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Abstract. We study the generalized k-connectivity ki (G) as introduced by Hager in 1985,
as well as the more recently introduced generalized k-edge-connectivity A (G). We deter-
mine the exact value of ki (G) and A\ (G) for the line graphs and total graphs of trees,
unicyclic graphs, and also for complete graphs for the case k = 3.
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1. INTRODUCTION

All graphs considered in this paper are undirected, finite and simple. We refer
to book (see [3]) for graph theoretical notation and terminology not described here.
For a graph G, we denote by V(G), E(G), L(G) the set of vertices, the set of edges,
and the line graph of G, respectively.

By the development of parallel and distributed computing, the design and analysis
of various interconnection networks have been a main topic of research for the past
decade, see [1]. Interconnection networks are often modelled by graphs (or digraphs).
The vertices of the graph represent the nodes of the network, that is, processing
elements, memory modules or switches, and the edges correspond to communication
lines. We know that the connectivity «(G) and edge connectivity A\(G) of a graph G
are the minimum number of vertices and edges that need to be removed to disconnect
the remaining vertices from each other, respectively.
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These two concepts are important measures for the robustness of networks.
An equivalent definition of connectivity (or edge-connectivity) was given: For
each 2-subset S = {u,v} of vertices of G, let kg(S) (or Ag(S)) denote the
maximum number of internally- (or edge-) disjoint paths from u to v in G.
Then k(G) = min{kg(S): S C V,|S| = 2} (or A(G) = min{Ag(5): S C V,
|S| = 2}). The generalized k-(edge-)connectivity was introduced in order to mea-
sure the capability of a graph G to connect any k vertices in G and not just
any two.

For a graph G = (V, E) and a set S C V of at least two vertices, an S-Steiner
tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T' = (V', E’)
of G that is a tree with S C V’. Two Steiner trees T and T’ connecting S are
said to be internally disjoint if E(T) N E(T") = 0 and V(T) N V(T') = S. For
S C V(G) and |S| > 2, the generalized local connectivity x(S) is the maximum
number of internally disjoint Steiner trees connecting S in G. For an integer k with
2 < k < p, the generalized k-connectivity (or k-tree-connectivity) is defined in [8] as
kk(G) = min{k(S): S C V(G), |S| = k}. Clearly, ko(G) = k(G). Table 1 shows

how the generalization proceeds.

Classical connectivity Generalized connectivity
Vertex subset S={z,y} CV(G) (|| =2) SCV(G) (|S| = 2)
Pyy=1{P1,Pa,..., P} Ts ={T1,Ts,...,T1}
z,y} C V(P S CV(T;
Set of Steiner trees tr. v} (5) )
E(P)NE(P;) =0 E(T)NE(T;) =0
V(P)NV(F;) ={z,y} V(L) nV(T;) =S
Local parameter k(z,y) = max | P | k(S) = max | Ts|
Global parameter k(G) = x,yrg\l/r%c) K(z,y) kk(G) = Sg/%gl)ﬁ&:k k(S)

Table 1. Classical connectivity and generalized connectivity

Edge-connectivity Generalized edge-connectivity
Vertex subset S={z,y} CV(Q) (|S|=2) S CV(G) (|S| = 2)
Pyy={P1,Pa,..., P} Ts ={T1,Ts,..., T},
Set of Steiner trees {z,y} CV(P) S CV(Ty),
E(P)NE(P;) =0 E(T)NE(T;) =0
Local parameter Mz, y) = max | Py 4| A(S) = max |Ts|
Global parameter AMG) = xyrg‘l}%c) Az, y) Me(G) = ngggl)ﬁswzk A(S)

Table 2. Classical edge-connectivity and generalized edge-connectivity
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As a natural counterpart of the generalized k-connectivity, Li, Mao and Sun
in [18] introduced the concept of generalized k-edge-connectivity. For S C V(G)
and |S| > 2, two S-trees T and T’ connecting S are said to be edge disjoint
if E(TYNE(T) = 0. And the generalized local edge-connectivity A(S) is the
maximum number of edge disjoint S-trees connecting S in G. For an integer k
with 2 < k < p, the generalized k-edge-connectivity \,(G) of G is defined as
Ae(G@) = min{A(S): S C V(G) and |S| = k}, hence A\2(G) = A(G). Table 2 shows
how the generalization of the edge-version definition proceeds.

For results on the generalized connectivity, we refer to [2], [4], [7], [10], [11], [12],
[13], [15], [16] and book [17].

The line graph L(G) of a graph G has vertex set E(G), and two vertices are
adjacent in L(G) if and only if the corresponding two edges in G have precisely one
end vertex in common. The total graph T'(G) of G has vertex set V(G) U E(G), and
two vertices are adjacent in T'(G) if and only if the corresponding two elements of
V(G)U E(GQ) in G are

(i) adjacent vertices, or
(ii) a vertex and an incident edge, or
(iii) two edges that have precisely one end vertex in common.

In [5], Chartrand et al. showed that for any two integers n and k with 2 < k < n,
ki(Kn) = n — [3k], and in [18], Li, Mao and Sun determined that A,(K,) =
n — [1k]. Hamada discussed the connectivity of total graphs in [9]. Motivated by
these research, in this paper we investigate the generalized k-connectivity and k-edge-
connectivity of line graphs and total graphs of trees, unicyclic graphs and complete
graph. For the latter, we only consider the case k = 3. At the end of this paper, we
give some bounds on these two parameters for general line graphs and total graphs.

For S C V(G) we use G[S] to denote the subgraph of G induced by S. In par-
ticular, if T' is a tree in G, then E(T) C V(L(G)) and L(G)[E(T)] is an induced
subgraph of L(G).

2. PRELIMINARY RESULTS
The following observations are immediate.
Observation 1 ([17]). If G is a connected graph, then k,(G) < A\t (G) < §(G).

Observation 2 ([17]). If H is a spanning subgraph of G, then k;(H) < ki(G).

Li, Li and Zhou gave the following sharp upper bound on k3(G) in terms of the
minimum degree §(G) and connectivity x(G).
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Proposition 2.1 ([14]).
(1) Let G be a connected graph of order n > 6. Then k3(G) < k(G). Moreover,
the upper bound is sharp.
(2) Let G be a connected graph of order n. If there are two adjacent vertices of
degree §(G), then k3(G) < 0(G) — 1. Moreover, the upper bound is sharp.

Similarly, the following sharp upper bound on A (G) has been obtained in [18].

Proposition 2.2 ([18]).
(1) Let G be a connected graph. If there are two adjacent vertices of degree 6(G),
then A\ (G) < §(G) — 1. Moreover, the upper bound is sharp.
(2) For any graph G of order n > 6, A,(G) < A(G). Moreover, the upper bound is
sharp.

Proposition 2.3 ([14]). Let G be a connected graph. For every two integers k
and v with k > 0 and r € {0,1,2,3}, if K(G) = 4k + 7, then r3(G) > 3k + [37].
Moreover, the lower bound is sharp.

Proposition 2.4 ([18]). Let G be a connected graph with n vertices. For every
two integers | and r with k > 0 and r € {0,1,2,3}, if A\(G) = 4l + r, then \3(G) >
31+ [37]. Moreover, the lower bound is sharp.

3. GENERALIZED k—(EDGE—)CONNECTIVITY OF TOTAL GRAPHS FOR TREES
AND UNICYCLIC GRAPHS

In this section, we determine the exact value of the generalized k-(edge-)connec-
tivity of the total graph for trees and unicycle graphs. First, we list two known
results, which are due to Hamada, Nonaka, and Yoshimura in [9] and Nash-Williams
in [19].

Theorem 3.1 ([9]). Let G be a graph with k(G) > m. Then x(T(G)) = 2m and
MT(@)) = 2m.

Theorem 3.2 ([19]). Every 2k-edge-connected graph contains a system of k edge-
disjoint spanning trees.

Theorem 3.3. Let p, k be two integers withp > 2 and 3 < k <2p— 1. If T}, is
a tree of order p, then
1 ifk=2p—1and A(Tp) =2,
2 otherwise.

ri(T(Tp)) = {
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Proof. We first consider the case when k = 2p — 1 and A(T},) = 2. Since T, is
a tree with x(T},) = 1, by Theorem 3.1, we get A(T'(T})) > 2. By Theorem 3.2 and
|T(T,)| = 2p— 1, T(T,) contains a spanning tree, and hence kop_1(T(Tp)) > 1. It
suffices to prove k2,—1(T(Tp)) < 1. Now we prove the following claim.

Claim 1. T'(T,) contains at most one edge-disjoint spanning tree for A(T,) = 2.

Proof. Assume to the contrary that T(7,) contains at least two edge-disjoint
spanning trees. This means |E(T(T,))| > 2(2p — 2). At the same time, consider
A(T,) = 2. This yields that T}, is a path and thus |E(T(T}))| = p—1+p—2+2(p—1) =
4p — b, contradiction. O

Next, we consider the case when k = 2p — 1 and A(7},) > 2. Since the minimum
degree of T'(T},) is 2, by Observation 1, we get k,(T(T})) = kop—1(T(Tp)) < 2. Since
A(T,) > 2, there exists a vertex v € V(7)) with dr,(v) > 3. Using K, denote
the clique in the line graph L(T},) arising from edges incident with v, noting K.,
contains a triangle. Let CT, be a spanning tree of L(7,). Then we directly get
two edge-disjoint spanning trees 7" and T based on T}, and C'T,, by connecting all
vertices of L(T},) with tree T, and all vertices of T, with tree C'T,,. This implies that
kop—1(T(Tp)) = 2, and thus we get kop—1(T(T})) = 2.

We now consider the general case when 3 < k < 2p — 2. By Observation 1 and
the fact that the minimum degree of T'(T},) is 2, we directly get g (T(T}p)) < 2. It
suffices to prove that k;(T(T,)) > 2 for 3 < k < 2p — 2.

Suppose that V(T},) = {u1, ug,...,up} and V(L(T})) = {ei;: eij = wiu; € E(T})}.
Then V(T(Tp)) = V(L(Tp)) U V(T,). For convenience, the induced subgraph
T(T,)[V(Tp)] is still denoted by T, and T(T})[V (L(T},))] is denoted by L(T}). Let S
be a k-subset of V(T'(T,)) and 8" = SNV (T,), S = SNV(L(T,)). Suppose
S"=0,ie., S CV(L(T,)). Since L(T}) is connected, it follows that there exists one
S-Steiner tree in L(T},), say T’. Then by connecting vertices of S with tree T, we
get another S-Steiner tree, say T”. Clearly, T’ and T" are two internally disjoint
S-trees in T'(T,). This means that xi(T(7,)) > 2. By a similar consideration for
the case S” = (), we can also get two internally disjoint S-Steiner trees in T'(7},), and
then prove that xr(T(T})) > 2.

Next assume S’,5” # . Since T, is connected, so is L(T,). Now we denote one
spanning tree of L(7,) as T. Thus, we can obtain two internally disjoint S-Steiner
trees in T'(T},) by connecting vertices of S’ with spanning tree 7' and connecting
vertices of S with tree T,. In particular, if A(7,) = 2, then T}, is a path. Since
3 < k < 2p—2, it follows that V(T(T})) \ S # 0, and hence we can still obtain
two internally disjoint S-Steiner trees in T'(T},). So we always get k(T (T})) > 2, as
desired. This completes the proof. O
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Next we turn to determine the generalized k-edge-connectivity of T'(7},).

Theorem 3.4. Let p, k be two integers withp > 2 and3 < k< 2p—1. If T}, is
a tree with order p, then

Me(T(Tp)) =

1 ifk=2p—1and A(T)) =2,
2 otherwise.

Proof. First, we consider the case when £ = 2p — 1 and A(T},) = 2. By Ob-
servation 1 and Theorem 3.3, we get Aop—1(T(T})) = kop—1(T(Tp)) = 1. On the
other hand, consider |E(T(Tp))| =p—1+p—-2+2(p—1) =4p—5 < 2(2p—2).
Then T'(T,) does not contain two edge-disjoint spanning trees, which implies that
Aop—1(T(Tp)) < 1. Thus, we get Aop—1(T(Tp)) = 1.

Next, we consider the case when k = 2p — 1 and A(T},) > 2 and the general case
when 3 < k < 2p— 2. On the one hand, since the minimum degree of T'(T},) is 2, by
Observation 1, we have A\, (T(Tp)) < 2. On the other hand, by Observation 1 and
Theorem 3.3, we have A\, (T'(Tp)) = kx(T(Tp)) = 2. Thus, we get \p(T(T})) = 2.
This completes the proof. O

By Theorems 3.3 and 3.4, we directly get the generalized 3-connectivity and gen-
eralized 3-edge-connectivity of the total graph of tree 7.

Corollary 3.5. Let p be an integer with p > 2. If T(T},) is a total graph of
tree T}, with order p, then

rk3(T(Tp)) = As(T(T)) = { 2 ifp>3.

Following this, we determine the exact value of generalized connectivity of the
total graph of unicyclic graphs.

Theorem 3.6. Let p, k, | be integer numbers withp > 3,3 <1 < pand 3 <k < 2p.
If G, is an unicyclic graph with order p and unique cycle Cj, then

re(T(Gp)) =

3 ifp=landk=3orp=1=3andk =4,
2 otherwise.
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Proof. We complete the proof by distinguishing two cases according to p = [
and p > [.

Case 1: p = 1. p = [ means G, = C;. We first consider the case when
G, = C) and k = 3. Since T'(G)) is 4-regular graph, by Proposition 2.1(2), we get
k3(T(Gp)) < 3. On the other hand, since T(G,) is 4-connected, by Proposition 2.3,
we get k3(T'(Gp)) = 3. Thus, we get k3(T(Gp)) = k3(T(Cp)) = 3.

Next we consider the case when G, = (3 and k = 4. Similarly, by Observa-
tion 1 and Proposition 2.2 (1), combining the fact that T'(G,) is 4-regular graph,
we get ka(T(Gp)) < M(T(Gp)) < 3. On the other hand, let S be a 4-subset
of V(T(G,)). By the symmetry of T(G,), there are only three different choices
of S, see Figure 1(a)-1(c). By simple checking, we always find 3 internally dis-
joint S-trees in T'(G,) for every S. Thus, we have k4(T(Gp)) > 3. Therefore,
Ra(T(Gy)) = Ka(T(Cy)) = 3.

(a) (b) (©)
Figure 1. Three different choices of 4-subset S in V(T'(C3)) (black dot)

Now we consider the case when G, = C3 and k = 5,6. Since the choice of
the k-subset S in V(T'(C3)) is unique, by simple checking, there exist at most two
internally disjoint S-trees in T'(Cs). Thus, we get x5(T(Cs3)) = k6(T(Cs)) = 2.

As for the general case when G, = C; with p > 4 and 4 < k < 2p, note that the
induced subgraphs T'(G,)[V(Gp)] and T(G,)[V(L(Gp))] in T(G)) are both p-cycles.
We use C), and C) to denote graphs T'(G,)[V (G))] and T(G,)[V (L(G)))], respec-
tively. We first choose a k-subset Sy in V(T'(G))) such that [SoNV(C,)| is as large as
possible and the induced subgraph T'(G)[So NV (C})] are a path. By simple check-
ing, T(G,) has at most two internally disjoint So-trees. This means x,(T(G,)) < 2.
On the other hand, for any k-subset S C V(T'(G,)) we always obtain two internally
disjoint S-trees in T'(T},) by connecting vertices of S\ V/(C}) with one spanning tree
of C}, and connecting vertices of S\ V/(C}) with one spanning tree of C}/. This implies
that ki (T(Gp)) = 2. Thus, ki(T(Gp)) = 2.

Case 2: p > l. In this case, since the minimum degree of T(G,) is 2, by
Observation 1, we have ki(T(Gp)) < 2 for 3 < k < 2p. It suffices to prove
that kx(T(Gp)) = 2 for 3 < k < 2p. Similarly, we denote T(Gp)[V(Gp)] as G,
and T(G,)[V(L(Gp))] as L(Gp), and suppose S be a k-subset of V(T'(G,)) with
S'=8NV(Gp), 8" =SNV(L(Gp)).
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IfS" =0, ie, S CV(L(G,)), since L(G,) is connected, there exists one S-Steiner
tree in L(G,), say T’. Then by connecting vertices of S with a spanning tree of G,
we again get a S-Steiner tree, say T". Clearly, T’ and T" are two internally disjoint
S-trees in T'(G,,). This means xi(T(1,)) > 2. By similar consideration, if §” = (), we
also get two internally disjoint S-Steiner trees in T'(G,). Thus, we get ki (T(Gp)) = 2.

As for the case S, S” # (), note that G,, and L(G)) are both connected, we denote
by Th and T, two spanning trees of G, and L(G)), respectively. Then we obtain
two internally disjoint S-trees in T(G,) by connecting vertices of S” with Ty and
connecting vertices of S” with T7. This proves that x;(T(G,)) = 2, as desired. This
completes the proof. O

Now we determine the generalized k-edge-connectivity of T'(G)) similarly.

Theorem 3.7. Let p, k, | be integer numbers with p > 3, 3 < | < p and
3 <k < 2p. If G, is an unicyclic graph with order p and unique cycle Cy, then

3 ifp=1land3 <k <4,
Me(T(Gp)) =

2 otherwise.

Proof. First, we consider the general case when | < p and 3 < k < 2p. Consider
the minimum degree of T(G)) is 2, by Observation 1, we have A\ (T(G,)) < 2.
On the other hand, by Observation 1 and Theorem 3.6, we have A\ (T(G,)) >
ke(T(Gp)) = 2. Thus, we have \y(T(Gp)) = 2 for | < p with 3 < k < 2p. In
the following we discuss the case for [ = p in details. Clearly, G, = C; = C).

For convenience of narration, suppose
Cp = V1V2...UpV1 and L(Cp) = €12€23 .. .ei(iJrl) .. .e(p,l)peplelg

for e;(;41) € V(L(Cp)). Similarly, we use C;, and C}) to denote graphs T'(G},)[V (G})]
and T(Gp)[V (L(Gp))], respectively, value of [S N V(C})|.

CE(k+1) Ck(k+1) CE(k+1)

€s(s+1)

(a) (b) ()
Figure 2. 4-subset S of V(T'(Cp)) (black dot)

630



Now we consider the case when G), = C; and 3 < k < 4. Since T(Cp) is 4-regular
graph, by Proposition 2.2, we directly get A (7'(Cp)) < 3. It suffices to prove that
M(T(Cp)) < 3for 3 <k < 4. If k =3, by Observation 1 and Theorem 3.6, we
get \3(T'(Cp)) = r3(T(Cp)) = 3. If k = 4 and p = 3, similarly, by Observation 1
and Theorem 3.6, we get A4(T(Cs3)) > k4(T'(C3)) = 3. In the following we mainly
consider the case when k = 4 and p > 4. Let S be a 4-subset of V(T'(C,)), we
show that there exist 3 edge disjoint S-trees in T'(Cp) to prove A\ (T(Cp)) > 3. We
distinguish three cases by the

(1) [SNV(C})| = 0 means S C V(C})). Without loss generality, suppose S =
{€i(i4+1) €j(j+1)> CR(k+1), Es(s+1) } With i < j < k < s, see Figure 2 (a). We form 3 edge
disjoint S-trees 11, T2, T5 in T'(G)) as follows and get A4 (T(Cp)) > 3:

Tl = ei(i+1) RPN ej(j+1) “es ek(k+1) “es 65(S+1),
T2 = ej(j-i—l)vj ce ’UiJrlei(i_;’_l) N es(s+1)vs .. ~vk+16k(k+1);
T3 = €j(j+1)Vj+1 - - - VkCh(k+1) U €s(s+1)Vst1 - - - Vi€i(i41)

UviVig1€(41)(i42)Vit2 - - - UjVj41-

(2) |SNV(Gp)| = 1. Similarly, suppose S = {vi, Wj(j4+1), Wr(k+1)» Ws(s+1) }> S€€
Figure 2 (b). Now we form 3 edge disjoint S-trees 11, T», T3 in T'(G,) as follows and
get M (T(Cp)) = 3:

T = vi€iiyr) -+ €5(41) - - Es(s1),
T2 = ej(j-i—l)vj .. .vie(i_l)i ce es(s+1)vs N UkJrlek(k_H),
T5 = €i(j+1)Vj+1 - - - VkCk(k+1) Uw; .. - Us41€s(s+1)

UUs41Vs€(5-1)sVs—1 - - - Vk4+1Vk-

(3) |SNV(Gy)| = 2. Suppose S = {vj, vj, Wi(kt1), Ws(s+1) }, See Figure 2 (c). Now
we form 3 edge disjoint S-trees T4, T», T3 in T'(G)) as follows and get A4(T(C,)) > 3:

T1 = V... Ujej(jJrl) ce ek(kJrl) .. .es(8+1),
T2 =Vj...Vs41Vs ... Vgk41Vk ... V5 U Uk+16k(k+1) U USeS(S+1),
T3 = ep(k41)VkC(k—1)kVk—1 - - - Vj+1€5(j41) - - - Cs(s+1)

U Uiei(i_;’_l) U vjej(j-i-l) .

Finally, we consider the case when G, = Cj with 5 < k£ < 2p. On the one hand,
by Observation 1 and Theorem 3.6, we have Ay (T'(Cp)) = ki(T(Cp)) = 2. On the
other hand, choose a k-subset Sy of V(T'(C))) such that vq,vs, v;, €12, €23 € Sy and
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Uy

U U

€12 €23

Figure 3. A k-subset Sp of V(T'(Cp)) for 5 < k < 2p (black dot)

i # 2,3, see Figure 3. By simple checking, there exist at most 2 edge disjoint Sy-trees
in T(C}), which implies Ay (T'(Cp)) < 2. Thus, we get Ay (T(Cp)) =2 for 5 < k < 2p.
This completes the proof. [l

By Theorems 3.6 and 3.7, we get the generalized 3-connectivity and generalized
3-edge-connectivity of the total graph of unicyclic graph Gp.

Corollary 3.8. Let p, | be two integers with p > 3, 3 < I < p. If G, is an
unicyclic graph with order p and unique cycle C}, then

2 otherwise.

3 ifp=I,
r3(T(Gp)) = A3(T(Gyp)) = {

4. GENERALIZED 3—(EDGE—)CONNECTIVITY OF LINE GRAPH AND TOTAL GRAPH
FOR COMPLETE GRAPH

For 2 < k < p, it is known that r;(K,) = A,(Kp) = p — [4k]. Motivated by
this, we consider to determine the generalized k-(edge-)connectivity of a line graph
and a total graph of complete graph K,. In [9] and [6], Hamada and Chartrand,
respectively, discussed this problem for & = 2. Here we only consider the case when
k= 3.

Lemma 4.1. Let L(K,) be a line graph of complete graph K, with V(K,) =
{ui|l <i < p}and V(L(K,)) = {eijlei; = wiuj € E(Kp)}. If So = {eap, €, €ac} IS
a 3-subset of V(L(K),)), then the generalized local connectivity £(Sp) = [2(p — 2)].

Proof. We proceed by induction on p. Clearly, the conclusion holds for p = 3,
since L(K3) contains one Sp-tree and |3(p — 2)] = 1. Of course, the conclusion
also holds for p = 4. In fact, suppose V(K4) = {uq, Up, Uc,uq}. Then egceqpepe,
€acCbcbd€ab AN €qc€cd€adCab U Ecdlhe are internally disjoint Sp-trees in L(K,), and
nothing else. Thus, we get [3(p —2)] = 3.
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Now, we assume that the conclusion holds for p = &k (> 5). In the following
we show the conclusion holds for p = k + 1. Here we distinguish two cases by the
parity of k. For convenience of narration, choose a vertex uyy1 € V(Kj41) such that
k+1+#a,bc. Then K11 = Ky + ugy1 and Sy = {€ap, €be, €ac} C V(L(KE)).

Case 1: k is even. By the induction hypothesis, there exist at most |3(k — 2)]
internally disjoint Sop-trees in L(K}). Then add a new Sop-tree epcec(it1)€a(k+1)€ab U
€a(k+1)€ac together, thus we get |2(k—2)|+1=[3(k—1)] = [3((k+1)—2)]. The
conclusion holds for p = k£ + 1. In addition, by the procedure of this construction,
vertex ep(x41) remains.

Case 2: k is odd. Since k — 1 is even, by Case 1, there exist [3(k — 2)| internally
disjoint Sp-trees in L(K) and vertex ey, remains in forming these internally disjoint
So-trees. Now we add two new Sp-trees such as epcec(ri1)€p(k+1)€ab U €c(kt1)€ac and
CabCa(k+1)Ch(k-+1)CbkChe UCa(k41)€ac together, and thus get L%(kj—Z)J +2= L%(k—l)J
The conclusion holds for p = k£ + 1.

Now we analyze the maximality to show £(Sp) = [2(p—2)]. Denote {uq, up, uc} =
Vs,, then |E(Vs,,Vs,)| = 3(p — 3). By the above construction, we know that
each Sp-tree needs to consume at least two edges in E(Vs,, Vs, ) except for So-trees
€acCab€be ANA €pcCeraz€ab U €qz€qc. By this we know that L(K),) contains at most
1B(p—-3)—1)+1+41 = 3(p—2) internally disjoint Sp-trees, and thus £(Sy) =
|2(p —2)]. This completes the proof. O

First, we determine the generalized 3-(edge-)connectivity of a line graph of a com-
plete graph.

Theorem 4.1. Let L(K,) be the line graph of K, with order p (> 3). Then
r3(L(Kp)) = [5(p — 2)].

Proof. Suppose V(K,) = {ui,u2,...,up} and V(L(K,)) = {ei;: eij = uiuy,
1< i+# j<p}. The case for p = 3 is trivial, here consider p > 4.

We first consider the case when p = 4. Since L(K4) is 4-regular, by Propo-
sition 2.1(2), we get k3(L(K4)) < 3. On the other hand, let S = {z,y,z} be
a 3-subset of V(L(K4)). Then the induced subgraphs L(K,)[S] are either K5 or Ps.
If L(K4)[S] = K3, let © = €12, y = €13, 2 = eas, then xzy, xyessz and xejgeasyUzery
are 3 internally disjoint S-trees in L(K4). If L(K4)[S] = P53, let © = e12, y = eas,
z = e3q, then zyz, xeoqz Uegyy and zeizz U yers are 3 internally disjoint S-trees
in L(K4). Thus, we get r3(L(K4)) > 3. Combine [£(p —2)| = 3 for p = 4, the
conclusion holds for p = 4. In the following we investigate the cases for p > 5.

Let S = {z,y,2} C V(L(K,)) and assume & = €qp, Y = €cd, 2 = €y and Vg =
{Uq, Up, Uc, Ud, Ue,up} for 1 < a < b < ec<d<e< f<p Then the induced
subgraph K,[Vs] is just one of 3Ky, K1 3, Ko U Ps, Py and K3. If K,[Vs] = 3Ko,
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ie., Kp[Vs] = uqup Uucuq U ucuy, we first construct 6 internally disjoint S-trees as
YCheTehe 2, Y€adTCafZ, TacCeeZ, TEALYCAFZ, TCaeZeay and xeprzes y. In addition to
these S-trees, for each i € {1,2,...,p}\{a,b,c,d,e, f} we can construct 2 internally
disjoint S-trees such as Tj1 = zeiaCicy U €iceiez and Tio = xejpeay U eiqeipz. Then
we get in total 2(p — 6) + 6 = 2p — 6 internally disjoint S-trees in L(K,). Note
that 2p — 6 > [3(p — 2)] for p > 5, thus we get r3(L(K,)) > [3(p — 2)] while
K,[Vs] = 3Ko.

By similar consideration, if K,[Vs] = K1 3, Ko U Ps and Py, we get 2(p —4) + 2,
2(p—5) + 5 and 2(p — 4) + 3 internally disjoint S-trees in L(K), respectively. In
particular, as to the case for K,[Vs] = K3, by Lemma 4.1, we can get |3(p — 2)]
internally disjoint S-trees in L(K,). Therefore, we get k3(L(Kp)) > |2(p —2)]. On
the other hand, choose a 3-subset Sy = {€ap; €be, €ac} C V(L(Kp)). By Lemma 4.1,
we get k3(L(Kp)) < £(So) = |3(p — 2)]. This completes the proof. O

Theorem 4.2. Let L(K,) be the line graph of K, with order p (> 3). Then
A3(L(Kp)) = 2p — 5.

Proof. Since L(K,) is (2p — 4)-regular, by Proposition 2.2 (1), we get
A3(L(Kp)) < 2p — 5.

It suffices to prove As(L(K})) > 2p — 5.

Let V(K,) = {u1,u2,...,up}, V(L(Kp)) = {eij: ej = wuj, 1 < i # j < p}.
Suppose S = {z,y, 2} be a 3 subset of V(L(K})). Without loss generality, assume
T =€qp, Y = €cd, 2 = €cf for 1 < a,b,c,d,e, f < pand Vs = {uq, up, Ue, Ud, Ue, Uy}
Then the induced subgraph K,[Vs] is one of 3K, K1 3, K2 U P3, Py and K.

If K,[Vs] = 3K>, suppose K,[Vs] = uqup U uctqg U ucuyp. We first get 7 inter-
nally disjoint S-trees as TeqcCae? U Cacl, Tehely U Epche?, T€adl€ce?, Tebde a2 J €pqy,
xepsecrz U ey, xeqrz U yeqez and xepeepseqry U eppz. Then for every i € [p] \
{a,b,c,d,e, f} we get two edge disjoint S-trees such as ze;ueicecz U ey and
zeppeigeirz U ejqy. Total up altogether, we get 2(p — 6) + 7 = 2p — 5 edge dis-
joint S-trees in L(K,,). Thus, we have A3(L(K})) > 2p — 5 while K,[Vgs] = 3Ko,.

Similarly, if K,[Vs] = K2UPs, suppose Kp[Vs] = uqupUuctqie. This means d = f
in S. We first get 5 edge disjoint S-trees as: xeq,qy U €442, T€pelYZ, TEchCeez U €cel,
xegpz U egpy and zegeeqez U eqey. Then for every i € [n] \ {a,b,c¢,d, e} we get two
edge disjoint S-trees as we;qe;92 U e;qy and xepeeeicz Ueiey. Adding up all, we get
2(p—>5)+5 = 2p—>5 edge disjoint S-trees in L(K ). Thus, we have A3(L(K})) = 2p—5
while K,[Vg] = Ko U Ps.

If Kp[Vs] = Pu, suppose K,[Vs]| = uqupuctig, which means e =b, c = fin S. We
first get 3 edge disjoint S-trees as: zyz, xzepcz U epey and zeqgqz U eqqy. Then for
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every i € [p] \ {a,b,c,d} we can get two edge disjoint S-trees as xe;qe;q2 U €;,y and
zepeicz U eiey. Adding up all, we get 2(p — 4) + 3 = 2p — 5 edge disjoint S-trees
in L(K}). Thus, we have A3(L(K})) > 2p — 5 while K,[Vs] = Ps.

If K,[Vs] = K13, suppose K,[Vs] = ugqup U tgtc U tuglle, which means a = d = f
in S. We first get 3 edge disjoint S-trees as: xyz, Tepcepez Uepcy and Tepeeecz Ueecy.
Then for every i € [p]\ {a,b,c, e} we can get two edge disjoint S-trees as ze;qzUe;qy
and ze;peiceiez Ueiey. Add up all, we get 2(p —4) + 3 = 2p — 5 edge disjoint S-trees
in L(K,). Thus, we have A3(L(K},)) > 2p — 5 while K,[Vs] = K1 3.

If K,[Vs] = K3, let K,[Vs] = uqupuctiq, that is to say e =a, d =10, f =cin S.
Then for every i € [p]\{a, b, c} we can get two edge disjoint S-trees as ze;q e;cyUe;qz
and weppeicz Uepy. Add S-tree zyz with them, we get 2(p — 3) + 1 = 2p — 5 edge
disjoint S-trees in L(K}). Thus, we have A3(L(K})) > 2p — 5 while K,[Vs] = K3.

By the above argument, we have A3(L(K})) > 2p — 5. This completes the proof.

U

Next, we determine the generalized 3-(edge-)connectivity of total graph for com-
plete graph.

Theorem 4.3. Let T'(K,,) be the total graph of K,, with order p (> 2). Then
3 ifp=3,

2
7J + 1 otherwise.

Proof. By Corollaries 3.5 and 3.8, the conclusion holds for cases p = 2,3.
Here we consider p > 4. Suppose V(K,) = {ui,uz,...,up} and V(L(K,)) =
{eij: eij = wu; € E(Kp)}. Then V(T'(K,)) = V(L(K,)) UV (K,). For convenience
of narration, we denote the induced subgraphs T'(K,)[V (L(K)))] and T'(K,)[V (K})]
as L(K,) and K, respectively. We first choose a 3-subset Sy = {e;j, €k, eix}. By
Lemma 4.1, L(K}) contains at most |3 (p — 2)] internally disjoint Sp-trees. Adding
So-tree e;juujejr U ejpu; together, we get at most L%(p —2)| + 1 internally dis-
joint Sp-trees in T'(K,). By the definition of generalized connectivity, we have
rk3(T(Kp)) < [3(p—2)] + 1. Tt suffices to prove that r3(T(Kp)) = [3(n—2)] + 1.

Let S = {z,y,z} be a 3-subset of V(T'(K,)). Now we prove that there exist at
least | 3(p—2)] + 1 internally disjoint S-trees in T'(K,,). Here we need to distinguish
four cases.

Case 1: |SNV(K,)| = 3. This means z,y,z € V(K,), so assume = = ugq, Yy = Up,
z = uc, where 1 < a,b, ¢ < p. We first get some internally disjoint S-trees in T'(K)
such as path zzy and trees T; = w;z Uwx Uwy for ¢ € {1,2,...,p} \ {a,b,c}.
Then we obtain internally disjoint S-trees such as paths xeq,yz, reqczepcy and trees
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T; = zejaejpy Uejpejez for j € {1,2,...,p}\ {a,b,c}. Total up all, we will get 2p — 3
internally disjoint S-trees in T'(K,). Note that 2p — 3 > [2(p — 2)] + 1, as desired.

Case 2: |SNV(Kp)| = 2. Assume z,y € V(K,) and z € V(L(K,)). With-
out loss of generality, let z = uy, ¥y = up, 2 = €cq with 1 < a,b,¢,d < n. If
{ua, up} N {te,ug}| = 0, this means edges uqup and ucuq are nonadjacent in Kp,
then for every i € {1,2,...,p} \ {a,b}, trees T; = xu;y U ue;.z are p — 2 internally
disjoint S-trees for every i € {1,2,...,p} \ {a,b,d}, trees T} = zeqiepy U epieiqz are
p—3 internally disjoint S-trees. Putting all T;, T with trees yze,qz and zegpyepqz to-
gether, we get 2p — 3 internally disjoint S-trees in T'(K,). If [{uq, us} N{uc, uq}t] =1,
the edges u,u, and u.uq are adjacent in K,,. By similar discussion as above, we also
get 2p — 3 internally disjoint S-trees in T'(K,). If [{uq, up} N{ue, uq}| = 2, this means
UqUp = Uclg, then for every two integers i, € {1,2,...,p} \ {a,b} we can get three
internally disjoint S-trees such as azu;eq;z U usy, zujep;z Uujy and xeqjzepy, and
thus we get at least |3 (p — 2)] internally disjoint S-trees. Putting these trees with
zyz together, we obtain at least |3(p —2)] + 1 internally disjoint S-trees in T'(Kp).
Note that 2p — 3 > [3(p — 2)| + 1, as desired.

Case 3: |SNV(Kp)| = 1. Assume z € V(K,), ¥,z € V(L(Kp)), let x = u,,
Y = €, 2 = eqr with 1 < a,b,¢,d, f < p. I [{ua} N {up, uct N {ug,ur}| = 0, then
for every ¢ € {1,2,...,p} \ {a,d}, trees T; = zu;e;cy U u;e;qz are p — 2 internally
disjoint S-trees, for every i € {1,2,...,p} \ {a, b}, trees T} = xe,; U ze;req ey are
p — 2 internally disjoint S-trees. Putting all T}, 7] with tree yegpzugz together,
we can get 2n — 3 internally disjoint S-trees in T'(K ). If [{up, ue} N {ug,us}| =1
and a ¢ {b,c,d, f}, suppose ¢ = d, then for every i € {1,2,...,p} \ {a, f}, trees
T; = zuie;cy U ez are p — 2 internally disjoint S-trees, for every i € {1,2,...,p}\
{a,b, f}, trees T} = xeq; U ze;peq:epy are p — 3 internally disjoint S-trees. Putting
all T;, T] with trees zuyrepry Ueprz and xegpeqrz U eqpy together, we will get 2p — 3
internally disjoint S-trees in T'(Kp). If [{up, uc} N{uq,ur}| =1 and a € {b,c,d, f}\
{up, uc} N {uq,ur}, suppose ¢ = d and a = b, then the trees T; = zuse;cy U ez
for every i € {1,2,...,p} \ {f} and trees T} = xe,; U ze;peqieiny for every i €
{1,2,...,p}\{a, c} are 2p—3 internally disjoint S-trees in T'(K}). If [{ug } N {up, uc N
{uq,us}| = 1, suppose a = d = c. Then trees T; = zu;epy U ue;5z for every
i€{1,2,...,p}\{a, f} and T/ = zeq;y Uegz for every i € {1,2,...,p} \ {c, f} are
2p—4 internally disjoint S-trees. In addition to these, adding tree yuyzz together, we
will get 2p — 3 internally disjoint S-trees in T'(K},). Note that 2p—3 > L%(p —-2)]+1,
as desired.

Case 4: |SNV(Kp)| = 0. This means S C V(L(K,)) in this case. By Lemma 4.1
there exist at most [3(p — 2)| internally disjoint S-trees in L(K}). Putting these
S-trees with eqpuqtcecd U ucugeqr together, we get L%(n — 2)]+1 internally disjoint
S-trees in T'(K,), as desired. This completes the proof. O
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Theorem 4.4. Let T(K,) be the total graph of K, with order p (> 2). Then
A3(T(Kp)) =2p — 3.

Proof. Since T(K,) is (2p — 2)-regular, by Proposition 2.2 (1), we get
A3(T(Kp)) < 2p—3.

It suffices to prove that A3(T(K,)) > 2p —3. Let S = {x,y,2} be a 3-subset
of V(T(K,)). We prove that there exist at least 2p — 3 internally disjoint S-trees
in T(Kp).

Recall of the proof of Theorem 4.3. For all cases except |S NV (K,)| = 0 and
{tta, up} N{te, ug}| = 2 with & = u,, y = up and z = e.q, we have proved that there
exist at least 2p — 3 internally disjoint S-trees in T'(K},), which are also edge disjoint
S-trees in T'(K,), as desired. So here we mainly consider these two exceptional cases.

For the exceptional when case |[S N V(K,)| = 0, assume S = {eap,€cd, €es} C
V(L(Kp)). By Theorem 4.2, there exist at least 2p—5 edge disjoint S-trees in L(K).
Putting these S-trees with eqptiquceeqd U tctcees and eqpptigeed U uqurees together,
we obtain 2p — 3 edge disjoint S-trees in T'(K)), as desired.

For the exceptional when case |[{uq,up} N {tc, ug}| = 2 with & = ug, y = up and
2 = €cdy, S = {Ua,up,eap}. Then for every i € {1,2,...,p} \ {a,b}, trees T} =
TU;ep;i 2z Uepy and Tf = zeqiuyUeq;z are 2p — 4 edge disjoint S-trees. Putting all Ti1
and T7 with tree zzy together, we get 2p—3 edge disjoint S-trees in T'(K},), as desired.

By the above argument, there exist at least 2p — 3 edge disjoint S-trees in T'(K,)
and thus we get A3(T(K,)) > 2p — 3. This completes the proof. O

5. BOUND FOR GENERALIZED 3-CONNECTIVITY OF LINE GRAPHS

In fact, it is not easy to determine the generalized k-connectivity for general
graph G even if £k = 3. So in this section, we discuss the bounds of the general-
ized 3-(edge-)connectivity for line graph L(G) of graph G.

First, we denote K, = K, \ {e}, where e € E(K},). Clearly, by Proposition 2.3,
we have A\3(K, ) =p —2 = AK, ). Now we determine the value of \3(L(K} )).

Theorem 5.1. Let L(K ) be a line graph of K with p > 4. Then \3(L(K ")) =
2p — 6.

Proof. Since the minimum degree §(L(K, )) is 2p — 5 and there exist two adja-
cent vertices in L(K ") with degree 2p—5, by Proposition 2.2 (1), we get A3(L(kK,)) <
2p — 6. Now we prove A\(S) > 2p — 6 for any 3-subset S C V(L(K, )). And thus
A3(L(K, ")) = 2p — 6. This completes the proof.
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Suppose V (K, ) = {u1,uz,...,up}, V(L(K,)) = {eij: eij = uju; € E(Kp)} —
{e12} and S = {x,y,2} C V(L(K,)). Note that the graph K, can be seen as
2K, + Ko with 2K, = u; U ug. For convenience of narration, we color the edges
of K, incident to u; red, incident to uz blue and the others green, and thus every
vertex of V(L(K, ")) that corresponds to an edge in K, meets the corresponding color
automatically. Thus, we use Sy, Sy, Sy, Sbg, Srg, Sor to denote S which consists of
green, blue, red, blue and green, red and green, blue and red vertices, respectively.

It is clear that S C V(L(Kp—1)) for S € {Sy, Sb, Sr, Stg, Srg}. By Theorem 4.2,
it follows that there are at least 2(p — 1) — 5 = 2p — 7 edge disjoint S-trees in
L(K,-1) C L(K,). In addition to these S-trees, by using red or blue vertices
in L(K, ) we can also get one S-tree. Putting all together, we obtain at least 2p — 6
edge disjoint S-trees in L(K,), i.e., A(S) = 2p — 6.

As for the case for S = Sy, suppose S = {e2;, 25, e1x}. Since eg;, ez € L(Kp—1)
and M(L(Kp—1)) = 2p—6, then there exist at least 2p— 6 edge disjoint eg; — ea; paths
in L(K,_1). Based on these 2p — 6 edge disjoint ea; — es; paths, by using neighbor
vertices of e, to connect ey, with each es; — ea; path we get 2p — 6 edge disjoint
S-trees in L(K,). This implies A(S) > 2p — 6. Thus we get A\3(L(K,)) = 2p — 6.
This completes the proof. O

Now we discuss the bounds of the generalized 3-(edge-)connectivity for line
graph L(G).

Lemma 5.1 ([6]). Let G be a graph with A\(G) # 2. Then A\(L(G)) = 2X\(G) — 2
if and only if there exist two adjacent vertices in G with degree A(G).

Lemma 5.2 ([6]). Let G be a graph for which A\(G) # 1,2. Then A\(L(G)) =
2A(G) — 1 if and only if there exist two adjacent vertices in G with one degree A\(G)
and the other degree A\(G) + 1.

Theorem 5.2. Let L(G) be a line graph of G. Then \3(G) < k3(L(G)).

Proof. Let V(G) = {u1,u2,...,u,} and then V(L(GQ)) = {ei;: e;j = uu; €
E(G)} for u;,uj € V(G). Assume A3(G) = m, now prove k3(L(G)) > m. Suppose
S = {epq ers, €1i be a 3-element vertex set of L(G) and also a 3-element edge set
of G. Then the edge induced subgraph G[S] may be one of 3Ks, K; 3, Ko U P3, Py
and Kj. If G[S] = 3K>, suppose uptq U urus U ugug. Let S" = {up, up, u}. Since
A3(G) = m, there exist at least m edge disjoint S’-trees in G and each S’-tree
corresponds to the unique S-tree in L(G). Thus, there exist at least m internally
disjoint S-trees in L(G). If G[S] = K13, K2 U P, Py, K3, by similar consideration as
above, we can prove that there exist at least m internally disjoint S-trees in L(G). So
we get £(S) = m for any 3-element vertex set S of L(G). Thus, k3(L(G)) = m. O
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Theorem 5.3. Let G be a connected graph with A3(G) = A(G) # 2 and there
exist two adjacent vertices in G with degree A(G). Then

NG) < r3(L(G)) < A3(L(G)) < 2A(G) — 2.

Proof. By Lemma 5.1, we get A(L(G)) = 2A(G) — 2. On the one hand, by
Observation 1 and Proposition 2.2 (2), we get k3(L(G)) < A3(L(G)) < ML(G)) =
2A(G) — 2. On the other hand, by Theorem 5.2 and combining A3(G) = A(G), we
get AM(G) = A3(G) < k3(L(G)). Thus, we have \(G) < k3(L(G)) < A3(L(G)) <
20(G) — 2. O

Remark 1. In Theorem 5.3, the upper bound is sharp for graph K with p > 3,
see Theorem 5.1. The condition “two adjacent vertices in G with degree A(G)” is
necessary since the conclusion is not right for a tree.

By Theorem 5.3 and Lemma 5.2, we immediately get:

Theorem 5.4. Let G be a connected graph with A\3(G) = A(G) # 1,2 and there
exist two adjacent vertices in G with one degree A\(G) and the other degree A\(G)+ 1.
Then A(G) < k3(L(G)) < A3(L(GQ)) < 2X(G) — 1.
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