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On the continuity of the elements of

the Ellis semigroup and other properties

Salvador Garćıa-Ferreira,

Yackelin Rodŕıguez-López, Carlos Uzcátegui

Abstract. We consider discrete dynamical systems whose phase spaces are com-
pact metrizable countable spaces. In the first part of the article, we study some
properties that guarantee the continuity of all functions of the corresponding
Ellis semigroup. For instance, if every accumulation point of X is fixed, we give
a necessary and sufficient condition on a point a ∈ X′ in order that all functions
of the Ellis semigroup E(X, f) be continuous at the given point a. In the second
part, we consider transitive dynamical systems. We show that if (X, f) is a tran-
sitive dynamical system and either every function of E(X, f) is continuous or
|ωf (x)| = 1 for each accumulation point x of X, then E(X, f) is homeomorphic
to X. Several examples are given to illustrate our results.

Keywords: discrete dynamical system; Ellis semigroup; p-iterate; p-limit point;
ultrafilter; compact metric countable space

Classification: 54G20, 54D80

1. Introduction and preliminaries

A dynamical system (X, f) will consist of a compact metric infinite space X

and a continuous function f : X → X (usually, this kind of dynamical systems

are called discrete dynamical systems and we short the name for convenience).

The orbit of a point x ∈ X is the set Of (x) := {x, f(x), f2(x), f3(x), . . .}. The

dynamical system (X, f) is transitive if there is a point with dense orbit. The

dynamical system (X, f) is weakly almost periodic (WAP) if E(X, f) is relatively

compact in the weak topology on C(X). A point x ∈ X is called periodic if there

is n ≥ 1 such that fn(x) = x, and its period is min{n ∈ N : fn(x) = x}. The

symbol Pf stands for the set of all periods of the periodic points of a dynamical

systems (X, f). A point x is called eventually periodic if its orbit is finite. The

ω-limit set of x ∈ X , denoted by ωf (x), is the set of points y ∈ X for which

there exists an increasing sequence (nk)k∈N such that fnk(x) −→ y. Observe that
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for each y ∈ Of (x), we have that ωf (y) = ωf (x). If Of (y) contains a periodic

point x, then ωf (y) = Of (x). For a space X we denote by N (x) the set of

all neighborhoods of x ∈ X , and the set of all accumulation points of X will

be simply denoted by X ′. The Stone–Čech compactification β(N) of N with

the discrete topology will be identified with the set of ultrafilters over N. Its

remainder denoted by N
∗ = β(N)\N, is the set of all free ultrafilters on N, where,

as usual, each natural number n is identified with the fixed ultrafilter consisting

of all subsets of N containing n.

Since our phase spaces are compact metric countable spaces, we remind the

reader the classical result from [13] which asserts that every compact metric count-

able space is homeomorphic to a countable successor ordinal with the order topol-

ogy. In this context, some of the most attractive phase spaces have the form ωα+1,

where α ≥ 1 is a countable ordinal.

The Ellis semigroup of a dynamical system (X, f), denoted E(X, f), is defined

as the pointwise closure of {fn : n ∈ N} in the compact space XX with composi-

tion of functions as its algebraic operation. The Ellis semigroup is equipped with

the topology inhered from the product space XX . This semigroup was introduced

by R. Ellis in [4], and it is a very important tool in the study of the topological be-

havior of dynamical systems. Subsequently, in [5] R. Ellis and M. Nerurkar showed

that a dynamical system (X, f) is WAP if and only if every element of E(X, f) is

continuous. In addition, the article [11] offers an excellent survey concerning ap-

plications of the Ellis semigroup. In the paper [10], the authors initiated the study

of the continuity and discontinuity of the elements of E(X, f) \ {fn : n ∈ N}. For

instance, they point out that if X is a convergent sequence with its limit point,

then either all elements are continuous or all are discontinuous (this result was

later improved in [8]). In a different context, P. Szuca in [14] showed that if

X = [0, 1], the function f : [0, 1] → [0, 1] is onto and fp is continuous for some

p ∈ N
∗, then all the elements of E([0, 1], f) are continuous. Using the Cantor

set as a phase space and generalized shift maps, the continuity and discontinuity

of the elements of the Ellis semigroup were studied in [7]. The main tool that

have been used in all these investigations is the combinatorial properties of the

ultrafilters on N. Certainly, the Ellis semigroup can be described in terms of the

notion of convergence with respect to an ultrafilter. Indeed, given p ∈ N
∗ and

a sequence (xn)n∈N in a space X , we say that a point x ∈ X is the p-limit point

of the sequence, in symbols x = p− limn→∞ xn, if for every neighborhood V of x,

{n ∈ N : fn(x) ∈ V } ∈ p. Observe that a point x ∈ X is an accumulation point

of a countable set {xn : n ∈ N} of X if and only if there is p ∈ N
∗ such that

x = p− limn→∞ xn.
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The notion of a p-limit point has been used in several branches of mathematics

(see for instance [3] and [6, page 179]). A. Blass in [2] and N. Hindman in [12]

formally established the connection between “the iteration in topological dynam-

ics” and “the convergence with respect to an ultrafilter” by considering a more

general iteration of the function f as follows: Let X be a compact space and

f : X → X a continuous function. For p ∈ N
∗, the p-iterate of f is the function

fp : X → X defined by

fp(x) = p− lim
n→∞

fn(x)

for each x ∈ X . The description of the Ellis semigroup and its operation in terms

of the p-iterates are the following, see [2], [12]:

E(X, f) = {fp : p ∈ β(N)}

fp ◦ f q = f q+p for each p, q ∈ β(N).

This result is a consequence of the fact that β(N) is the Stone–Čech compact-

ification of N with the discrete topology. More explicitly, the continuous map

N → XX defined by n 7→ fn, extends to a continuous map β(N) → XX de-

fined by p 7→ fp. More generally, when we have some sequence (xn)n∈N in X

the continuous map n 7→ xn extends to a continuous map p 7→ p − limn→∞ xn.

Additionally, when fp is a continuous function for any p ∈ β(N), fp ◦f q = f q ◦fp

for all q ∈ β(N). In particular, fn ◦ f q = f q ◦ fn for each n ∈ N and q ∈ β(N).

We define E(X, f)∗ as the limit point set of the sequence (fn)n∈N. From the

above, the set E(X, f)∗ is the continue image of N
∗ under the map p 7→ fp.

Besides, we have that ωf (x) = {fp(x) : p ∈ N
∗} for each x ∈ X . When the orbit

of w is dense in X , then X = {fp(w) : p ∈ β(N)} and thus X is a continuous

image of β(N).

Recently (for instance see [8] and [9]), we have investigated the structure of the

Ellis semigroup of a dynamical system and the topological properties of some of

its elements. Our main purpose moves in two directions: The first one concerns

with the continuity and discontinuity of the p-iterates which is dealt in the third

section, and the second one concerns about a general question stated in [9]:

Question 1.1. Given two compact metric countable spaces X and Y , is there

a continuous function f : X → X such that E(X, f) is homeomorphic to Y ?

We provide a partial answer to this question in the fourth section.
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2. Basic properties

In this section, we state several useful results that were proved in the articles

[8] and [9]. Our first lemma is precisely Lemma 2.1 from [9].

Lemma 2.1. Let (X, f) be a dynamical system and x ∈ X .

(i) Assume that x is periodic with period n and let l < n. Then, p ∈
(

nN+l
)∗

if and only if fp(x) = f l(x).

(ii) Suppose that x is eventually periodic and that m ∈ N is the smallest

positive integer such that fm(x) is a periodic point. If n is the period of

fm(x) and p ∈
(

nN+ l
)∗

for some l < n, then fp(x) = f l(fnj(x)) where

j = min{i : m ≤ ni+ l}.

(iii) Suppose that the orbit of x is infinite and ωf (x) = Of (y) for some peri-

odic point y ∈ X with period n. If p, q ∈ (nN+ l)∗ for some l < n, then

fp(x) = f q(x).

The next statement is well known in the literature, see, e.g., Lemma 2.4 of [8].

Lemma 2.2. Let (X, f) be a dynamical system. If ωf (x) is finite, then every

point of ωf (x) is periodic. In particular, if ωf (x) has an isolated point in Of (x),

then every point of ωf (x) is periodic.

Lemma 2.3. Let (X, f) be a dynamical system, x ∈ X and m ∈ N. There is an

integer M > 0 such that |Of (x)| < M for each x ∈ X if and only if E(X, f) is

finite.

We omit the proof of the following well-known result.

Lemma 2.4. Let (X, f) be a dynamical system such that X has a dense subset

consisting of isolated points. If X has a point with infinite orbit, then {fn :

n ∈ N} is infinite and discrete in E(X, f) and fn 6= fp for every (n, p) ∈ N× N
∗.

3. Continuity of the p-iterates

In the context of compact metric countable spaces, we showed in [8, Theo-

rem 3.11] that if all points of a ∈ X ′ are periodic, then for b ∈ X ′ either each

f q is discontinuous at b for every q ∈ N
∗ or each f q is continuous at b for all

q ∈ N
∗. An example where this assertion fails assuming that all points of X ′ are

eventually periodic is also given in [8]. Here, our main task is to give a necessary

and sufficient condition on the space X in order that all p-iterates be discontinu-

ous at a given point. Hence, we have a necessary and sufficient condition on the

space X to make (X, f) weakly almost periodic. To have this done we shall need

some preliminary lemmas.

The next result corresponds to Lemma 3.7 and Theorem 3.8 of [8].
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Lemma 3.1. Let (X, f) be a dynamical system such that X is a compact metric

countable space and every point of X ′ is periodic. For every x ∈ X , there exists

a periodic point y ∈ X such that ωf (x) = Of (y). If x has an infinite orbit and

y ∈ ωf (x) is fixed, then fn(x) −→ y.

The following two additional results are needed to establish our theorems.

Lemma 3.2. Let f : X → X be a continuous function such that every accumu-

lation point is fixed. The set {x ∈ X : d(x, f(x)) ≥ ε} is finite for each ε > 0.

Proof: Assume, towards a contradiction, that there is ε0 > 0 such that H =

{x ∈ X : d(x, f(x)) ≥ ε0} is infinite. Since X is compact and metric, there is

a non constant sequence (xn)n∈N in H and x ∈ X ′ such that xn −→ x. As f

is continuous and x is fixed, then f(xn) −→ f(x) = x which implies that there

is n0 ∈ N such that d(xn0
, f(xn0

)) < ε0, but this is a contradiction. This shows

that H is finite. �

Lemma 3.3. Let (X, f) be a dynamical system such that X is a compact metric

countable space and every accumulation point is periodic. Let p ∈ N
∗ and b ∈ X

be an isolated point. If there is a sequence (an)n∈N in X such that fp(an) −→ b,

then b is periodic and Of (b) = ωf (b) = ωf (an) for every positive integer except

finitely many.

Proof: It follows directly from the assumption that B = {n ∈ N : fp(an) = b} is

cofinite and hence b ∈ ωf(an) ⊆ Of (an) for every n ∈ B. By Lemma 2.2, we have

that b is a periodic point. So, Of (b) = ωf (b). By Lemma 3.1, for every n ∈ B

there is a periodic point yn ∈ X such that ωf(an) = Of (yn) and since b ∈ Of (yn),

we conclude that ωf(b) = Of (b) = Of (yn) = ωf(an) for all n ∈ B. �

Theorem 3.4. Let (X, f) be a dynamical system such thatX is a compact metric

countable space and every accumulation point of X is fixed. For every a ∈ X ′,

the following statements are equivalent:

(1) There is p ∈ N
∗ such that fp is discontinuous at a ∈ X ′.

(2) There are a periodic point b ∈ X \ {a} and a sequence (an)n∈N in X such

that an −→ a and b ∈ Of (an) for all n ∈ N.

(3) The function fp is discontinuous at a for each p ∈ N
∗.

Proof: (1) ⇒ (2). Suppose that fp is discontinuous at a ∈ X ′. Then, there

is a nontrivial sequence (an)n∈N in X such that an −→ a and fp(an) does not

converge to a. Since X is compact and metric, there are a sequence of positive

integers (nk)k∈N and b ∈ X \ {a} such that fp(ank
) −→ b. Assume, without loss

of generality, that this subsequence is (an)n∈N. In virtue of Lemma 3.3, we only

consider the case when b ∈ X ′. Since a 6= b, fp(an) −→ b and an −→ a, there are
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a clopen set V ∈ N (a) and N ∈ N such that b /∈ V , an ∈ V and fp(an) ∈ X\V for

each n ≥ N . For every n ≥ N there is dn ∈ Of (an)∩ V such that f(dn) ∈ X \V ,

this is possible since the set An = {m ∈ N : fm(an) /∈ V } ∈ p and hence it is

infinite. Then, by Lemma 3.2, we have that the set B = {dn : n ≥ N} is finite.

Hence, there exists d ∈ B for which the set H = {n ∈ N : d = dn} is infinite.

To finish the proof it suffices to show that b ∈ ωf(an) for all n ∈ H . Indeed, we

consider two cases. Suppose first that Of (d) is infinite, then there is e ∈ X ′ such

that e ∈ ωf (d). As e is fixed, by Lemma 3.1, fm(d) −→ e. Analogously it is

shown that fm(an) −−−−→
m→∞

e because of e ∈ ωf(an) for each n ∈ H . Consequently,

we obtain that f q(an) = e for each q ∈ N
∗ and for each all n ∈ H . This implies

that b = e since fp(an) −−−→
n∈H

b. Thus b ∈ ωf (an) for all n ∈ H . For the

second case, we assume that Of (d) is finite. As d ∈ Of (an) for each n ∈ H , we

also have that the orbit of an is finite for all n ∈ H . By Lemma 3.1, we may

choose a periodic point e ∈ X such that Of (e) = ωf (d) = {f q(d) : q ∈ N
∗} =

{f q(an) : q ∈ N
∗} = ωf (an) for n ∈ H . Since Of (e) is finite and fp(an) −→ b, we

obtain that b ∈ ωf (an) for each n ∈ H .

(2) ⇒ (3). We have to analyze two possible cases.

Case I. Suppose b is isolated. By assumption, b is periodic. Hence, if b ∈

Of (y), then Of (y) is finite and so Of (b) = ωf (y) = {fp(y) : p ∈ N
∗}. Thus,

from the hypothesis we obtain that fp(an) ∈ ωf (an) = Of (b) for every n ∈ N

and every p ∈ N
∗. As a is fixed and b 6= a, then a 6∈ Of (b) and the sequence

(fp(an))n∈N cannot converge to a for any p ∈ N
∗. Thus f is discontinuous at a.

Case II. Suppose b ∈ X ′. Observe that if b ∈ Of (y) and Of (y) is finite, then

ωf (y) = {b}. On the other hand, if b ∈ Of (y) and Of (y) is infinite, then it

follows from Lemma 3.1 that ωf(y) = {b}. Thus, we have that fp(an) = b for

each p ∈ N
∗ and for each n ∈ N. Thus f is discontinuous at a.

(3) ⇒ (1). It is evident. �

Corollary 3.5. Let (X, f) be a dynamical system such that X is a compact

metric countable space and every accumulation point of X is fixed. If the orbit of

every isolated point of X is finite, then every function of E(X, f) is continuous.

Proof: Assume that there is p ∈ N
∗ such that fp is discontinuous at a ∈ X ′.

It follows from Theorem 3.4 (2) that there are a periodic point b ∈ X \ {a} and

a sequence (an)n∈N in X such that an −→ a and b ∈ Of (an) for all n ∈ N. Since

each accumulation point of X is fixed, we may assume that an is isolated for

every n ∈ N
∗, hence b ∈ Of (an) for all n ∈ N. Now, let V and W be disjoint

open sets such that V ∩W = ∅, a ∈ V and b ∈ W . Without loss of generality,

we may assume that an ∈ V for all n ∈ N. Then we can find a sequence (kn)n∈N

such that fkn(an) ∈ V and fkn+1(an) ∈ W for every n ∈ N. We may assume that
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fkn(an) −→ c ∈ V , but this is impossible since fkn+1(an) −→ f(c) = c ∈ W .

Therefore, fp is continuous. �

By the previous results, we have a necessary and sufficient condition to make

(X, f) weakly almost periodic, when X is a compact metric countable space and

every accumulation point is fixed.

The conclusion of Theorem 3.4 is not true if we replace the hypothesis “ev-

ery accumulation point is fixed” by the hypothesis “every accumulation point is

periodic”. Indeed, the next two examples witness that the condition (2) of The-

orem 3.4 holds together with either the assumption “fp is continuous for every

p ∈ N
∗” or the assumption “fp is discontinuous for all p ∈ N

∗”.

The phase space of the following dynamical systems is the ordinal space 2ω+1

(two disjoint convergent sequences) which will be identified with the following

subspace of R:

X = {an : n ∈ N} ∪ {bn : n ∈ N} ∪ {a, b},

where an < an+1 < a < bn < bn+1 < b for every n ∈ N, an −→ a and bn −→ b.

Example 3.6. Define a function f : X → X as follows:

a) f(a) = b and f(b) = a,

b) f(an) = bn for each n ∈ N, and

c) f(bn) = an+1 for each n ∈ N.

That is,
a0 → b0 → a1 → b1 → a2 → b2 → a3 → b3 · · · an → bn

→ an+1 → bn+1 → an+2 → bn+2 → · · ·

It is evident that f is continuous. From the definition of f we have, for all

n,m ∈ N, the following:

i) f2m(an) = an+m,

ii) f2m+1(an) = bn+m,

iii) f2m(bn) = bn+m, and

iv) f2m+1(bn) = an+m+1.

Conditions i)–iv) imply the following:

(1) fp(an) = fp(a) = a for every p ∈ (2N)∗,

(2) fp(an) = fp(b) = b for every p ∈ (2N+ 1)∗,

(3) fp(bn) = fp(b) = b for every p ∈ (2N)∗, and

(4) fp(bn) = fp(a) = a for every p ∈ (2N+ 1)∗.

Note that,

(1) ωf (x) = {a, b} for every x ∈ X .

(2) E(X, f) is infinite.

(3) The point a1 has a dense orbit.
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Then we have that the accumulation points a and b have period equal to 2

and both satisfy the second condition of Theorem 3.4. However, the function fp

is continuous for every p ∈ N
∗. In adition, we have a transitive dynamical system

with |ωf (x)| ≤ 2 for every x ∈ X , and E(X, f) is infinite and countable.

Example 3.7. We define a function f : X → X as follows:

a) f(a) = b and f(b) = a,

b) f(a0) = a0,

c) f(an) = bn−1 for every 0 < n ∈ N, and

d) f(bn) = an for every n ∈ N.

That is,

bn → an → bn−1 → an−1 → bn−2 → an−2 → bn−3

→ an−3 → · · · b2 → a2 → b1 → a1 → b0 → a0.

It is not hard to prove that f is continuous. From the definition of f we easily

have that for each x ∈ X \ {a, b} there exists n ∈ N such that fn(x) = a0. Hence,

fp(x) = a0 for every x ∈ X \ {a, b} and every p ∈ N
∗. Since fp(a) = a and

fp(b) = b for all p ∈ (2N)∗; and fp(a) = b and fp(b) = a for all p ∈ (2N + 1)∗,

we conclude that fp is discontinuous at a and b for each p ∈ N
∗ and |ωf (x)| ≤ 2

for each x ∈ X . Finally, observe that a0 ∈ Of (an) for all n ∈ N, so (2) of

Theorem 3.4 is satisfied.

In the next theorem, we show a generalization of (2) ⇒ (3) in Theorem 3.4.

Theorem 3.8. Let (X, f) be a dynamical system such thatX is a compact metric

countable space and every accumulation point of X is periodic. Let a ∈ X ′. If

there are a sequence (an)n∈N in X and a periodic point b ∈ X \ Of (a) such that

an −→ a and b ∈ Of (an) for every n ∈ N, then fp is discontinuous at a for each

p ∈ N
∗.

Proof: First we show a particular case. Suppose that b ∈ Of (an) for infinitely

many n ∈ N. Hence, from the periodicity of b, we have that Of (b) = ωf (b) =

ωf (an) = {fp(an) : p ∈ N
∗} is finite for infinitely many n ∈ N. Since Of (a) ∩

Of (b) = ∅, the sequence (fp(an))n∈N cannot converge to fp(a) ∈ Of (a) for any

p ∈ N
∗. Thus fp is not continuous at a for any p ∈ N

∗.

For the proof of the theorem we consider two cases: (i) Suppose b is isolated.

Then b ∈ Of (an) for every n ∈ N and we are done from the result we proved

above.

(ii) Assume that b ∈ X ′ \
(
⋃

n∈N
Of (an)

)

. From the result proved above, we

can assume that Of (an) is infinite for every n ∈ N. Then, we must have that

b ∈ ωf (an) for every n ∈ N. Now, in virtue of Lemma 3.1, for every n ∈ N there

is a periodic point yn ∈ X such that ωf (an) = Of (yn). Since b is periodic and
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b ∈ Of (yn), then Of (b) = Of (yn) for all n ∈ N. Thus fp(an) ∈ Of (b) for all n

and all p ∈ N
∗. Since Of (a) ∩ Of (b) = ∅, we conclude as before that fp is not

continuous at a for any p ∈ N
∗. �

In the next result we slightly modify the proof of the previous theorem to get

an interesting statement.

Theorem 3.9. Let (X, f) be a dynamical system such thatX is a compact metric

countable space and every accumulation point of X is periodic. Let a ∈ X ′ and

(an)n∈N be a sequence in X such that fp(an) −→ fp(a) for some p ∈ N
∗. Suppose

b ∈ X is a periodic point and b ∈
⋂

n∈N
Of (an), then b ∈ Of (a).

Proof: Let a ∈ X ′, (an)n in X and p ∈ N
∗ as in the hypothesis. First, suppose

that b is isolated. Then, b ∈
⋂

n∈N
Of (an) and so Of (b) = ωf (b) = ωf (an) for

every n ∈ N. Since fp(an) −→ fp(a) ∈ Of (a) and fp(an) ∈ ωf (an) = Of (b)

for each n ∈ N, we must have that Of (a) ∩ Of (b) 6= ∅ and so b ∈ Of (a). Now,

suppose that b ∈ X ′. Notice that if b ∈ Of (an) for some n ∈ N, then Of (b) =

ωf (b) = ωf (an). Thus we have that b ∈ ωf (an) for all n ∈ N. By Lemma 3.1, there

exists a periodic point yn ∈ X such that ωf (an) = Of (yn). Since b ∈ ωf(an), then

ωf (an) = Of (b) for all n ∈ N. Thus, we have shown that fp(an) ∈ Of (b) for every

n ∈ N. Then, as before, we have Of (a) ∩ Of (b) 6= ∅ and thus b ∈ Of (a). �

Concerning the last theorem we have the following example.

Example 3.10. We consider again the countable ordinal space 2ω + 1 identified

with the subspace X of R from above. Define the function f : X → X as follows:

a) f(a) = b and f(b) = a,

b) f(a0) = b,

c) f(an) = bn−1 for each n > 0, and

d) f(bn) = an for each n ∈ N.

The function f is evidently continuous. From the definition we can see that

bn → an → bn−1 → an−1 → bn−2 → an−2 → · · · → b2

→ a2 → b1 → a1 → b0 → a0 → b.

Hence, all points are eventually periodic. Besides, we have the following proper-

ties:

i) For every x ∈ X there is n ∈ N such that fn(x) = b.

ii) fp(x) = b for each x ∈ X \ {a, b} and for each p ∈ N
∗.

iii) fp(a) = a for all p ∈ (2N)∗.

iv) fp(a) = b for all p ∈ (2N+ 1)∗.

v) fp(b) = a for all p ∈ (2N+ 1)∗.
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Thus, we have that fp is discontinuous at a for all p ∈ (2N)∗ and we also have

that b ∈ Of (x) for every x ∈ X . Moreover, fp is discontinuous at b for all

p ∈ (2N+ 1)∗.

Theorem 3.4 suggests the following problem.

Problem 3.11. Let (X, f) be a dynamical system such that X is a compact

metric countable space such that every accumulation point of X is periodic.

Find a necessary and sufficient condition on a point a ∈ X , like in Theorem 3.4,

in order that fp is discontinuous at a for each p ∈ N
∗.

4. Transitive dynamical systems

Continuing the work presented in [9], in this section we focus our attention on

transitive dynamical systems. We recall some questions from that paper. The

first one is whether E(X, f) is countable for every transitive system (X, f), see

Questions 4.6 in [9]. For instance, this happens when every function in E(X, f)

is continuous, see [9, Theorem 2.9, Theorem 3.3]. Below we extend this result.

The second question is whether or not there is a continuous function f : X → X

such that E(X, f) is homeomorphic to Y , where X and Y are arbitrary compact

metric countable spaces. See Questions 4.8 in [9]. In this section, X will be always

a compact metric countable space.

We need the following result from [9], see Lemma 3.1 and Theorem 2.3.

Lemma 4.1. Let (X, f) be a dynamical system.

(i) Then E(X, f) \ {fn : n ∈ N} is finite if and only if there is m ∈ N such

that |ωf (x)| ≤ m for each x ∈ X .

(ii) If (X, f) is transitive and y ∈ X ′, then f(y) ∈ X ′.

(iii) If w has a dense orbit, then w is isolated.

Theorem 4.2. Let (X, f) be a transitive dynamical system where X is a com-

pact metrizable countable space. If either fp is continuous for each p ∈ N
∗, or

|ωf (x)| = 1 for each x ∈ X ′, then E(X, f) is homeomorphic to X .

Proof: In [1] E. Akin and E. Glasner proved that if (X, f) is transitive, X is

compact metric space and fp is continuous for each p ∈ N
∗, then E(X, f) is

homeomorphic to X . Here, we present another proof of this fact which also

holds under the assumption |ωf(x)| = 1 for each x ∈ X ′. Let w be a point

of X whose orbit is dense in X . According to Lemma 4.1 the point w must be

isolated. Now, consider the function h : E(X, f) → X defined by h(fp) = fp(w)

for every p ∈ β(N). This function is continuous since it is the restriction of the

projection map πw : XX → X to E(X, f). It follows from Lemma 2.4 that h
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is surjective since X = {fp(w) : p ∈ β(N)}. To prove the theorem it suffices

to show that the function h is injective. To have this done, first observe that

fp(fn(w)) = fn(fp(w)) for all n ∈ N and for all p ∈ β(N), and the orbit of w is

the collection of isolated points of X . Hence, we obtain that fp(x) = f q(x) for

every isolated point x ∈ X whenever fp(w) = f q(w) for some p, q ∈ β(N).

Suppose first that fp is continuous for each p ∈ N
∗. Then, if p, q ∈ N

∗ and

fp and f q agree on all the points of a dense orbit, then we obtain that fp = f q.

This shows h is injective.

Now, assume that |ωf (x)| = 1 for each x ∈ X ′. Then for every x ∈ X ′ there

is zx ∈ X ′ such that ωf(x) = {zx} and hence we obtain that fp(x) = zx for

all p ∈ N
∗. Thus we have that fp = f q if and only if fp(w) = f q(w) for all

p, q ∈ β(N). So, h is injective.

Therefore, in both cases, h is a homeomorphism between E(X, f) and X . �

Question 4.8 is related to the second condition of the previous theorem.

In Example 3.6, we have a transitive dynamical system such that E(X, f) is

infinite and countable with the restriction |ωf (x)| = 2 for every x ∈ X . In this

direction, we proof that the cardinality of the Ellis semigroup is countable under

some restriction on ω-sets.

Theorem 4.3. Let (X, f) be a transitive dynamical system such that X is a com-

pact metric countable space. If there is m ∈ N such that |ωf (x)| ≤ m for every

x ∈ X ′, then E(X, f) is countable infinite.

Proof: Let E∗ = E(X, f)\{fn : n ∈ N}. It suffices to show that E∗ is countable.

First notice that E∗ is equal to {fp : p ∈ N
∗} by Lemma 2.4. Since X ′ is f -

invariant (by Lemma 4.1 (ii)), then (X ′, f ↾ X ′) is a well defined dynamical

system. By Lemma 4.1 (i), E(X ′, f ↾ X ′) is finite. Let w ∈ X with a dense

orbit. Consider the function ϕ : E∗ → E(X ′, f ↾ X ′) × X ′ given by ϕ(g) =

(g ↾ X ′, g(w)). It suffices to show that ϕ is injective. In fact, let g ∈ E∗, then

g = fp for some p ∈ N
∗. Notice that every isolated point is of the form f l(w) for

some l ∈ N. Thus g(f l(w)) = fp(f l(w)) = f l(fp(w)) = f l(g(w)). Therefore g is

completely determined by g ↾ X ′ and g(w). Hence ϕ is injective. �

As consequence of Theorem 4.3 and Theorem 2.7 of [9], we obtain the following

characterization.

Corollary 4.4. Let (X, f) be a transitive dynamical system whereX is a compact

metrizable countable space. Then the set Pf is finite if and only if E(X, f) is

countable.

Proof: First we suppose that the set Pf is finite. Hence, there is m ∈ N such

that |ωf (x)| ≤ m for every x ∈ X ′. By Theorem 4.3, we conclude that E(X, f)
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is countable. Now, we assume that E(X, f) is countable. If Pf were infinite, by

Theorem 2.7 of [9], then E(X, f) would be homeomorphic to the Cantor set 2N,

which is impossible. So, Pf is finite. �

In the next example, we show that there exists a continuous function f such

that the dynamical system (ω3+1, f) is transitive and has a sequence of accumu-

lation points with arbitrarily large period. By Theorem 2.7 of [9], we have that

E(ω3+1, f) is homeomorphic to 2N. This example differs from Example 4.1 of [8]

since this dynamical system is transitive and in the other one all points have finite

orbit. Notice also that, in the example below, all p-iterates are discontinuous.

The phase space of the next two examples is going to be ω3 + 1 which for our

convenience will be identified with the following subspace of R:

X = {di,j,k : i, j, k ∈ N} ∪ {dj,k : j, k ∈ N} ∪ {dk : k ∈ N} ∪ {d},

where (dk)k∈N is a strictly increasing sequence such that dk −−−−→
k→∞

d; (dj,0)j∈N is

a strictly increasing sequence contained in (−∞, d0) such that dj,0 −−−→
j→∞

d0; for

each positive k ∈ N, the sequence (dj,k)j∈N is strictly increasing, it is contained

in (dk−1, dk) and dj,k −−−→
j→∞

dk; D0,0 := {di,0,0 : i ∈ N} is a strictly increasing

sequence such that di,0,0 −−−→
i→∞

d0,0 and it is contained in (−∞, d0,0); D0,k =

{di,0,k : i ∈ N} is a strictly increasing sequence with di,0,k −−−→
i→∞

d0,k and contained

in (dk−1, d0,k) for each k ∈ N \ {0} Dj,k := {di,j,k : i ∈ N} is a strictly increasing

sequence with di,j,k −−−→
i→∞

dj,k and contained in (dj−1,k, dj,k) for every j ∈ N\{0}

and for every k ∈ N.

We are ready to describe our first example.

Example 4.5. There is a function f : ω3 + 1 → ω3 + 1 such that

(1) Of (d0,0,0) is dense.

(2) All points of (ω3 + 1)′ have finite orbit.

(3) The accumulation point dan
has period n + 2, where a0 = 0 and an =

an−1 + n+ 1 for every n ∈ N.

(4) The Ellis semigroup E(ω3 + 1, f) is homeomorphic to 2N.

(5) The function fp is discontinuous for all p ∈ N
∗.

The function f is defined as follows:

a) f(d) = d.

b) f(dan
) = dan+n+1 = dan+1−1 for each n ∈ N.

c) f(dan+k) = dan+k−1 for each n ∈ N and 0 < k ≤ n+ 1.

d) f(d0,0) = d and f(d0,an
) = dan−1

for each n > 0.

e) f(di,an
) = di−1,an+n+1 = di−1,an+1−1 for each n ∈ N and i > 0.

f) f(di,an+k) = di,an+k−1 for each i ∈ N, n ∈ N and 0 < k ≤ n+ 1.
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g) f(d0,0,0) = d0,0,1 and f(dn,0,0) = d0,0,an
for each n > 0.

h) f(di,j,0) = di+1,j−1,1 for each i ∈ N and j > 0.

i) f(di,0,1) = di+1,0,1 for each i ∈ N.

j) f(di,j,1) = di,j,0 for each i ∈ N and j > 0.

k) f(di,j,an
) = di,j−1,an+n+1 for each i ∈ N and j, n > 0.

l) f(di,0,an
) = d0,i+1,an−1 for each i ∈ N and n > 0.

m) f(di,j,k) = di,j,k−1 for each i, j ∈ N and k /∈ H and k /∈ {an + 1: n ∈ N}.

n) f(di,j,k) = di,j,k−1 for each i ∈ N, j > 0 and k ∈ {an + 1: n > 0}.

o) f(di,0,k) = di+1,0,k−1 for each i ∈ N and k ∈ {an + 1: n > 0}.

To have some idea about the orbits we describe some of them in the next diagram:

d0,0,0 → d0,0,1 → d1,0,0 → d0,0,2 → d0,1,1 → d0,1,0 → d1,0,1 → d2,0,0

→ d0,0,5 → d0,1,4 → d0,1,3 → d0,1,2 → d0,0,4 → d0,0,3 → d0,0,2

→ d1,0,2 → d0,2,1 → d0,2,0 → d1,1,1 → d1,1,0 → d2,0,1 → d3,0,0

→ d0,0,9 → d0,1,8 → d0,1,7 → d0,1,6 → d0,1,5 → d0,0,8 → d0,1,7

→ d0,1,6 → d1,0,5 → d0,2,4 → d0,2,3 → d0,2,2 → d1,1,4 → d2,1,3

→ d1,1,2 → d1,0,4 → d2,0,3 → d2,0,2 → d0,3,1 → d0,3,0 → d1,2,1

→ d1,1,0 → d3,1,1 → d3,1,0 → d3,0,1 → d4,0,0 → d0,0,14 → . . .

...
...

...

→ dn,0,0 → d0,0,an
→ d0,1,an−1

→ · · · → d0,1,an−1

→ d0,0,an−1 → · · · → d1,0,an−1
→ d0,2,an−1−1 → · · · → d0,2,an−2

→ dn,0,1 → dn+1,0,0 → · · ·

...
...

...

Notice that:

i) f(D0,0) = {d0,0,an
: n ∈ N}.

ii) f(Dj,0) = Dj−1,1 \ {d0,j−1,1} for each j > 0.

ii) f(D0,1) = D0,0 \ {d0,0,0} and f(Dij) = D(i−1)j for each i, j > 0.

iii) f(Dj,1) = Dj,0 for each j > 0.

iv) f(D0,an
) = {d0,j+1,an−1 : j ∈ N} for each n > 0.

v) f(Dj,an
) = Dj−1,an+n+1 \ {d0,j−1,an+n+1} for each j, n > 0.

vi) f(Dj,k) = Dj,k−1 for each j ∈ N and k /∈ H ∪ {an + 1: n ∈ N}.

vii) f(Dj,k) = Dj,k−1 for each j > 0 and k ∈ {an + 1: n ∈ N}.

viii) f(D0,k) = D0,k−1 \ {d0,0,k−1} for each k ∈ {an + 1: n ∈ N}.
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By conditions a), b), c), iv), v), vi), vii) and viii), we have that f is continuous

at d, dk for every k > 0; f is continuous at d0 by conditions b) and ii); and

f is continuous at dij , by conditions d), e), f) and identities from i) to viii) for

each i, j ∈ N. Consider the sequence (di0)i∈N that converges to d0. By conditions

d), e) and f) for every i ∈ N there exist li ∈ N such that f li(di0) = d. Then,

for each i ∈ N, p ∈ N
∗ fp(di0) = d and fp(d0) = d1. So, we conclude that

fp is discontinuous at d0 for every p ∈ N
∗. Since there are periodic points of

arbitrarily large period, the Ellis semigroup E(ω3 + 1, f) is homeomorphic to 2N,

by Theorem 2.7 of [9].

Our next example satisfies the second conditions of Theorem 4.2 and all the

p-iterates are discontinuous for p ∈ N
∗.

Example 4.6. There is a continuous function f : ω3 + 1 → ω3 + 1 such that:

(1) Of (d0,0,0) is dense.

(2) The points dcn−1,0 and dcn+1,0 have infinite orbits, where cn = 2+3n for

every n ∈ N.

(3) |ωf (x)| = 1 for every x ∈ (ω3 + 1)′.

(4) E(ω3 + 1, f) is homeomorphic to ω3 + 1.

(5) fp is discontinuous for all p ∈ N
∗.

Our function f is defined as follows:

a) f(d) = d and f(dn) = dn for each n ∈ N.

b) f(d0,0) = d, f(d1,0) = d3,0, f(d2,0) = d0,0 and f(d0,1) = d0.

c) f(dcn−1,0) = dcn−1−1,0 for each n > 0.

d) f(dcn,0) = dcn−1,0 for each n > 0.

e) f(dcn+1,0) = dcn+1+1,0 for each n ∈ N.

f) f(dj,k) = dj−1,k for each j > 0 and k > 0.

g) f(d0,k) = dk−1 for each k > 0.

h) f(di,j,k) = di+1,j−1,k for each i ∈ N and j, k > 0.

i) f(di,0,2) = d0,i,1 for each i ∈ N.

j) f(di,0,k) = d0,i+1,k−1 for each i ∈ N and k > 2.

k) f(di,0,1) = d0,ci+1−1,0 for each i ∈ N.

l) f(di,c0,0) = di+1,0,0 for each i ∈ N.

m) f(di,cn,0) = di+1,cn−1,0 for each i ∈ N and n > 0.

n) f(di,cn−1,0) = di+1,cn−1−1,0 for each i ∈ N and n > 0.

o) f(d0, cn+1, 0) = d0,cn,0 for each n ∈ N.

p) f(di,cn+1,0) = di−1,cn+1+1,0 for each i > 0 and n ∈ N.

q) f(di,4,0) = di,1,0 for each i ∈ N.

r) f(di,1,0) = di,3,0 for each i ∈ N.

s) f(di,0,0) = d0,0,i+2 for each i ∈ N.
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t) f(di,2,0) = di+1,0,0 for each i ∈ N.

In the next diagram, we can see the behavior of the orbits on the isolated points.

d0,0,0 → d0,0,2 → d0,0,1 → d0,4,0 → d0,1,0 → d0,3,0 → d0,2,0 → d1,0,0

d1,0,0 → d0,0,3 → d0,1,2 → d1,0,2 → d0,1,1 → d1,0,1 → d0,7,0 → d1,4,0 → d1,1,0

→ d1,3,0 → d0,6,0 → d0,5,0 → d1,2,0 → d2,0,0

d2,0,0 → d0,0,4 → d0,1,3 → d1,0,3 → d0,2,2 → d1,1,2 → d2,0,2 → d0,2,1 → d1,1,1

→ d2,0,1 → d0,10,0 → d1,7,0 → d2,4,0 → d2,1,0 → d2,3,0 → d1,6,0 → d0,9,0

→ d0,8,0 → d1,5,0 → d2,2,0 → d3,0,0

d3,0,0 → d0,0,5 → d0,1,4 → d1,0,4 → d0,2,3 → d1,1,3 → d2,0,3 → d0,3,2 → d1,2,2

→ d2,1,2 → d3,0,2 → d0,3,1 → d0,2,2 → d1,1,4 → d2,1,3 → d1,1,2 → d1,0,4

→ d2,0,3 → d2,0,2 → d0,3,1 → d1,2,1 → d2,1,1 → d3,0,1 → d4,0,0

...
...

...

dn,0,0 → d0,0,n+2 → d0,1,n+1 → · · · → d1,0,n+1 · · · → dn,0,1

→ d0,cn+1−1,0 → · · · → dn,2,0 → dn+1,0,0 · · ·

...
...

...

The following properties are satisfied.

i) f(Dj,k) = Dj−1,k for each j > 0 and k > 0.

ii) f(Dc0,0) = D0,0 \ {d0,0,0} and f(Dcn,0) = Dcn−1,0 \ {d0,cn−1,0} for each

n > 0.

iii) f(Dcn+1,0) = Dcn+1+1,0 ∪ {d0,cn,0} for each n ∈ N.

iv) f(Dcn−1,0) = Dcn−1−1,0 \ {d0,cn−1−1,0} for each n 6= 0.

v) f(D0,1) = {d0,cn+1−1,0 : n ∈ N}.

vi) f(D0,0) = {d0,0,k+2 : k ∈ N}.

vii) f(D1,0) = D3,0 and f(D2,0) = D0,0.

viii) f(D0,2) = {d0,j,1 : j ∈ N} and f(D0,k) = {d0,j+1,k−1 : j ∈ N} for each

k > 2.

Observe that clauses a) and i) imply that f is continuous at d, at di for each

i > 0 and at dij for every i, j > 0. For j > 1, f is continuous at d0j by clauses

g) and viii). By d), e), ii), iii) and iv), we have that f is continuous at d0 and
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at di,0 for every i > 2. By b), v), vi) and vii), f is continuous at the points d0,0,

d10, d20 and d0,1. Therefore, f is continuous.

It is evident that the orbit Of (d0,0,0) is dense. Also it is evident that the points

dcn−1,0 and dcn+1,0 have infinite orbits for every n ∈ N. The follow relationships

follows directly from the definition:

I) fp(d) = d and fp(dn) = dn for each n ∈ N and p ∈ N
∗.

II) fp(d0,0) = d, fp(d2,0) = d and fp(d0,1) = d0.

III) fp(dcn,0) = d for each n > 0.

IV) fp(dcn+1,0) = d0 = fp(dcn−1,0) for each n ∈ N.

V) fp(dj,k) = dk−1 for each j > 0 and k > 0.

All these properties imply clause (3), condition (4) follows from Theorem 4.2 and

the last condition (5) follows from clauses III) and IV).

Concerning the previous example we formulate the following question.

Question 4.7. Is there a continuous function f : ω3+1 → ω3+1 such (ω3+1, f) is

transitive and E(ω3+1, f)∗ contains both continuous and discontinuous functions?

With respect to Theorem 4.2, it is natural to ask the following.

Question 4.8. Let (ωα + 1, f) be a transitive dynamical system where α ≥ 1

is a countable ordinal. If 1 < sup{|ωf (x)| : x ∈ (ωα + 1)′} < ω, is E(ωα + 1, f)

homeomorphic to ωβ + 1 for some countable ordinal β ≥ 1?
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