,m} we choose aj ∈ Aj ∩ X1. There exists η : I → Cn(X) an

order arc such that η(0) = {at+1, . . . , am} and η(1) = At+1 ∪ · · · ∪ Am. Note

that K 6⊂ η(t) for every t ∈ I. Since Cm−t(X1) is arcwise connected and

{at+1, . . . , am}, {p} ∈ Cm−t(X1), there exists an arc η0 : I → Cm−t(X1) such

that η0(1) = {at+1, . . . , am} and η0(0) = {p}. Now, define γ3 : I → Cn(X) by

γ3(t) =

{

η0(2t) ∪ {p} if t ∈
[

0, 12
]

,

η(2t− 1) ∪ {p} if t ∈
[

1
2 , 1

]

.

Then γ3 is well defined and is a map. Moreover, K 6⊂ γ3(t) for every t ∈ I.

Thus A3 = γ3(I) is an arc such that A3 ⊂ Cn(X)− CnK(X) containing {p} and

{p} ∪
(
⋃m

i=t+1 Ai

)

.

Note that {p} ∪
(
⋃m

i=t+1 Ai

)

∈ A3 ∩ (A1 ∪ A2), then A1 ∪ A2 ∪ A3 is arcwise

connected and A1 ∪ A2 ∪ A3 ⊂ Cn(X)− CnK(X).

Now, if K ∩ A = ∅, then A1 ∪ A2 ∪ A3 is a subcontinuum arcwise connected

of Cn(X) − CnK(X) containing {p} and A. But, if A ∩ K 6= ∅, then exists

j ∈ {1, . . . ,m} such that Aj ∩K 6= ∅. Since K 6⊂ A, we may assume that r ∈ Aj .

Thus, without loss of generality we may assume that j = 1, or j = t+1. If j = 1,

we construct A1, A2 and A3 as before. And, for j = t+ 1, we construct A3, A1,

and A2 to avoid containing K. Similar arguments prove that (4) ⇒ (1).

In order to prove (2) ⇒ (1), we proceed as in the proof of (3) ⇒ (1), now

assuming that A ∈ 2X − 2XK . Without lost of generality we can assume that

q /∈ A. Set Hi = A ∩Xi for i = 1, 2. Since Hi ∈ 2Xi , for each i = 1, 2 there is an

arc αi : I → 2Xi such that αi(0) = Hi and αi(1) = {p}. We define γ : I → 2X by

γ(t) =

{

α1(2t) ∪H2 if t ∈
[

0, 12
]

,

α2(2t− 1) ∪ {p} if t ∈
[

1
2 , 1

]

.

Then γ is well defined and is a map. Note that K 6⊂ γ(t) for every t ∈ I. Thus,

γ(I) is a continuum arcwise connected and γ(I) ⊂ 2X − 2XK . This proves the

theorem. �

Let Z be a topological space, the set {A ⊂ Z : A is a component of Z} is denote

by C(Z).

Lemma 5.9. Let X be a continuum and n ∈ N. If U is an open set of X and C

is a component of U , then 〈C〉n is a component of the open set 〈U〉n.
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Proof: Let C be a component of 〈U〉n containing 〈C〉n and A ∈ C. Since 〈C〉n ∩

C(X) 6= ∅, by [10, Lemma 1, page 1578],
⋃

C is a connected subset of U which

contains C. But, since C is a component of U , A ⊂
⋃

C ⊂ C. Then, A ∈ 〈C〉n.

Therefore 〈C〉n = C. �

Corollary 5.10. Let X be a continuum, p ∈ X and n ∈ N. Suppose that A ⊂ X .

Then, A ∈ C(X − {p}) if and only if 〈A〉n ∈ C(Cn(X)− Cn{p}(X)).

Proof: Let A ∈ C(X−{p}). By Lemma 5.9, 〈A〉n is a component of 〈X−{p}〉n.

Since 〈X − {p}〉n = Cn(X)− C{p}(X), 〈A〉n ∈ C(Cn(X)− Cn{p}(X)).

Now, let A ⊂ X such that 〈A〉n ∈ C(Cn(X) − Cn{p}(X)). Then p /∈ A.

Let D be a component of X − {p} such A ⊂ D. Note that 〈A〉n ⊂ 〈D〉n, but

〈A〉n ∈ C(Cn(X)− Cn{p}(X)). Thus, 〈A〉n = 〈D〉n and A = D. �

Corollary 5.11. Let X be a continuum and p ∈ X . Then |C(X − {p})| =

|C(C(X)− C{p}(X))|.

Proposition 5.12. Let X be a continuum, suppose that µ : C(X) → [0,∞) is

a Whitney map and let K ∈ C(X)−F1(X). If t0 < µ(K) is such that µ−1(t0) is

arcwise connected then C(X)− CK(X) is arcwise connected.

Proof: Let A ∈ C(X) − CK(X) and B ∈ µ−1(t0). If µ(A) = t0, since µ−1(t0)

is arcwise connected, there exists an arc in µ−1(t0) joining A and B.

Suppose that µ(A) < t0. There exists α : I → C(X) an order arc such that

α(0) = A and α(1) = X . Thus, t0 ∈ µ(α(I)) = [µ(A), µ(X)]. By the intermediate

value theorem, there exists t ∈ (0, 1) such that α(t) ∈ µ−1(t0). Since µ−1(t0) is

arcwise connected, there exists an arc in µ−1(t0) joining α(t) and B. Then, there

is γ : I → C(X) an arc from A to B. Note that µ(γ(s)) ≤ t0 for every s ∈ I and

µ(D) > t0 for every D ∈ CK(X). Thus, γ(I) ⊂ C(X)− CK(X).

Now, suppose µ(A) > t0. Let a ∈ A, there exists β : I → C(X) an order arc

such that β(0) = {a} and β(1) = A. Thus, t0 ∈ µ(β(I)) = [µ({a}), µ(A)]. By

the intermediate value theorem, there exists s ∈ (0, 1) such that β(s) ∈ µ−1(t0).

Note that β([s, 1]) ∩ CK(X) = ∅, otherwise, K ⊂ β(s0) and K ⊂ A, which is

a contradiction. Since µ−1(t0) is arcwise connected, there exists an arc in µ−1(t0)

joining β(s) and B. Then, there is an arc in C(X) − CK(X) joining A and B.

Therefore C(X)− CK(X) is arcwise connected. �

A continuum X is continuum chainable if for each positive number ε and each

pair of points p 6= q in X , there is a finite sequence of subcontinua {A1, . . . , An}

of X such that diameter (Ai) < ε, p ∈ A1, q ∈ An and Ai ∩ Ai+1 6= ∅ for every

i < n.

As consequence of Proposition 5.12 and [12, Theorem 33.4, page 248] we have

the following corollary.
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Corollary 5.13. If a continuum X is continuum chainable and K ∈ C(X) −

F1(X), then C(X)− CK(X) is arcwise connected.

6. Other topological properties

In this section we consider other topological properties of Cn
K(X), some of

them are consequences of the properties of Cn(X).

6.1 Cells in the hyperspace Cn
K(X).

Theorem 6.1. Let X be a nondegenerate continuum and n ∈ N. Then Cn
K(X)

contains an n-cell for every K ∈ 2X .

Proof: Let K ∈ 2X and x ∈ K. Let A1, . . . , An be n pairwise disjoint non-

degenerate subcontinua of X − {x}. For each j ∈ {1, . . . , n}, let aj ∈ Aj , and

let αj : I → C(Aj) be an order arc such that αj(0) = {aj} and αj(1) = Aj .

Note that K 6⊂ αj(t) for every j ∈ {1, . . . , n} and each t ∈ I. Then the map

β : In → Cn
K(X) given by β((t1, . . . , tn)) = πK(α1(t1) ∪ · · · ∪ α(tn)) is an embed-

ding of In in Cn
K(X). �

Theorem 6.2. Let X be a continuum, n ∈ N and let K ∈ 2X . If X − {x}

contains n pairwise disjoint decomposable subcontinua for some x ∈ K, then

Cn
K(X) contains a 2n-cell.

Proof: Let M1, . . . ,Mn be n pairwise disjoint decomposable subcontinua of

X − {x}. Suppose that Mj = Aj ∪ Bj , where Aj and Bj are subcontinua

for each j ∈ {1, . . . , n}. By the proof of (1.145) of [20], we may assume that

each Aj ∩ Bj is connected, Aj − (Aj ∩ Bj) 6= ∅, Bj − (Aj ∩ Bj) 6= ∅, and

[Aj − (Aj ∩ Bj)] ∩ [Bj − (Aj ∩ Bj)] = ∅ for every j ∈ {1, . . . , n}. For each

j ∈ {1, . . . , n}, let αj : I → C(Aj) and βj : I → C(Bj) be order arcs such that

αj(0) = Aj ∩ Bj , αj(1) = Aj , βj(0) = Aj ∩ Bj and βj(1) = Bj . Therefore, the

map γ : I2n → Cn
K(X) given by γ(t1, . . . , t2n) = πK

(
⋃n

j=1(αj(t2j−1) ∪ βj(t2n))
)

is an embedding of I2n in Cn
K(X). �

6.2 Contractibility. A topological space Z is contractible provided that the

identity map of Z is homotopic to a constant map of Z into Z.

Theorem 6.3. Let X be a continuum and n ∈ N. Then CnK(X) is contractible

for each K ∈ 2X .

Proof: Let K ∈ 2X . There exists an order arc α : I → 2X such that α(0) = K

and α(1) = X . Let H : CnK(X) × I → CnK(X) be the function defined by

H(A, t) = α(t) ∪ A. We shall prove that H(CnK(X) × I) ⊂ CnK(X). Let

A ∈ CnK(X) and t ∈ I. By [12, Theorem 15.3, page 120], each component of K
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intersects α(t) for every t ∈ I. Since K ⊂ A, each component of A intersects

α(t). Thus, α(t) ∪ A has at most n components. Hence H is a map. Note that

H(A, 0) = α(0) ∪ A = A and H(A, 1) = α(1) ∪ A = X for each A ∈ CnK(X).

Therefore CnK(X) is contractible. �

Theorem 6.4. Let X be a continuum and n ∈ N. Consider the following state-

ments:

(1) Cn(X) is contractible;

(2) Cn
K(X) is contractible for each K ∈ 2X ;

(3) Cn
K(X) is contractible for some K ∈ 2X .

Then, (1), (2) are equivalents, and (2) implies (3).

Proof: Of course, (2) implies (3) is inmediate. Let K ∈ 2X . Suppose that

Cn(X) is contractible, there exists a map H ′ : Cn(X) × I → Cn(X) such that

H ′(A, 0) = A andH ′(A, 1) = X for each A ∈ Cn(X). LetH : Cn(X)×I → Cn(X)

be the segment homotopy associated with H ′ defined by

H(A, t) =
⋃

{H ′(A, s) : 0 ≤ s ≤ t}.

Then H is a map, see [20, Lemma 16.3, page 533]. Observe that H({A} × I) is

an order arc from A to X for every A ∈ Cn(X).

Claim. We have H(CnK(X)× I) = CnK(X).

Since CnK(X) = H(CnK(X) × {0}), CnK(X) ⊂ H(CnK(X) × I). Now, let

A ∈ CnK(X). Since H(A, 0) = A and H(A, 0) ⊂ H(A, t) for every t ∈ I,

K ⊂ A ⊂ H(A, t). Thus, H(A, t) ∈ CnK(X). This completes the proof of the

claim.

On the other hand, we define G : Cn
K(X)× I → Cn

K(X) by

G(A, t) = πK(H(π−1
K (A), t)),

which is a map such that for each A ∈ Cn
K(X), G(A, 0) = A and G(A, 1) = CnK .

Hence Cn
K(X) is contractible. Thus, (1) implies (2).

Now, take K = X . By Remark 1.1, Cn
K(X) is homeomorphic to Cn(X). Since

Cn
K(X) is contractible, Cn(X) is contractible. Thus, (2) implies (1). �

Given a continuum X , denote by C∞(X) the set
⋃∞

n=1 Cn(X). By Theo-

rem 6.4, [16, Theorem 3.7, page 241] and [16, Theorem 8.7, page 254], we have

the following:

Theorem 6.5. Let X be a continuum and n ∈ N be given. Then the following

are equivalent:

(1) 2X is contractible;
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(2) Cn(X) is contractible;

(3) C∞(X) is contractible;

(4) C(X) is contractible;

(5) Cn
K(X) is contractible for each K ∈ 2X .

A continuum X is said to have Kelley’s property provided that given any ε > 0,

there exists δ > 0 such that if a, b ∈ X , d(a, b) < δ, and A ∈ C(X) such that

a ∈ A, then there exists B ∈ C(X) such that b ∈ B and Hd(A,B) < ε. We say

that a continuum X is smooth at a point p ∈ X provided that for each ε > 0 there

is δ > 0 such that for each x ∈ X , for each subcontinuum M containing p such

that x ∈ M and for each y ∈ X satisfying d(x, y) < δ there is a subcontinuum L

containing p such that y ∈ L and Hd(M,L) < ε. A continuum X is smooth if it

is smooth at some point.

Corollary 6.6. If Cn(X) is a smooth continuum and K ∈ 2X , then for each

n ∈ N, Cn
K(X) is contractible.

Proof: Since Cn(X) is smooth continuum, by [7, Corollary 4.3.1, page 253],

X has Kelley’s property. By [16, Corollary 3.8, page 241], Cn(X) is contractible.

Thus, by Theorem 6.4, Cn
K(X) is contractible. �

A nonempty closed proper subset (continuum) L of a continuum X is called;

◦ an R1-set (continuum) if there exist an open set U containing L and

two sequences {Ci
m}∞m=1, i = 1, 2, of components of U such that L =

lim supC1
m ∩ lim supC2

m;

◦ an R2-set (continuum) if there exist an open set U containing L and

two sequences {Ci
m}∞m=1, i = 1, 2, of components of U such that L =

limC1
m ∩ limC2

m;

◦ an R3-set (continuum) if there exist an open set U containing L and

a sequence {Cm}∞m=1 of components of U such that L = lim inf Cm.

Theorem 6.7. Let n ∈ N. If a continuum X contains an Ri-continuum, i ∈

{1, 2, 3}, then Cn(X) contains an Ri-set for i ∈ {1, 2, 3}, respectively.

Proof: Let L be an R1-continuum in X . Then there exist an open set U con-

taining L and two sequences {Ci
m}∞m=1, i = 1, 2, of components of U such that

L = lim supC1
m ∩ lim supC2

m. By Lemma 5.9, 〈Ci
m〉n are components of 〈U〉n.

Let

L = lim sup〈C1
m〉n ∩ lim sup〈C2

m〉n.

Then, {{x} : x ∈ L} ⊂ L and L is closed. Let A ∈ L for each i = 1, 2, let

{Ai
mj

}∞j=1 be sequences such that limj→∞ Ai
mj

= A, where Ai
mj

∈ 〈Ci
mj

〉n. Then,

A ⊂ L so that A ∈ 〈U〉n. Thus, L ⊂ 〈U〉n is an R1-set in Cn(X). The proof for

i = 2, 3 is similar. �
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By [2, Corollary 3.3, page 317] and Theorem 6.7 we conclude the following

result.

Corollary 6.8. Let n ∈ N. If a continuum X contains an Ri-continuum for

i ∈ {1, 2, 3}, then Cn(X) is not contractible.

As consequence of Theorem 6.4 and Corollary 6.8 we obtain

Corollary 6.9. Let n ∈ N. If a continuum X contains an Ri-continuum for

i ∈ {1, 2, 3} and K ∈ 2X , then Cn
K(X) is not contractible.

The following results give another proof of Corollary 6.9.

Lemma 6.10. Let X be a continuum, n ∈ N and K ∈ 2X . Fix ε > 0,

πK(NH(CnK(X), ε) ∩Cn(X)) is an open subset of Cn
K(X) containing CnK .

Proof: Since NH(CnK(X), ε) ∩ Cn(X) is an open subset of Cn(X) and πK is

a closed map, then

πK(Cn(X)− (NH(CnK(X), ε) ∩ Cn(X)))

= πK(Cn(X))− πK(NH(CnK(X), ε) ∩ Cn(X))

= Cn
K(X)− πK(NH(CnK(X), ε) ∩ Cn(X))

is a closed subset of Cn
K(X). Thus, πK(NH(CnK(X), ε) ∩ Cn(X)) is an open

subset of Cn
K(X) containing CnK . �

Lemma 6.11. Let n ∈ N and K ∈ 2X . If U is an open subset of Cn(X)

such that CnK(X) ⊂ U , then πK(U) is an open subset of Cn
K(X) such that

CnK ∈ πK(U).

Proof: Given A ∈ πK(U), there exists A ∈ U such that πK(A) = A. Suppose

that A /∈ CnK(X). Then, there isW an open subset of Cn(X) such that A ∈ W ⊂

U −CnK(X). By Remark 1.2, πK(W) is an open subset of Cn
K(X) containing A

such that πK(W) ⊂ πK(U).

Now, suppose that A ∈ CnK(X). Since CnK(X) ⊂ U , there is ε > 0 such

that NH(CnK(X), ε) ∩ Cn(X) ⊂ U . Then A ∈ NH(CnK(X), ε) ∩ Cn(X). By

Lemma 6.10, πK(NH(CnK(X), ε)∩Cn(X)) ⊂ πK(U) is an open subset of Cn
K(X).

Therefore, πK(U) is an open subset of Cn
K(X) such that CnK ∈ πK(U). �

Theorem 6.12. Let n ∈ N and K ∈ 2X . If a continuum X contains an Ri-

continuum, i ∈ {1, 2, 3}, then Cn
K(X) contains an Ri-set for i ∈ {1, 2, 3}, respec-

tively.

Proof: Let L be an R1-continuum in X . Then, there exist an open subset U

of X with L ⊂ U and two sequences {Ci
m}∞m=1, i = 1, 2, of components of U such

that L = lim supC1
m ∩ lim supC2

m. We consider two cases:
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Case I. Assume that K 6⊂ L. Let k1 ∈ K − L and W = U ∩ (X − {k1}). Note

that L ⊂ W . Thus, there are subsequences {C1
mj

}∞j=1 and {C2
mj

}∞j=1 of {C1
m}∞m=1

and {C2
m}∞m=1 in W , respectively, such that L = lim supC1

mj
∩ lim supC2

mj
.

Since 〈W 〉n ∩ CnK(X) = ∅, by proof of Theorem 6.7, L = lim sup〈C1
mj

〉n ∩

lim sup〈C2
mj

〉n is an R1-set in 〈W 〉n. From Remark 1.2,

πK(L) = lim supπK(〈C1
mj

〉n) ∩ lim supπK(〈C2
mj

〉n)

is an R1-set in πK(〈W 〉n).

Case II. Suppose that K ⊂ L. Let ε > 0 such that Nd(L, ε) ⊂ U . Note

that BH
ε (L) ⊂ NH(CnK(X), ε) and BH

ε (L) ∩ Cn(X) ⊂ 〈U〉n. Set W = 〈U〉n ∪

(NH(CnK(X), ε) ∩ Cn(X)), which is an open subset of Cn(X) such that

CnK(X) ⊂ W . By Lemma 6.11, πK(W) is an open subset of Cn
K(X) con-

taining CnK . Let Ci
m be the component of πK(W ) containing πK(〈Ci

m〉n) for

i = 1, 2. Then, for each i = 1, 2, {Ci
m}∞m=1 is a sequence in πK(W). Thus,

M = lim sup C1
m ∩ lim sup C2

m is an R1-set in πK(W). The proof for i = 2, 3 is

similar. �

6.3 Homogeneity. Using the induced map we have the following result.

Proposition 6.13. If X is a homogeneous continuum then Cn
{p}(X) is homeo-

morphic to Cn
{q}(X) for every p, q ∈ X .

Question 6.14. If X is a homogeneous continuum then is C1
A(X) homeomorphic

to C1
B(X) for every A,B ∈ C(X) (or 2X)?
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[15] Maćıas S., On the hyperspaces Cn(X) of a continuum X. II, Proc. of the 2000 Topology

and Dynamics Conf., San Antonio, Topology Proc. 25 (2000), 255–276.
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