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On atomic ideals in some factor rings of C(X,Z)

Alireza Olfati

Abstract. A nonzero R-module M is atomic if for each two nonzero elements
a, b in M , both cyclic submodules Ra and Rb have nonzero isomorphic submod-
ules. In this article it is shown that for an infinite P -space X, the factor rings
C(X, Z)/CF (X,Z) and Cc(X)/CF (X) have no atomic ideals. This fact gener-
alizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A.R. Ol-
fati and S. Safaeeyan (2020), which says that for an infinite set X, the factor

ring Z
X/Z(X) has no atomic ideal. Another result is that for each infinite P -

space X, the socle of the factor ring Cc(X)/CF (X) is always equal to zero. Also,
zero-dimensional spaces X are characterized for which CF (X,Z)/CF (X,Z) have
atomic ideals.

Keywords: P -space; rings of integer-valued continuous functions; functionally
countable subalgebra; atomic ideal; socle
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1. Introduction

In this article, by ring, we mean a commutative ring with identity. A submod-

ule N of an R-module M is said to be essential in M and denoted by N ≤ess M if

N intersects each nonzero submodule of M nontrivially. The socle of a module M

is the sum of all minimal submodules of M . For every nonzero module M , the

socle of M is equal to the intersection of all essential submodules of M .

We assume throughout this paper that any topological space X is Tychonoff.

By C(X), we mean the ring of all real valued continuous functions on X . For

any f ∈ C(X), the set Z(f) := {x ∈ X : f(x) = 0} is called the zero-set of f .

For any Tychonoff space X , we denote by C(X,Z), the set of all integer valued

continuous functions on X . The set of all continuous real valued functions on X

with countable image is denoted by Cc(X). Clearly C(X,Z) is a proper subset

of Cc(X). Equipped with the pointwise addition and multiplication of RX , the

sets C(X,Z) and Cc(X) form two subrings of C(X). The ring of integer-valued

continuous functions have been studied in many ways and some outstanding re-

sults were achieved by some mathematicians, see for example [1], [6], [9] and [10].

Just recently in [2] an extensive study for the subalgebra Cc(X) has been done. In
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[5] it is shown that the socle of C(X) is equal to the set of all functions f ∈ C(X)

such that X \Z(f) is finite. We denote the socle of C(X) by CF (X). It is obvious

to see that CF (X) is a subset of Cc(X). In [3], it was shown that the socle of the

factor ring C(X)/CF (X) is always equal to zero. We also denote by CF (X,Z)

the set CF (X) ∩ C(X,Z). The notion of atomic submodules was introduced and

studied in [7] as a generalization for minimal submodules. In [8] it is shown that

for an arbitrary infinite set X , the factor ring Z
X/Z(X) has no atomic ideal. In

this note, we generalize this fact to every P -space and show that for an infinite

P -space X the factor rings C(X,Z)/CF (X,Z) and Cc(X)/CF (X) have no atomic

ideals. This result leads to the fact that such factor rings have no uniform ideals,

i.e., the socle of them equals zero.

2. Main results

Definition 2.1. A nonzeroR-moduleM is called atomic if for each a, b inM \(0),

the cyclic submodules Ra and Rb have nonzero isomorphic submodules.

Recall that a uniform module is a nonzero module A such that the intersection

of any two nonzero submodules of A is nonzero, or, equivalently, such that every

nonzero submodule of A is essential in A. It is obvious that every uniform module

is atomic. Since every minimal ideal in a semiprime ring is uniform, we observe

that every minimal ideal is atomic but the converse is not true. For example,

if X is a zero-dimensional space, C(X,Z) has no minimal ideals, but it has an

atomic ideal if and only if X has an isolated point. For every module M , we

denote by Σa(M), the sum of all atomic submodules of M . For example, in [8] it

is shown that for every zero-dimensional space X , Σa(C(X,Z)) = CF (X,Z) and

for every Tychonoff space X , Σa(C(X)) = CF (X). For every nonzero module M ,

the factor module M/Σa(M) may or may not have any atomic submodules, for

example see [8]. But it is shown in [8] that for every infinite set X , the factor ring

Z
X/Z(X) has no atomic ideals, or equivalently Σa(Z

X/Z(X)) is equal to zero. The

main objective in the sequal is to extend this result to every P -space and show

that the two factor rings C(X,Z)/CF (X,Z) and Cc(X)/CF (X) have no atomic

ideals. But first we need the following two results.

Proposition 2.2. If R is a semiprime ring, the ideal I of R is an atomic R-

module if and only if I is a uniform ideal.

Proof: Let I be an atomic ideal of R. Then for every two a, b ∈ I \ (0),

there exist two nonzero submodules M of Ra and N of Rb and an isomorphism

ϕ : M → N . Then for some r, s ∈ R, ϕ(ra) = sb 6= 0. Since R is semiprime and

ϕ is a homomorphism, gϕ(rf) = ϕ(rgf) is nonzero and therefore fg 6= 0.
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For the converse, suppose that a, b ∈ I \ (0). Since ab 6= 0, the cyclic sub-

module Rab is contained in Ra ∩ Rb. Thus Ra and Rb have nonzero isomorphic

submodules. �

We recall that a topological space X is a P -space if and only if for each count-

able family of open sets {Un : n ∈ N}, the subset
⋂

n∈N Un is open in X .

Proposition 2.3. Every infinite P -space X has a countable infinite family {Ci :

i ∈ N} of nonempty clopen subsets, such that X =
⋃

i∈N Ci and for each pair of

distinct i, j ∈ N, Ci ∩Cj = ∅.

Proof: Suppose that X is an infinite P -space. By [4, Exercise 4K.2], X is not

pseudocompact. Hence there exists a continuous real valued function f : X → R

such that f(X) is unbounded and hence infinite. For each r ∈ f(X), the inverse

image f←(r) is clopen. Choose a countable subset {rn : n ∈ N} of f(X). Since

two sets T =
⋃

n∈N f←(rn) and C0 = f←(R)\T are open, the subset C0 is clopen.

Now the family {Ci : i ∈ N ∪ {0}} is an infinite clopen partition for X . �

Theorem 2.4. Assume that X is an infinite P -space. Then both the factor rings

C(X,Z)/CF (X,Z) and Cc(X)/CF (X) have no atomic ideals.

Proof: Assume that I/CF (X,Z) is an ideal of C(X,Z)/CF (X,Z) and argue

by contraposition that it is not an atomic ideal. Let f̄ = f + CF (X,Z) and

ḡ = g+CF (X,Z) be two nonzero elements of I/CF (X,Z) such that f̄ ḡ 6= 0. This

means that fg /∈ CF (X,Z) and hence X \Z(fg) is infinite. Since X \Z(fg) is an

infinite P -space, by Theorem 2.4, there exists a countably infinite clopen partition

{Ci : i ∈ N} of X \ Z(fg). From the fact that X \ Z(fg) is clopen in X , each Ci

is clopen in X . It is easy to see that the sets T =
⋃

i∈N
C

2i
and S =

⋃
i∈N

C
2i−1

are two clopen subsets of X . Let χ
T
and χ

S
be the characteristic functions of T

and S, respectively. Define h = χ
T
f and k = χ

S
g. Clearly, h̄ = h+CF (X,Z) and

k̄ = k +CF (X,Z) are two nonzero elements of the ideal I/CF (X,Z) and h̄k̄ = 0,

a contradiction.

The proof for the factor ring Cc(X)/CF (X) can be repeated verbatim without

any extra work. �

Since each minimal ideal of a commutative ring is atomic, the following corol-

lary is immediate.

Corollary 2.5. For each infinite P -space X , we have that the socle of the factor

ring Cc(X)/CF (X) is equal to zero.

In the sequel we observe a necessary and sufficient condition for a compact zero-

dimensional space X such that the factor ring C(X,Z)/CF (X,Z) has a uniform

and hence an atomic ideal. First, we need the following result from [8].
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Proposition 2.6. Let X be a zero-dimensional space. An ideal I of C(X,Z) is

atomic if and only if it is a principal ideal generated by the characteristic function

of an isolated point of X .

Corollary 2.7. Let X be a zero-dimensional space. For the ring C(X,Z),

Σa(C(X,Z)) = CF (X,Z).

The set of all isolated points of a topological space X is denoted by I(X).

Proposition 2.8. Let X be a compact zero-dimensional space. The factor ring

C(X,Z)/CF (X,Z) has a uniform (or equivalently atomic) ideal if and only if the

subset X \ I(X) has an isolated point.

Proof: Let X be a compact zero-dimensional space. Assume that the factor ring

C(X,Z)/CF (X,Z) has a uniform ideal. Since by [9, Proposition 4.11], the factor

ring C(X,Z)/CF (X,Z) is isomorphic with the ring C(X \ I(X),Z), it follows that

the ring C(X \ I(X),Z) has an atomic ideal and hence by Proposition 2.6, the

subspace X \ I(X) has an isolated point. �

The set of all continuous integer-valued functions with finite images is denoted

by CF (X,Z). We remind the reader that the Banaschewski compactification of

a zero-dimensional Hausdorff space X is a compact Hausdorff space β0X which

contains X as a dense subspace and each continuous real valued function f :

X → R with a finite image has an extension to β0X ; see, e.g. [2].

Proposition 2.9. Let X be an arbitrary zero-dimensional space. The factor ring

CF (X,Z)/CF (X,Z) has a uniform (or equivalently atomic) ideal if and only if

the subset β0X \ I(X) has an isolated point.

Proof: For each f ∈ CF (X,Z), there is a unique fβ0 ∈ CF (β0X,Z)=C(β0X,Z),

such that fβ0 |X = f and fβ0(X) = f(X). Note that since X is dense in β0X ,

I(β0X) = I(X). Clearly under the isomorphism f → fβ0, CF (X,Z) is sent

to CF (β0X,Z). Hence CF (X,Z)/CF (X,Z) ∼= C(β0X,Z)/CF (β0X,Z). Now by

Proposition 2.8, CF (X,Z)/CF (X,Z) has a uniform (or equivalently atomic) ideal

if and only if β0X \ I(β0X) = β0X \ I(X) has an isolated point. �

Example 2.10. It is well known that βN\N has no isolated points. Now Proposi-

tion 2.9 implies that CF (N,Z)/CF (N,Z) has no uniform (or equivalently atomic)

ideals.

With regard to the latter proposition, the interested reader is encouraged to

characterize all zero-dimensional topological spaces X for which the factor ring

C(X,Z)/CF (X,Z) has an atomic (equivalently, uniform) ideal, a question which

is unsettled yet.
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