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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 1 , P A G E S 1 – 1 4

BI-PERSONAL STOCHASTIC TRANSIENT MARKOV
GAMES WITH STOPPING TIMES AND TOTAL REWARD
CRITERION

Victor M. Mart́ınez–Cortés

The article is devoted to a class of Bi-personal (players 1 and 2), zero-sum Markov games
evolving in discrete-time on Transient Markov reward chains. At each decision time the second
player can stop the system by paying terminal reward to the first player. If the system is not
stopped the first player selects a decision and two things will happen: The Markov chain reaches
next state according to the known transition law, and the second player must pay a reward to
the first player. The first player (resp. the second player) tries to maximize (resp. minimize)
his total expected reward (resp. cost). Observe that if the second player is dummy, the problem
is reduced to finding optimal policy of a transient Markov reward chain. Contraction properties
of the transient model enable to apply the Banach Fixed Point Theorem and establish the Nash
Equilibrium. The obtained results are illustrated on two numerical examples.

Keywords: two-person Markov games, stopping times, stopping times in transient Markov
decision chains, transient and communicating Markov chains

Classification: 91A50, 91A05

1. INTRODUCTION

This contribution is devoted to optimality in Markov games evolving on transient (not
necessarily) communicating Markov chains with two-players with opposite aims. We
focus attention on the model where the first player tries to maximize his total reward
and the second player tries to stop the game and receive the reward. This model is an
extension of the problem studied by Cavazos-Cadena and Hernández-Hernández (see [2]).
Observe that if the second player is dummy, the problem is reduced to finding optimal
policy of the Markov Decision Process (MDP) introduced by Howard (for details see the
monograph Puterman [10]). The main goal of the paper is to find a Nash Equilibrium
in zero-sum transient stochastic games with stopping times and total reward optimality.

Recall that the considered MDP is transient if and only if the spectral radius of any
admissible transition probability matrix is less than one. In particular, if the transition
probability matrix is irreducible (i. e. if all states are communicating) then the model is
transient if for at least one state probability of reaching any other state of the system is
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less than one. Obviously, models with discounting are a very special case of the transient
MDP.

During the 50’s stochastic games were introduced by their pioneer, Shapley [13], who
for first time proposed the brilliant idea to repeat a game but not necessarily the same
one at each state. This opens a whole bunch of applications on different subjects, some
of which can be viewed in [8]. One branch of the stochastic games are the transient
games which consist in determining the end of a game based on a specific characteristic
of the transition law.

In general, Markov Decision Processes (MDPs) can be seen as Stochastic Games with
only one player but this is a whole topic that can be checked in [10]. For the objective
of this article the line developed in: [3, 11, 18, 20, 21], and [15, 22] was followed and for
the topic of the Stopping Times [14].

In the first Section we introduce the basic knowledge for this article, for the second
Section we develop all the conditions we are going to use for the first player while on the
third Section we introduce the second player and our main problem. On the next Section
we develop the main result, for this topic we look for a fixed point on a specific set and
after we need to demonstrate that this fixed point its exactly reached with the strategies
which follow the Nash Equilibrium. For the last Section we show some examples: first
one with a single Nash Equilibrium and the second with Multiple Equilibria and we
finish the paper given some concluding remarks and the references.

2. PRELIMINARES

Definition 2.1. A Markov Control Model (MCM), [10] is a quintuple

M := {X,A, {A(i)|i ∈ X}, Q,R} that consists on:

1. X is a finite set that will be referred to as the state space; whereas “i” stands for
an arbitrary element of X.

2. A is a finite set called the action space or the control space.

3. {A(i)|i ∈ X} a family of non-empty subsets A(i) of A where A(i) represents the
subset of admisible controls for the state i ∈ X. K := {(i, a)|i ∈ X, a ∈ A(i)} is
the space of admisible state-action pairs.

4. Q(B|i, a)) := P (Xt+1 ∈ B|Xt = i, At = a), B ∈ X where t = 0, 1, 2, . . ..

5. R : K→ R as the reward function in the sense of the result obtained by applying
the action a when the state was “i”. Notice that we are going to consider that
0 ≤ R(i, a) <∞, ∀ i,∀ a, where R denote the real numbers.

We consider a control stochastic system and we suppose that the system can be observed
at each epoch, i. e. the MCM represent the previous consideration with space stateX and
space of controls A, this system is observed at each time t = 0, 1, . . .. So we can denote
by Xt and At the state of the system and the action at time t. Then, the development
of the system can be described as follows: If the system is in state Xt = i ∈ X at time
t and it takes the control At ∈ A(i) then we obtain a response to the system R(i, a) as
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a consequence of the action At = a on the state i then, the system moves to the next
state Xt+1 which is a random variable X-valued with distribution Q(·|i, a). So once the
process is in the new state, we will have the same conditions to choose another control
and the process continue. A MCM has the characteristic that at any state the response
of the system and the transition law only depend of the current state of the system.

2.1. Policies or strategies

Considering a MCM for each t = 0, 1, 2, . . ., we define the space Ht of admissible histories
until time t as follows: Ht := Kt × X = Kt × Ht−1 for t = 1, 2, . . . and H0 := X. A
generic element of Ht is denoted by ht = (i0, a0, . . . , ij , aj , . . . , it), where aj ∈ A(ij).

Definition 2.2. A Policy or a Decision Strategy [10] is a sequence π = {πt, t = 0, 1, . . .}
of probability measures πt over the set of control A given Ht which satifies πt(A(it)|ht) =
1 for all ht ∈ Ht, t = 0, 1, . . . .

Definition 2.3. Let F be the set of all the functions f : X → A such that f(i) ∈ A(i)
for all i ∈ X. We will called Stationary Policies to the ones that there is a function
f ∈ F such that πt(·|ht) its concentrated on f(it) ∈ A(it) for all ht ∈ Ht and t = 0, 1 . . ..

Observe that the set of all Policies is denoted by P and the set of all Deterministic
Stationary Policies by F. Its clear that F ⊂ P.

Given the policy π and the initial state X0 = i, a unique probability measure Pπi is
determined in the product space H :=

∏∞
t=0 K of all possible realizations of the state-

action process {(Xt, At)} ( [1], [10]); the corresponding expectation operator is denoted
by Eπi .

An Objective Function is a function that accomplish that:

V : P ×X → R,
which is a way to measure the result through the whole process.

Definition 2.4. Given a MCM {X,A, {A(i)|i ∈ X}, Q,R}, the set of policies P and
the objective function V . The Optimal Control Problem consists on determine a policy
π ∈ P if this exists, such that:

V (π∗, i) = sup
π∈P

V (π, i), i ∈ X.

We define the Total Expected Reward Optimal Value Function as:

V(i) = sup
π∈P

Eπi

[ ∞∑
t=0

R(Xt, At)

]
, for all i ∈ X, for all π ∈ P,

and in the same sense we will say that π∗ is Optimal if

V(i) = V (π∗, i), for all i ∈ X,
where the Total Expected Reward Objective Function is defined by:

V (π, i) = Eπi

[ ∞∑
t=0

R(Xt, At)

]
, for all i ∈ X.
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3. TRANSIENT MARKOV MODEL

Definition 3.1. A Transient Markov Control Model (TMCM) [4] is a Markov Con-
trol Model with the addition of the following condition: there is a state N ∈ X that
Q({N}|N, a) = 1 and R(N, a) = 0 for all a ∈ A(N).

The existence of the absorbing state N on a TMCM implies that the Total Reward is
bounded if the stateN can be reached from any state ofX. Notice that, for any β ∈ (0, 1)
a MCM endowed with the discounted criterion Vβ(π, i) = Eπi [

∑∞
t=0 βR(Xt, At)] , for all

i ∈ X,π ∈ P, can be seen as a very special case of a TMCM.

Remark 3.2. Analogously, a Transient Markov Control Model on game environment
(see [4], page 161), is a model for which ∀i ∈ X, ∀ π ∈ P, the following transient
condition holds:

∞∑
t=0

Pπi (Xt 6= N) <∞,

which is equivalent to

∀i ∈ X,∀ π ∈ P,
∞∑
t=0

N−1∑
j=1

Pπi (Xt = j) <∞.

knowing as the Transient Condition.

Theorem 3.3. The Transient Condition guarantees that the Total Reward Problem
with infinite horizon results to be finite, i. e. for all initial state i ∈ X, ∀ π stationary, it
holds that

V (π, i) =

∞∑
t=0

Eπi R(Xt, At) <∞.

P r o o f .

|Eπi R(Xt, At)| = |
∑
k∈X

∑
a∈A(k)

R(k, a)Pπi (Xt = k,At = a) |

= |
N−1∑
k=1

∑
a∈A(k)

R(k, a)Pπi (Xt = k,At = a) |

≤ SPπi (Xt 6= N)

where S = max
k∈X,a∈A(k)

| R(k, a) |. Then

∞∑
t=0

| Eπi R(Xt, At) |≤ S

∞∑
t=0

Pπi (Xt 6= N) <∞,

by using Remark 3.2. �

Given a stochastic system if we denote by τ the Stopping Time until Xt = N that
means

τ = inf{t|Xt = N} or τ =∞ if Xt 6= N for all t.
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Theorem 3.4. If we have that our model acomplish the Transient Condition then it
holds that Pπi (τ <∞) = 1 for all policy π stationary and any state i.

P r o o f . Without loosing generality, let us consider the previous system changing the
reward function by this R(i, a) = 1 if i 6= N and R(N, a) = 0. As we can observe, the
new stochastic system is still being transient, because the Transient Condition does not
depend of the reward function. So, with the new system if there is w ∈ [τ =∞], it holds
that:

∞∑
t=0

R(Xt(w), At(w)) =∞,

then, if for some initial state i, there exists a policy π which that accomplish τ = ∞
with positive probability Pπi (τ =∞) > 0 we obtain that:

∞∑
t=0

Eπi R(Xt, At) =∞.

Then, we obtain a contradiction to the Transient Condition. As a consequence, τ <∞.
�

Remark 3.5. For our case, as we have that the set of the states X and A(i) are finite
for all i ∈ X, then also the set K is finite, as a consequence, R is trivially a continuous
function, even more, ‖ R ‖ is finite, where ‖ R ‖:= supk∈K | R(k) |, also we have that
∀π ∈ P the Transient Condition holds, then

∞∑
t=0

Eπi R(Xt, At) <∞.

Its easy to observe that:

∞∑
t=0

|Eπi R(Xt, At)|≤‖ R ‖
∞∑
t=0

Pπi (Xt 6= N) <∞.

Even more, by using R(i, a) = 1 on the previous equation for the set K \ {(N, a)|a ∈
A(N)}, this is equivalent to

∑∞
t=0 P

π
i (Xt 6= N) = Eπi [τ ] <∞.

4. STOCHASTIC GAMES WITH STOPPING TIMES

Given the previous context, now we can propose two players: The first player has a
Transient Markov Control Model (TMCM) and for the second player we can propose
the concept of a Stopping Time.

As a brief, this topic concerns of a class of discrete-time, bi-personal zero sum games
(that means what a player wins is what the other losses) and Markov transitions on a
finite space. The idea behind this game it is that at each decision time, Player 2 can
stop the system paying a Terminal Reward to Player 1 and if the system is not stopped,
then Player 1 selects an action that moves the system into the next state receiving a
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reward from Player 2. In this work the system is going to be measured by the Total
Reward criterion.

Let G = (X,A, {A(i)}i∈X , P,R,G) stands for a zero-sum stopping sequential game
with two players, 1 and 2, where the state space X is a finite set endowed with the
discrete topology and the action set A is a finite space. Player 1 is playing a TMCM
{X,A, {A(i) | i ∈ X}, P,R} on the game environment and Player two is deciding to stop
the game at the price of paying a Terminal Reward G to the Player 1. Introducing the
Terminal Reward G for player 2 as G : X → R which is the result to decide to stop the
game at state “i” we may assume G(i) ≥ R(i) ≥ 0.

Note: Given a topological space K, the Banach Space B(K) consists of all continu-
ous functions R̂ : K → R whose supremum norm ‖ R̂ ‖ is finite, analogous we define
B(X). Notice, that for our work we are going to concentrate on R ≥ 0 and G ≥ 0, and
we have that R ∈ B(K) and G ∈ B(X).

The model G is interpreted as follows: at each time t = 0, 1, 2, . . . , Players one and
two observe the state of the system, say Xt = i ∈ X, and Player 2 can decide to stop the
system at the expense of paying a Terminal Reward G(i) to Player 1, or else Player 2 can
decide to let the system continue its evolution. For these case, Player 1 uses the history
of previously observed states and actions applied, as well as the current state Xt = i, to
select an action (control) At = a ∈ A(i) to drive the system. As a consequence, Player
1 gets a reward R(i, a) from Player 2 and, regardless of the previous states and actions,
the state of the system at time t+ 1 will be Xt+1 = j ∈ X with probability pij(a).

4.1. Strategies for G

In the case of Player one, the strategies (policies) are the inherited by the TMCM. For
notation, let P the set of all the strategies.

Let Ft := σ̄(X0, A0, . . . , Xt−1, At−1, Xt), where all the elements used are based on
the strategies of the Player 1. (σ̄(X0, A0, . . . , Xt−1, At−1, Xt) represents the σ algebra
which is generated by the elements (X0, A0, . . . , Xt−1, At−1, Xt)).

The strategy set for Player two is the space T which consists of all the Stopping Times
τ : H → N, (H :=

∏∞
t=0 Kt, where Kt ≡ K and N := {1, 2, 3, . . . , }

⋃
{∞}) with respect

to the filtration {Ft}, i. e. for each non-negative integer t, the event [τ = t] belongs to
Ft. (K := {(i, a) | i ∈ X, a ∈ A(i)} known as the available state-action pairs).

Let’s observe that the game G is played on the product space H which can be built
on his natural canonical way [1]; given a policy π and a state i ∈ X, there is a unique
determinate probability measure on H that can be denoted as Pπi (a unique probability
induced on the natural product space) in which, also we can define the expected operator
as Eπi . Notice also that the Stopping Time τ also belongs to H. We define the Pair of
Strategies for the game G as: (π, τ) where π ∈ P and τ ∈ T .

Definition 4.1. Given an initial state i ∈ X, the Expected Total Reward of Player 1
corresponding to the pair (π, τ) ∈ P × T is given by:
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V (i;π, τ) : = Eπi

[
τ−1∑
t=0

R(Xt, At) +G(Xτ )I [τ < +∞]

]

= V (π, i)− Eπi

[ ∞∑
t=τ

V (π, i)

]
+ Eπi [G(Xτ )I [τ < +∞]].

Remark 4.2. Notice that:

| V (i;π, τ) |≤ Eπi

[
τ−1∑
t=0

| R(Xt, At) | + ‖ G(Xτ )I [τ < +∞] ‖

]
≤‖ R ‖ Eπi [τ ]+ ‖ G ‖<∞,

as a consequence, V (i;π, τ) is well defined for each π ∈ P and for each τ ∈ T .

When Player 2 uses the strategy τ , the Best Expected Total Reward of Player 1 is
supπ∈P V (i;π, τ), and the Value Function of the game is:

V ∗(i) := inf
τ∈T

[
sup
π∈P

V (i;π, τ)

]
, i ∈ X. (1)

Interchanging the order, the Lower-Value Function of the game has the following
form:

V∗(i) := sup
π∈P

[
inf
τ∈T

V (i;π, τ)

]
, i ∈ X. (2)

Definition 4.3. A pair (π∗, τ∗) ∈ Π× T is a Nash Equilibrium if

V (i;π, τ∗) ≤ V (i;π∗, τ∗), i ∈ X, π ∈ P,

and
V (i;π∗, τ) ≥ V (i;π∗, τ∗), i ∈ X, τ ∈ T .

5. STOCHASTIC TRANSIENT GAMES WITH STOPPING TIMES

This kind of games are using in order to model some problems that in somehow we cannot
bound a priori the number of steps in which the game will finish but it accomplish that
the number of steps is finite with probability one, i. e. there is a Stopping Time on this
games.

5.1. Main Theorem

In this part we are giving a characterization of the Nash Equilibrium for the Bi-personal
Stochastic Transient with Stopping Time.

By remembering Remark 3.2, the Transient Condition can be rewritten as follows [16]:

sup
i∈X,π∈P

∞∑
t=0

Pπi [Xt 6= N ] <∞. (3)
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This condition is equivalent to the Simultaneous Doeblin Condition [16], [17]

sup
i∈X,π∈P

Eπi [τ ] <∞. (4)

Proposition 5.1. There exists a positive integer K such that:

∞∑
t=K

Pπi [Xt 6= N ] < 1/2, i ∈ X,π ∈ P.

P r o o f . The left-hand side of the inequality is Pπi [τ > K] and by using Markov’s
inequality, (3) implies that the desired conclusion holds if K > 2M . �

Proposition 5.2. Let B′(X) be the class of all functions W : X → R which satisfy
W (N) = 0 and we define the operator Ĉ on B′(X) as follows: For each W ∈ B′(X) the
function Ĉ[W ] is determined by

Ĉ [W ] (i) = min

G(i), sup
a∈A(i)

R(i, a) +

N∑
j=1

Pij(a)W (j)

 .

The operator ĈK is contractive, where K is as in Proposition 5.1.

P r o o f . For W,V ∈ B′(X) the following inequality holds:

|Ĉ[W ]− Ĉ[V ]|(i) ≤ sup
a∈A(i)

 N∑
j=1

Pij(a)|W (j)− V (j)|

 .
Since X and A are finite this relation implies that there is a policy f ∈ F such that

|Ĉ[W ](i)− Ĉ[V ](i)| ≤ Efi [|W (X1)− V (X1)|]
= Efi [|W (X1)− V (X1)|I[X1 6= N ]]

= Efi [|W (X1)− V (X1)|I[τ > 1]],

where the second equality stems from the inclusion W,V ∈ B′(X), and the definition
of τ was used in the last step. Via an induction argument if follows that there exists a
Markov policy π such that. for every i ∈ X,

|ĈK [W ](i)− ĈK [V ](i)| ≤ Eπi [|W (XK)− V (XK)|I[τ > K]]

≤ ‖W − V ‖ Pπi [τ > K] ≤‖W − V ‖ /2,

where the last inequality is due to Proposition 5.1 �
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So we showed in the Proposition 5.2 that ĈK is contractive, so it holds the conditions
of the Banach Fixed Point Theorem [5], that means Ĉ has a fixed point W ∗ ∈ B′(X).
Even more, this fixed point its the only one which acommplish:

W ∗(i) = min

G(i), sup
a∈A(i)

R(i, a) +

N∑
j=1

Pij(a)W ∗(j)

 , i ∈ X.

For our model, W ∗ is exactly V ∗. For each i ∈ X, let f∗(i) ∈ A(i) be a maximizer of the
term in square brackets in the above display and define the stopping time τ∗ as follows:
τ∗(i) = 1 (stop) if V ∗(i) = G(i), τ(i) = 0 (continue) when G(i) > V ∗(i).

Theorem 5.3. For the stochastic game with stopping time introduced in the Section
4, the pair (π∗, τ∗) given by Proposition 5.2 is a Nash Equilibrium.

P r o o f . Let S∗ = {i ∈ X|V ∗(i) = G(i)} and let τ∗(h) = min{t ≥ 0|Xt ∈ S∗},
h = (X0, A0, X1, A1, . . .) ∈ H. We need to prove two inequalities for being a Nash Equi-
librium.

Lets consider the first one V (i, π, τ∗) ≤ V (i, π∗, τ∗), i ∈ X, π ∈ P, where we are
using π∗ the strategy which is the stream of the f∗(i) as on the previous proposition.

Case 1. If i ∈ S∗ then [τ∗ = 0] has probability 1 with respect Pπi and Pπ
∗

i and on
this cases then both of the rewards are G(i) = V ∗(i).

Case 2. If i /∈ S∗ then V ∗(i) ≥ R(i, a) +
∑
j∈X Pij(a)V ∗(j) so for each π ∈ P and as

i ∈ X \ S∗ then

V ∗(i) ≥ Eπi [R(X0, A0) + V ∗(X1)]

= Eπi [R(X0, A0)I[τ∗ > 0] +G(Xτ∗)I[τ∗ < 1] + I[τ∗ ≥ 1]V ∗(X1)] ,

where the second inequality is due to the relation Pπi [τ∗ ≥ 1] = 1, by an induction
argument for each integer n and π ∈ P we obtain that:

V ∗(i) ≥ Eπi

[
n−1∑
t=0

R(Xt, At)I[τ∗ > t]

]
+ Eπi [G(Xτ∗)I[τ∗ < n]] + Eπi [I[τ∗ ≥ n]V ∗(Xn)] , i ∈ X \ S∗

taking the limit as n → ∞, via the Bounded Convergence Theorem, it follows from
Definition 4.1 and Theorem 3.3 that:

V ∗(i) ≥ Eπi

[ ∞∑
t=0

R(Xt, At)I[τ∗ > t]

]
+ Eπi [G(Xτ∗)I[τ∗ < +∞]]

= Eπi

[
τ∗−1∑
t=0

R(Xt, At)

]
+ Eπi [G(Xτ∗)I[τ∗ < +∞]]

= V (i;π, τ∗);
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Case 1 together with Case 2 leads us to obtain the desire inequality.

To complete the proof, we need to show that: V (i, π∗, τ) ≥ V (i, π∗, τ∗), i ∈ X, τ ∈ T .
To obtain this, lets consider the game Ĝ := (X,A, {Â(i)}i∈X , P,R,G) obtained by
shrinking the actions sets A(i) to Â(i) = {π∗(i)} = {f∗(i)}, i ∈ X, and restricting the
domain of R(·) and each Pij(·) to Â(i). For this new model, the corresponding class

P̂ of strategies for player one is the singleton {f∗} so that the (upper) value function
associated with Ĝ is given by

V̂ ∗(i) = inf
τ̃∈T

V (i;π∗, τ̃), i ∈ X. (5)

This equation can be obtained by (1) replacing P for P̂. Applying Proposition 5.2 to
this reduce game Ĝ, the function V̂ ∗ is characterized as the unique solution on B′(X)
of the equilibrium equation

V̂ ∗(i) = min

G(i),

R(i, f∗(i)) +
∑
j∈X

Pij(f
∗(i))V̂ ∗(j)

 , i ∈ X.

so we can replace V̂ ∗(i) by V ∗(i) using the uniqueness of the result of Proposition 5.2.
Combining the last observation with (5), it follows that, for each τ ∈ T and i ∈ X,

V (i;π∗, τ) ≥ inf
τ̃
V (i;π∗, τ̃)

= V̂ ∗(i)

= V ∗(i),

So we obtain that V (i;π, τ∗) ≤ V ∗(i) ≤ V (i;π∗, τ) so we have that V (i;π∗, τ∗) =
V ∗(i), ∀i ∈ X and that the pair (π∗, τ∗) is a Nash Equilibrium and optimal for each
player. �

6. EXAMPLES

In order to illustrate the previous work we will show some models with his respective
details that will reveal the applications of this theory.

6.1. Example with a Unique Nash Equilibrium

Let N be a non negative number fixed and p ∈ [0, 1] then the five elements for the
TMCM are the following:

i. X := {0, 1, 2, . . . , N}.

ii. A := {0, 1, 2, . . . , bN/2c} where bzc represents the floor of z.

iii. For each i ∈ X, A(i) = {1, 2, . . . ,min{i,N − i}}.

iv. The transition law is defined by P = [pij(a)] for i ∈ X and a ∈ A(i) as : pii+a(a) =
p, pii−a(a) = q where q = 1− p, pN0(a) = 1, p00(a) = q, p01(a) = p.
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v. The reward function R for epoch as:

R(i, a) = 1, i 6= N ; R(N, a) = 0.

Let vi(0) the reward for the state i and let vi(n) the maximum expected reward for
the problem on the nth period using the it was started on the state i.

Using Bellman’s Optimal Principle [10] (Section 4.2 Finite-Horizon Policy Evalua-
tion), we have that the following recursion holds for vi(n)

vi(n) = max
a∈A

R(i, a) +

N∑
j=1

pij(a)vj(n− 1)

 . (6)

The last inequality it can be rewritten in matrix notation using the policies termi-
nology as follows:

v(n) = max
π∈Π
{R(π) + P (π)v(n− 1)} , n ∈ N, (7)

where v(n) represents the vector with components vi(n), i = 1, 2, . . . N, introducing a
simple constant as [7] we can obtain:(

v(n)
1

)
=

max
π ∈ Π

{(
P (π) R(π)

0 1

)(
v(n− 1)

1

)}
, n ∈ N. (8)

Let G = (X,A, {A(i)}i∈X , R,G, P ) the elements for this game are: X := {0, 1, 2, 3, 4};
this impliesN = 4, A(i) := {A(0) = {1}, A(1) = {1}, A(2) = {2}, A(3) = {1}, A(4) = {0}}.

Let P and R as previously defining. The reward function G for the Player 2 as follows:

G(Xt) =

{
356 if t ≤ 560,

356 +
∑t
k=560(1/2)(k−560) if t > 560,

with p = .2 and q = .8.
For this particular example we have two policies that we can represent as:

π1 = (1, 1, 1) and π2 = (1, 2, 1).

In which (1,1,1) represents that A(1) = {1}, A(2) = {1} and A(3) = {1} (respectively
the same notation for the π2). The following matrices represent the policies π1 and π2

respectively, by adding a simple variable and the reward (for this part we are using some
ideas that are developing on [23] about the non-negative matrices and the formula (8).

P (π1) :=


q p 0 0 0 1
q 0 p 0 0 1
0 q 0 p 0 1
0 0 q 0 p 1
0 0 0 0 1 0
0 0 0 0 0 1

, P (π2) :=


q p 0 0 0 1
q 0 p 0 0 1
q 0 0 0 p 1
0 0 q 0 p 1
0 0 0 0 1 0
0 0 0 0 0 1

 .
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We can observe that this two matrices has only one absorbing state if we observe the
sub-matrix P (πi) removing the reward column, then we can analyze the absorption time.
Lets take P (π1) and P (π2) restricted (sub-matrix without absorbing state), calculating
the absorption time we obtained 560 and 155 respectively. (The absorption time can be
calculated using the fundamental matrix [12]).

Remark 6.1. On this paper we are using the formula (8) in order to obtain the results
by using computational codes. However, the process of the Total Expected Reward can
be done using (6) following the references in [23].

Lemma 6.2. For Example 1 the pair (π∗ = π1, τ
∗ = 560) is the Nash Equilibrium for

the game G.

P r o o f . Lets take the pair (π1, 560). The first inequality of being Nash Equilib-
rium holds V (π1, 560) ≤ V (π1, τ) for all τ ∈ N just for how the G(Xt) was defined.
We need to observe that π1 is optimal for this game. So we have to check that
V (x;π2, τ

∗) ≤ V (x;π1, τ
∗), we obtain that the values are (152, 356) of the Total Ex-

pected Reward respectively, we suppose that the initial state i was the first state. This
can be calculate for any initial state just by doing simple calculations, so it can be ob-
served that the inequality holds then the pair (π1, τ

∗) is the Nash Equilibrium for the
Stochastic Transient Game with Stopping Time for two players. �

Remark 6.3. The pair (π2, 155) is not a Nash Equilibrium.

P r o o f . It is easy to check V (π2, 155) ≤ V (π2, τ) just for how the G(Xt) was defined
but V (x;π1, 155) ≤ V (x;π2, 155), it is not accomplished because the Expected Reward
for the TMCM knowing that the Player 2 will stop at τ∗ = 155 has Total Expected
Reward (136, 98) respectively π1 and π2 taking that the initial state was the first.
Then, the pair (π2, 155) is not a Nash Equilibrium. �

6.2. Example with Multiple Nash Equilibria

Specifically, following the idea of Example 1 using the matrix extension. Let’s take
N = 4, the reward function R(i, a) = 1, i 6= N and R(N, a) = 0; but with transition law
as follows: pii+a(a) = p, pii−a+1(a) = q, pN0(a) = 1.

It is important to mention that doing some numerical work we can calculate the
policies and their respectively Total Expected Reward. This calculation gave us 4 policies
π1 = (1, 1, 1, 1), π2 = (1, 1, 2, 1), π3 = (1, 2, 1, 1), π4 = (1, 2, 2, 1), but only 2 are optimal
respect to the TMCM. This policies are:

π2 = (1, 1, 2, 1), π4 = (1, 2, 2, 1).

On this case π2 = (1, 1, 2, 1), A(0) = {1}, A(1) = {1}, A(2) = {2} and A(3) = {1}. As
the previous example we can observe that the associate matrices respect to the policies
are:
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P (π2) :=


q p 0 0 0 1
0 q p 0 0 1
0 q 0 0 p 1
0 0 0 q p 1
0 0 0 0 1 0
0 0 0 0 0 1

, P (π4) :=


q p 0 0 0 1
q 0 0 p 0 1
0 q 0 0 p 1
0 0 0 q p 1
0 0 0 0 1 0
0 0 0 0 0 1

 .

Let G = (X,A, {A(i)}i∈X , R,G, P ), using the previous assumptions and that the
reward function G for Player 2 is:

G(Xt) =

{
35 if t ≤ 95,

35 +
∑t
k=95(1/2)k−95 if t > 95,

with p = .2 and q = .8.
For Example 2, we have two Nash Equilibria.
For the previous part we have that π2 = (1, 1, 2, 1), π4 = (1, 2, 2, 1), are optimal for

the TMCM then as a result of the calculations the Stopping Time for both is τ∗ = 95.
Then the pairs (π2, 95) and (π4, 95) are Nash Equilibria.

7. CONCLUDING REMARKS

It is important to recognize that the next step can be done in the sense of the gener-
alization for multi-players. Another option is to weaken the conditions for the reward
function G. With respect to the player one, it is also possible to introduced some risk
sensitive criterion on the reward function R. Even more, we need to develop a criterion
of how to choose a Nash Equilibrium when there are multiple of them.
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