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Abstract. We study the generalized k-connectivity κk(G) as introduced by Hager in 1985,
as well as the more recently introduced generalized k-edge-connectivity λk(G). We deter-
mine the exact value of κk(G) and λk(G) for the line graphs and total graphs of trees,
unicyclic graphs, and also for complete graphs for the case k = 3.
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1. Introduction

All graphs considered in this paper are undirected, finite and simple. We refer

to book (see [3]) for graph theoretical notation and terminology not described here.

For a graph G, we denote by V (G), E(G), L(G) the set of vertices, the set of edges,

and the line graph of G, respectively.

By the development of parallel and distributed computing, the design and analysis

of various interconnection networks have been a main topic of research for the past

decade, see [1]. Interconnection networks are often modelled by graphs (or digraphs).

The vertices of the graph represent the nodes of the network, that is, processing

elements, memory modules or switches, and the edges correspond to communication

lines. We know that the connectivity κ(G) and edge connectivity λ(G) of a graph G

are the minimum number of vertices and edges that need to be removed to disconnect

the remaining vertices from each other, respectively.
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These two concepts are important measures for the robustness of networks.

An equivalent definition of connectivity (or edge-connectivity) was given: For

each 2-subset S = {u, v} of vertices of G, let κG(S) (or λG(S)) denote the

maximum number of internally- (or edge-) disjoint paths from u to v in G.

Then κ(G) = min{κG(S) : S ⊆ V, |S| = 2} (or λ(G) = min{λG(S) : S ⊆ V ,

|S| = 2}). The generalized k-(edge-)connectivity was introduced in order to mea-

sure the capability of a graph G to connect any k vertices in G and not just

any two.

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner

tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V ′, E′)

of G that is a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S are

said to be internally disjoint if E(T ) ∩ E(T ′) = ∅ and V (T ) ∩ V (T ′) = S. For

S ⊆ V (G) and |S| > 2, the generalized local connectivity κ(S) is the maximum

number of internally disjoint Steiner trees connecting S in G. For an integer k with

2 6 k 6 p, the generalized k-connectivity (or k-tree-connectivity) is defined in [8] as

κk(G) = min{κ(S) : S ⊆ V (G), |S| = k}. Clearly, κ2(G) = κ(G). Table 1 shows

how the generalization proceeds.

Classical connectivity Generalized connectivity

Vertex subset S = {x, y} ⊆ V (G) (|S| = 2) S ⊆ V (G) (|S| > 2)

Set of Steiner trees























Px,y = {P1, P2, . . . , Pl}

{x, y} ⊆ V (Pi)

E(Pi) ∩E(Pj) = ∅

V (Pi) ∩ V (Pj) = {x, y}























TS = {T1, T2, . . . , Tl}

S ⊆ V (Ti)

E(Ti) ∩ E(Tj) = ∅

V (Ti) ∩ V (Tj) = S

Local parameter κ(x, y) = max |Px,y| κ(S) = max |TS |

Global parameter κ(G) = min
x,y∈V (G)

κ(x, y) κk(G) = min
S⊆V (G),|S|=k

κ(S)

Table 1. Classical connectivity and generalized connectivity

Edge-connectivity Generalized edge-connectivity

Vertex subset S = {x, y} ⊆ V (G) (|S| = 2) S ⊆ V (G) (|S| > 2)

Set of Steiner trees











Px,y = {P1, P2, . . . , Pl}

{x, y} ⊆ V (Pi)

E(Pi) ∩ E(Pj) = ∅











TS = {T1, T2, . . . , Tl},

S ⊆ V (Ti),

E(Ti) ∩ E(Tj) = ∅

Local parameter λ(x, y) = max |Px,y| λ(S) = max |TS |

Global parameter λ(G) = min
x,y∈V (G)

λ(x, y) λk(G) = min
S⊆V (G),|S|=k

λ(S)

Table 2. Classical edge-connectivity and generalized edge-connectivity
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As a natural counterpart of the generalized k-connectivity, Li, Mao and Sun

in [18] introduced the concept of generalized k-edge-connectivity. For S ⊆ V (G)

and |S| > 2, two S-trees T and T ′ connecting S are said to be edge disjoint

if E(T ) ∩ E(T ′) = ∅. And the generalized local edge-connectivity λ(S) is the

maximum number of edge disjoint S-trees connecting S in G. For an integer k

with 2 6 k 6 p, the generalized k-edge-connectivity λk(G) of G is defined as

λk(G) = min{λ(S) : S ⊆ V (G) and |S| = k}, hence λ2(G) = λ(G). Table 2 shows

how the generalization of the edge-version definition proceeds.

For results on the generalized connectivity, we refer to [2], [4], [7], [10], [11], [12],

[13], [15], [16] and book [17].

The line graph L(G) of a graph G has vertex set E(G), and two vertices are

adjacent in L(G) if and only if the corresponding two edges in G have precisely one

end vertex in common. The total graph T (G) of G has vertex set V (G)∪E(G), and

two vertices are adjacent in T (G) if and only if the corresponding two elements of

V (G) ∪ E(G) in G are

(i) adjacent vertices, or

(ii) a vertex and an incident edge, or

(iii) two edges that have precisely one end vertex in common.

In [5], Chartrand et al. showed that for any two integers n and k with 2 6 k 6 n,

κk(Kn) = n − ⌈ 1
2k⌉, and in [18], Li, Mao and Sun determined that λk(Kn) =

n − ⌈ 1
2k⌉. Hamada discussed the connectivity of total graphs in [9]. Motivated by

these research, in this paper we investigate the generalized k-connectivity and k-edge-

connectivity of line graphs and total graphs of trees, unicyclic graphs and complete

graph. For the latter, we only consider the case k = 3. At the end of this paper, we

give some bounds on these two parameters for general line graphs and total graphs.

For S ⊂ V (G) we use G[S] to denote the subgraph of G induced by S. In par-

ticular, if T is a tree in G, then E(T ) ⊂ V (L(G)) and L(G)[E(T )] is an induced

subgraph of L(G).

2. Preliminary results

The following observations are immediate.

Observation 1 ([17]). If G is a connected graph, then κk(G) 6 λk(G) 6 δ(G).

Observation 2 ([17]). If H is a spanning subgraph of G, then κk(H) 6 κk(G).

Li, Li and Zhou gave the following sharp upper bound on κ3(G) in terms of the

minimum degree δ(G) and connectivity κ(G).
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Proposition 2.1 ([14]).

(1) Let G be a connected graph of order n > 6. Then κ3(G) 6 κ(G). Moreover,

the upper bound is sharp.

(2) Let G be a connected graph of order n. If there are two adjacent vertices of

degree δ(G), then κ3(G) 6 δ(G)− 1. Moreover, the upper bound is sharp.

Similarly, the following sharp upper bound on λk(G) has been obtained in [18].

Proposition 2.2 ([18]).

(1) Let G be a connected graph. If there are two adjacent vertices of degree δ(G),

then λk(G) 6 δ(G)− 1. Moreover, the upper bound is sharp.

(2) For any graph G of order n > 6, λk(G) 6 λ(G). Moreover, the upper bound is

sharp.

Proposition 2.3 ([14]). Let G be a connected graph. For every two integers k

and r with k > 0 and r ∈ {0, 1, 2, 3}, if κ(G) = 4k + r, then κ3(G) > 3k + ⌈ 1
2r⌉.

Moreover, the lower bound is sharp.

Proposition 2.4 ([18]). Let G be a connected graph with n vertices. For every

two integers l and r with k > 0 and r ∈ {0, 1, 2, 3}, if λ(G) = 4l + r, then λ3(G) >

3l+ ⌈ 1
2r⌉. Moreover, the lower bound is sharp.

3. Generalized k-(edge-)connectivity of total graphs for trees

and unicyclic graphs

In this section, we determine the exact value of the generalized k-(edge-)connec-

tivity of the total graph for trees and unicycle graphs. First, we list two known

results, which are due to Hamada, Nonaka, and Yoshimura in [9] and Nash-Williams

in [19].

Theorem 3.1 ([9]). Let G be a graph with κ(G) > m. Then κ(T (G)) > 2m and

λ(T (G)) > 2m.

Theorem 3.2 ([19]). Every 2k-edge-connected graph contains a system of k edge-

disjoint spanning trees.

Theorem 3.3. Let p, k be two integers with p > 2 and 3 6 k 6 2p− 1. If Tp is

a tree of order p, then

κk(T (Tp)) =

{

1 if k = 2p− 1 and ∆(Tp) = 2,

2 otherwise.
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P r o o f. We first consider the case when k = 2p− 1 and ∆(Tp) = 2. Since Tp is

a tree with κ(Tp) = 1, by Theorem 3.1, we get λ(T (Tp)) > 2. By Theorem 3.2 and

|T (Tp)| = 2p − 1, T (Tp) contains a spanning tree, and hence κ2p−1(T (Tp)) > 1. It

suffices to prove κ2p−1(T (Tp)) 6 1. Now we prove the following claim.

Claim 1. T (Tp) contains at most one edge-disjoint spanning tree for ∆(Tp) = 2.

P r o o f. Assume to the contrary that T (Tp) contains at least two edge-disjoint

spanning trees. This means |E(T (Tp))| > 2(2p − 2). At the same time, consider

∆(Tp) = 2. This yields that Tp is a path and thus |E(T (Tp))| = p−1+p−2+2(p−1) =

4p− 5, contradiction. �

Next, we consider the case when k = 2p− 1 and ∆(Tp) > 2. Since the minimum

degree of T (Tp) is 2, by Observation 1, we get κk(T (Tp)) = κ2p−1(T (Tp)) 6 2. Since

∆(Tp) > 2, there exists a vertex v ∈ V (Tp) with dTp
(v) > 3. Using Kd(v) denote

the clique in the line graph L(Tp) arising from edges incident with v, noting Kd(v)

contains a triangle. Let CTp be a spanning tree of L(Tp). Then we directly get

two edge-disjoint spanning trees T ′ and T ′′ based on Tp and CTp by connecting all

vertices of L(Tp) with tree Tp and all vertices of Tp with tree CTp. This implies that

κ2p−1(T (Tp)) > 2, and thus we get κ2p−1(T (Tp)) = 2.

We now consider the general case when 3 6 k 6 2p − 2. By Observation 1 and

the fact that the minimum degree of T (Tp) is 2, we directly get κk(T (Tp)) 6 2. It

suffices to prove that κk(T (Tp)) > 2 for 3 6 k 6 2p− 2.

Suppose that V (Tp) = {u1, u2, . . . , up} and V (L(Tp)) = {eij : eij = uiuj ∈ E(Tp)}.

Then V (T (Tp)) = V (L(Tp)) ∪ V (Tp). For convenience, the induced subgraph

T (Tp)[V (Tp)] is still denoted by Tp and T (Tp)[V (L(Tp))] is denoted by L(Tp). Let S

be a k-subset of V (T (Tp)) and S′ = S ∩ V (Tp), S
′′ = S ∩ V (L(Tp)). Suppose

S′ = ∅, i.e., S ⊆ V (L(Tp)). Since L(Tp) is connected, it follows that there exists one

S-Steiner tree in L(Tp), say T ′. Then by connecting vertices of S with tree Tp we

get another S-Steiner tree, say T ′′. Clearly, T ′ and T ′′ are two internally disjoint

S-trees in T (Tp). This means that κk(T (Tp)) > 2. By a similar consideration for

the case S′′ = ∅, we can also get two internally disjoint S-Steiner trees in T (Tp), and

then prove that κk(T (Tp)) > 2.

Next assume S′, S′′ 6= ∅. Since Tp is connected, so is L(Tp). Now we denote one

spanning tree of L(Tp) as T . Thus, we can obtain two internally disjoint S-Steiner

trees in T (Tp) by connecting vertices of S
′ with spanning tree T and connecting

vertices of S′′ with tree Tp. In particular, if ∆(Tp) = 2, then Tp is a path. Since

3 6 k 6 2p − 2, it follows that V (T (Tp)) \ S 6= ∅, and hence we can still obtain

two internally disjoint S-Steiner trees in T (Tp). So we always get κk(T (Tp)) > 2, as

desired. This completes the proof. �
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Next we turn to determine the generalized k-edge-connectivity of T (Tp).

Theorem 3.4. Let p, k be two integers with p > 2 and 3 6 k 6 2p− 1. If Tp is

a tree with order p, then

λk(T (Tp)) =

{

1 if k = 2p− 1 and ∆(Tp) = 2,

2 otherwise.

P r o o f. First, we consider the case when k = 2p − 1 and ∆(Tp) = 2. By Ob-

servation 1 and Theorem 3.3, we get λ2p−1(T (Tp)) > κ2p−1(T (Tp)) = 1. On the

other hand, consider |E(T (Tp))| = p − 1 + p − 2 + 2(p − 1) = 4p − 5 < 2(2p − 2).

Then T (Tp) does not contain two edge-disjoint spanning trees, which implies that

λ2p−1(T (Tp)) 6 1. Thus, we get λ2p−1(T (Tp)) = 1.

Next, we consider the case when k = 2p− 1 and ∆(Tp) > 2 and the general case

when 3 6 k 6 2p− 2. On the one hand, since the minimum degree of T (Tp) is 2, by

Observation 1, we have λk(T (Tp)) 6 2. On the other hand, by Observation 1 and

Theorem 3.3, we have λk(T (Tp)) > κk(T (Tp)) = 2. Thus, we get λk(T (Tp)) = 2.

This completes the proof. �

By Theorems 3.3 and 3.4, we directly get the generalized 3-connectivity and gen-

eralized 3-edge-connectivity of the total graph of tree Tp.

Corollary 3.5. Let p be an integer with p > 2. If T (Tp) is a total graph of

tree Tp with order p, then

κ3(T (Tp)) = λ3(T (Tp)) =

{

1 if p = 2,

2 if p > 3.

Following this, we determine the exact value of generalized connectivity of the

total graph of unicyclic graphs.

Theorem 3.6. Let p, k, l be integer numbers with p > 3, 3 6 l 6 p and 36 k6 2p.

If Gp is an unicyclic graph with order p and unique cycle Cl, then

κk(T (Gp)) =

{

3 if p = l and k = 3 or p = l = 3 and k = 4,

2 otherwise.

628



P r o o f. We complete the proof by distinguishing two cases according to p = l

and p > l.

Case 1 : p = l. p = l means Gp = Cl. We first consider the case when

Gp = Cl and k = 3. Since T (Gp) is 4-regular graph, by Proposition 2.1 (2), we get

κ3(T (Gp)) 6 3. On the other hand, since T (Gp) is 4-connected, by Proposition 2.3,

we get κ3(T (Gp)) > 3. Thus, we get κ3(T (Gp)) = κ3(T (Cp)) = 3.

Next we consider the case when Gp = C3 and k = 4. Similarly, by Observa-

tion 1 and Proposition 2.2 (1), combining the fact that T (Gp) is 4-regular graph,

we get κ4(T (Gp)) 6 λ4(T (Gp)) 6 3. On the other hand, let S be a 4-subset

of V (T (Gp)). By the symmetry of T (Gp), there are only three different choices

of S, see Figure 1 (a)–1 (c). By simple checking, we always find 3 internally dis-

joint S-trees in T (Gp) for every S. Thus, we have κ4(T (Gp)) > 3. Therefore,

κ4(T (Gp)) = κ4(T (C3)) = 3.

(a) (b) (c)

Figure 1. Three different choices of 4-subset S in V (T (C3)) (black dot)

Now we consider the case when Gp = C3 and k = 5, 6. Since the choice of

the k-subset S in V (T (C3)) is unique, by simple checking, there exist at most two

internally disjoint S-trees in T (C3). Thus, we get κ5(T (C3)) = κ6(T (C3)) = 2.

As for the general case when Gp = Cl with p > 4 and 4 6 k 6 2p, note that the

induced subgraphs T (Gp)[V (Gp)] and T (Gp)[V (L(Gp))] in T (Gp) are both p-cycles.

We use C′
p and C′′

p to denote graphs T (Gp)[V (Gp)] and T (Gp)[V (L(Gp))], respec-

tively. We first choose a k-subset S0 in V (T (Gp)) such that |S0∩V (C′
p)| is as large as

possible and the induced subgraph T (Gp)[S0 ∩ V (C′
p)] are a path. By simple check-

ing, T (Gp) has at most two internally disjoint S0-trees. This means κk(T (Gp)) 6 2.

On the other hand, for any k-subset S ⊂ V (T (Gp)) we always obtain two internally

disjoint S-trees in T (Tp) by connecting vertices of S \V (C′′
p ) with one spanning tree

of C′
p and connecting vertices of S\V (C′

p) with one spanning tree of C
′′
p . This implies

that κk(T (Gp)) > 2. Thus, κk(T (Gp)) = 2.

Case 2 : p > l. In this case, since the minimum degree of T (Gp) is 2, by

Observation 1, we have κk(T (Gp)) 6 2 for 3 6 k 6 2p. It suffices to prove

that κk(T (Gp)) > 2 for 3 6 k 6 2p. Similarly, we denote T (Gp)[V (Gp)] as Gp

and T (Gp)[V (L(Gp))] as L(Gp), and suppose S be a k-subset of V (T (Gp)) with

S′ = S ∩ V (Gp), S
′′ = S ∩ V (L(Gp)).
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If S′ = ∅, i.e., S ⊆ V (L(Gp)), since L(Gp) is connected, there exists one S-Steiner

tree in L(Gp), say T
′. Then by connecting vertices of S with a spanning tree of Gp,

we again get a S-Steiner tree, say T ′′. Clearly, T ′ and T ′′ are two internally disjoint

S-trees in T (Gp). This means κk(T (Tp)) > 2. By similar consideration, if S′′ = ∅, we

also get two internally disjoint S-Steiner trees in T (Gp). Thus, we get κk(T (Gp)) > 2.

As for the case S′, S′′ 6= ∅, note that Gp and L(Gp) are both connected, we denote

by T1 and T2 two spanning trees of Gp and L(Gp), respectively. Then we obtain

two internally disjoint S-trees in T (Gp) by connecting vertices of S
′ with T2 and

connecting vertices of S′′ with T1. This proves that κk(T (Gp)) > 2, as desired. This

completes the proof. �

Now we determine the generalized k-edge-connectivity of T (Gp) similarly.

Theorem 3.7. Let p, k, l be integer numbers with p > 3, 3 6 l 6 p and

3 6 k 6 2p. If Gp is an unicyclic graph with order p and unique cycle Cl, then

λk(T (Gp)) =

{

3 if p = l and 3 6 k 6 4,

2 otherwise.

P r o o f. First, we consider the general case when l < p and 3 6 k 6 2p. Consider

the minimum degree of T (Gp) is 2, by Observation 1, we have λk(T (Gp)) 6 2.

On the other hand, by Observation 1 and Theorem 3.6, we have λk(T (Gp)) >

κk(T (Gp)) = 2. Thus, we have λk(T (Gp)) = 2 for l < p with 3 6 k 6 2p. In

the following we discuss the case for l = p in details. Clearly, Gp = Cl = Cp.

For convenience of narration, suppose

Cp = v1v2 . . . vpv1 and L(Cp) = e12e23 . . . ei(i+1) . . . e(p−1)pep1e12

for ei(i+1) ∈ V (L(Cp)). Similarly, we use C
′
p and C

′′
p to denote graphs T (Gp)[V (Gp)]

and T (Gp)[V (L(Gp))], respectively, value of |S ∩ V (C′
p)|.

es(s+1)

ek(k+1)

ej(j+1)

ei(i+1)

es(s+1)

ek(k+1)

ej(j+1)
vi

es(s+1)

ek(k+1)

vi

vj

(a) (b) (c)

Figure 2. 4-subset S of V (T (Cp)) (black dot)
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Now we consider the case when Gp = Cl and 3 6 k 6 4. Since T (Cp) is 4-regular

graph, by Proposition 2.2, we directly get λk(T (Cp)) 6 3. It suffices to prove that

λk(T (Cp)) 6 3 for 3 6 k 6 4. If k = 3, by Observation 1 and Theorem 3.6, we

get λ3(T (Cp)) > κ3(T (Cp)) = 3. If k = 4 and p = 3, similarly, by Observation 1

and Theorem 3.6, we get λ4(T (C3)) > κ4(T (C3)) = 3. In the following we mainly

consider the case when k = 4 and p > 4. Let S be a 4-subset of V (T (Cp)), we

show that there exist 3 edge disjoint S-trees in T (Cp) to prove λ4(T (Cp)) > 3. We

distinguish three cases by the

(1) |S ∩ V (C′
p)| = 0 means S ⊆ V (C′′

p ). Without loss generality, suppose S =

{ei(i+1), ej(j+1), ek(k+1), es(s+1)} with i < j < k < s, see Figure 2 (a). We form 3 edge

disjoint S-trees T1, T2, T3 in T (Gp) as follows and get λ4(T (Cp)) > 3:

T1 = ei(i+1) . . . ej(j+1) . . . ek(k+1) . . . es(s+1),

T2 = ej(j+1)vj . . . vi+1ei(i+1) . . . es(s+1)vs . . . vk+1ek(k+1),

T3 = ej(j+1)vj+1 . . . vkek(k+1) ∪ es(s+1)vs+1 . . . viei(i+1)

∪ vivi+1e(i+1)(i+2)vi+2 . . . vjvj+1.

(2) |S ∩ V (Gp)| = 1. Similarly, suppose S = {vi, wj(j+1), wk(k+1), ws(s+1)}, see

Figure 2 (b). Now we form 3 edge disjoint S-trees T1, T2, T3 in T (Gp) as follows and

get λ4(T (Cp)) > 3:

T1 = viei(i+1) . . . ej(j+1) . . . es(s+1),

T2 = ej(j+1)vj . . . vie(i−1)i . . . es(s+1)vs . . . vk+1ek(k+1),

T3 = ej(j+1)vj+1 . . . vkek(k+1) ∪ vi . . . vs+1es(s+1)

∪ vs+1vse(s−1)svs−1 . . . vk+1vk.

(3) |S ∩ V (Gp)| = 2. Suppose S = {vi, vj , wk(k+1), ws(s+1)}, see Figure 2 (c). Now

we form 3 edge disjoint S-trees T1, T2, T3 in T (Gp) as follows and get λ4(T (Cp)) > 3:

T1 = vi . . . vjej(j+1) . . . ek(k+1) . . . es(s+1),

T2 = vi . . . vs+1vs . . . vk+1vk . . . vj ∪ vk+1ek(k+1) ∪ vses(s+1),

T3 = ek(k+1)vke(k−1)kvk−1 . . . vj+1ej(j+1) . . . es(s+1)

∪ viei(i+1) ∪ vjej(j+1).

Finally, we consider the case when Gp = Cl with 5 6 k 6 2p. On the one hand,

by Observation 1 and Theorem 3.6, we have λk(T (Cp)) > κk(T (Cp)) = 2. On the

other hand, choose a k-subset S0 of V (T (Cp)) such that v2, v3, vi, e12, e23 ∈ S0 and
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e12 e23

v3v2

vi

Figure 3. A k-subset S0 of V (T (Cp)) for 5 6 k 6 2p (black dot)

i 6= 2, 3, see Figure 3. By simple checking, there exist at most 2 edge disjoint S0-trees

in T (Cp), which implies λk(T (Cp)) 6 2. Thus, we get λk(T (Cp)) = 2 for 5 6 k 6 2p.

This completes the proof. �

By Theorems 3.6 and 3.7, we get the generalized 3-connectivity and generalized

3-edge-connectivity of the total graph of unicyclic graph Gp.

Corollary 3.8. Let p, l be two integers with p > 3, 3 6 l 6 p. If Gp is an

unicyclic graph with order p and unique cycle Cl, then

κ3(T (Gp)) = λ3(T (Gp)) =

{

3 if p = l,

2 otherwise.

4. Generalized 3-(edge-)connectivity of line graph and total graph

for complete graph

For 2 6 k 6 p, it is known that κk(Kp) = λk(Kp) = p − ⌈ 1
2k⌉. Motivated by

this, we consider to determine the generalized k-(edge-)connectivity of a line graph

and a total graph of complete graph Kp. In [9] and [6], Hamada and Chartrand,

respectively, discussed this problem for k = 2. Here we only consider the case when

k = 3.

Lemma 4.1. Let L(Kp) be a line graph of complete graph Kp with V (Kp) =

{ui|1 6 i 6 p} and V (L(Kp)) = {eij |eij = uiuj ∈ E(Kp)}. If S0 = {eab, ebc, eac} is

a 3-subset of V (L(Kp)), then the generalized local connectivity κ(S0) = ⌊ 3
2 (p− 2)⌋.

P r o o f. We proceed by induction on p. Clearly, the conclusion holds for p = 3,

since L(K3) contains one S0-tree and ⌊ 3
2 (p − 2)⌋ = 1. Of course, the conclusion

also holds for p = 4. In fact, suppose V (K4) = {ua, ub, uc, ud}. Then eaceabebc,

eacebcebdeab and eacecdeadeab ∪ ecdebc are internally disjoint S0-trees in L(K4), and

nothing else. Thus, we get ⌊ 3
2 (p− 2)⌋ = 3.
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Now, we assume that the conclusion holds for p = k (> 5). In the following

we show the conclusion holds for p = k + 1. Here we distinguish two cases by the

parity of k. For convenience of narration, choose a vertex uk+1 ∈ V (Kk+1) such that

k + 1 6= a, b, c. Then Kk+1 = Kk + uk+1 and S0 = {eab, ebc, eac} ⊂ V (L(Kk)).

Case 1 : k is even. By the induction hypothesis, there exist at most ⌊ 3
2 (k − 2)⌋

internally disjoint S0-trees in L(Kk). Then add a new S0-tree ebcec(k+1)ea(k+1)eab ∪

ea(k+1)eac together, thus we get ⌊
3
2 (k− 2)⌋+1 = ⌊ 3

2 (k− 1)⌋ = ⌊ 3
2 ((k+1)− 2)⌋. The

conclusion holds for p = k + 1. In addition, by the procedure of this construction,

vertex eb(k+1) remains.

Case 2 : k is odd. Since k− 1 is even, by Case 1, there exist ⌊ 3
2 (k− 2)⌋ internally

disjoint S0-trees in L(Kk) and vertex ebk remains in forming these internally disjoint

S0-trees. Now we add two new S0-trees such as ebcec(k+1)eb(k+1)eab ∪ ec(k+1)eac and

eabea(k+1)ek(k+1)ebkebc∪ea(k+1)eac together, and thus get ⌊
3
2 (k−2)⌋+2 = ⌊ 3

2 (k−1)⌋.

The conclusion holds for p = k + 1.

Now we analyze the maximality to show κ(S0) = ⌊ 3
2 (p−2)⌋. Denote {ua, ub, uc} =

VS0
, then |E(VS0

, VS0
)| = 3(p − 3). By the above construction, we know that

each S0-tree needs to consume at least two edges in E(VS0
, VS0

) except for S0-trees

eaceabebc and ebcecxeaxeab ∪ eaxeac. By this we know that L(Kp) contains at most
1
2 (3(p − 3) − 1) + 1 + 1 = 3

2 (p − 2) internally disjoint S0-trees, and thus κ(S0) =

⌊ 3
2 (p− 2)⌋. This completes the proof. �

First, we determine the generalized 3-(edge-)connectivity of a line graph of a com-

plete graph.

Theorem 4.1. Let L(Kp) be the line graph of Kp with order p (> 3). Then

κ3(L(Kp)) = ⌊ 3
2 (p− 2)⌋.

P r o o f. Suppose V (Kp) = {u1, u2, . . . , up} and V (L(Kp)) = {eij : eij = uiuj,

1 6 i 6= j 6 p}. The case for p = 3 is trivial, here consider p > 4.

We first consider the case when p = 4. Since L(K4) is 4-regular, by Propo-

sition 2.1 (2), we get κ3(L(K4)) 6 3. On the other hand, let S = {x, y, z} be

a 3-subset of V (L(K4)). Then the induced subgraphs L(K4)[S] are either K3 or P3.

If L(K4)[S] = K3, let x = e12, y = e13, z = e23, then xzy, xye34z and xe14e24y∪ze14

are 3 internally disjoint S-trees in L(K4). If L(K4)[S] = P3, let x = e12, y = e23,

z = e34, then xyz, xe24z ∪ e24y and xe13z ∪ ye13 are 3 internally disjoint S-trees

in L(K4). Thus, we get κ3(L(K4)) > 3. Combine ⌊ 3
2 (p − 2)⌋ = 3 for p = 4, the

conclusion holds for p = 4. In the following we investigate the cases for p > 5.

Let S = {x, y, z} ⊆ V (L(Kp)) and assume x = eab, y = ecd, z = eef and VS =

{ua, ub, uc, ud, ue, uf} for 1 6 a < b < c < d < e < f 6 p. Then the induced

subgraph Kp[VS ] is just one of 3K2,K1,3,K2 ∪ P3, P4 and K3. If Kp[VS ] = 3K2,
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i.e., Kp[VS ] = uaub ∪ ucud ∪ ueuf , we first construct 6 internally disjoint S-trees as

yebcxebez, yeadxeafz, xeacyecez, xedbyedfz, xeaezeedy and xebfzefcy. In addition to

these S-trees, for each i ∈ {1, 2, . . . , p} \ {a, b, c, d, e, f} we can construct 2 internally

disjoint S-trees such as Ti1 = xeiaeicy ∪ eiceiez and Ti2 = xeibeidy ∪ eideifz. Then

we get in total 2(p − 6) + 6 = 2p − 6 internally disjoint S-trees in L(Kp). Note

that 2p − 6 > ⌊ 3
2 (p − 2)⌋ for p > 5, thus we get κ3(L(Kp)) > ⌊ 3

2 (p − 2)⌋ while

Kp[VS ] = 3K2.

By similar consideration, if Kp[VS ] = K1,3,K2 ∪ P3 and P4, we get 2(p− 4) + 2,

2(p − 5) + 5 and 2(p − 4) + 3 internally disjoint S-trees in L(Kp), respectively. In

particular, as to the case for Kp[VS ] = K3, by Lemma 4.1, we can get ⌊
3
2 (p − 2)⌋

internally disjoint S-trees in L(Kp). Therefore, we get κ3(L(Kp)) > ⌊ 3
2 (p− 2)⌋. On

the other hand, choose a 3-subset S0 = {eab, ebc, eac} ⊆ V (L(Kp)). By Lemma 4.1,

we get κ3(L(Kp)) 6 κ(S0) = ⌊ 3
2 (p− 2)⌋. This completes the proof. �

Theorem 4.2. Let L(Kp) be the line graph of Kp with order p (> 3). Then

λ3(L(Kp)) = 2p− 5.

P r o o f. Since L(Kp) is (2p− 4)-regular, by Proposition 2.2 (1), we get

λ3(L(Kp)) 6 2p− 5.

It suffices to prove λ3(L(Kp)) > 2p− 5.

Let V (Kp) = {u1, u2, . . . , up}, V (L(Kp)) = {eij : eij = uiuj, 1 6 i 6= j 6 p}.

Suppose S = {x, y, z} be a 3 subset of V (L(Kp)). Without loss generality, assume

x = eab, y = ecd, z = eef for 1 6 a, b, c, d, e, f 6 p and VS = {ua, ub, uc, ud, ue, uf}.

Then the induced subgraph Kp[VS ] is one of 3K2,K1,3,K2 ∪ P3, P4 and K3.

If Kp[VS ] = 3K2, suppose Kp[VS ] = uaub ∪ ucud ∪ ueuf . We first get 7 inter-

nally disjoint S-trees as xeaceaez ∪ eacy, xebcy ∪ ebcebez, xeadyecez, xebdefdz ∪ ebdy,

xebfecfz ∪ ecfy, xeafz ∪ yedez and xebeebfedfy ∪ ebfz. Then for every i ∈ [p] \

{a, b, c, d, e, f} we get two edge disjoint S-trees such as xeiaeiceiez ∪ eicy and

xeibeideifz ∪ eidy. Total up altogether, we get 2(p − 6) + 7 = 2p − 5 edge dis-

joint S-trees in L(Kp). Thus, we have λ3(L(Kp)) > 2p− 5 while Kp[VS ] = 3K2.

Similarly, ifKp[VS ] = K2∪P3, supposeKp[VS ] = uaub∪ucudue. This means d = f

in S. We first get 5 edge disjoint S-trees as: xeady ∪ eadz, xebeyz, xecbecez ∪ ecey,

xedbz ∪ edby and xeaeeacz ∪ eaey. Then for every i ∈ [n] \ {a, b, c, d, e} we get two

edge disjoint S-trees as xeiaeidz ∪ eidy and xeibeieeicz ∪ eiey. Adding up all, we get

2(p−5)+5 = 2p−5 edge disjoint S-trees in L(Kp). Thus, we have λ3(L(Kp)) > 2p−5

while Kp[VS ] = K2 ∪ P3.

If Kp[VS ] = P4, suppose Kp[VS ] = uaubucud, which means e = b, c = f in S. We

first get 3 edge disjoint S-trees as: xyz, xebcz ∪ ebcy and xeadz ∪ eady. Then for
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every i ∈ [p] \ {a, b, c, d} we can get two edge disjoint S-trees as xeiaeidz ∪ eiay and

xeibeicz ∪ eicy. Adding up all, we get 2(p − 4) + 3 = 2p − 5 edge disjoint S-trees

in L(Kp). Thus, we have λ3(L(Kp)) > 2p− 5 while Kp[VS ] = P4.

If Kp[VS ] = K1,3, suppose Kp[VS ] = uaub ∪ uauc ∪ uaue, which means a = d = f

in S. We first get 3 edge disjoint S-trees as: xyz, xebcebez∪ ebcy and xebeeecz∪ eecy.

Then for every i ∈ [p]\ {a, b, c, e} we can get two edge disjoint S-trees as xeiaz∪ eiay

and xeibeiceiez ∪ eicy. Add up all, we get 2(p− 4)+ 3 = 2p− 5 edge disjoint S-trees

in L(Kp). Thus, we have λ3(L(Kp)) > 2p− 5 while Kp[VS ] = K1,3.

If Kp[VS ] = K3, let Kp[VS ] = uaubucua, that is to say e = a, d = b, f = c in S.

Then for every i ∈ [p]\{a, b, c} we can get two edge disjoint S-trees as xeiaeicy∪eiaz

and xeibeicz ∪ eiby. Add S-tree xyz with them, we get 2(p − 3) + 1 = 2p − 5 edge

disjoint S-trees in L(Kp). Thus, we have λ3(L(Kp)) > 2p− 5 while Kp[VS ] = K3.

By the above argument, we have λ3(L(Kp)) > 2p− 5. This completes the proof.

�

Next, we determine the generalized 3-(edge-)connectivity of total graph for com-

plete graph.

Theorem 4.3. Let T (Kp) be the total graph of Kp with order p (> 2). Then

κ3(T (Kp)) =







3 if p = 3,
⌊3(p− 2)

2

⌋

+ 1 otherwise.

P r o o f. By Corollaries 3.5 and 3.8, the conclusion holds for cases p = 2, 3.

Here we consider p > 4. Suppose V (Kp) = {u1, u2, . . . , up} and V (L(Kp)) =

{eij : eij = uiuj ∈ E(Kp)}. Then V (T (Kp)) = V (L(Kp)) ∪ V (Kp). For convenience

of narration, we denote the induced subgraphs T (Kp)[V (L(Kp))] and T (Kp)[V (Kp)]

as L(Kp) and Kp, respectively. We first choose a 3-subset S0 = {eij , ejk, eik}. By

Lemma 4.1, L(Kp) contains at most ⌊
3
2 (p− 2)⌋ internally disjoint S0-trees. Adding

S0-tree eijuiujejk ∪ eikui together, we get at most ⌊
3
2 (p − 2)⌋ + 1 internally dis-

joint S0-trees in T (Kp). By the definition of generalized connectivity, we have

κ3(T (Kp)) 6 ⌊ 3
2 (p− 2)⌋+ 1. It suffices to prove that κ3(T (Kp)) > ⌊ 3

2 (n− 2)⌋+ 1.

Let S = {x, y, z} be a 3-subset of V (T (Kp)). Now we prove that there exist at

least ⌊ 3
2 (p− 2)⌋+1 internally disjoint S-trees in T (Kp). Here we need to distinguish

four cases.

Case 1 : |S ∩ V (Kp)| = 3. This means x, y, z ∈ V (Kp), so assume x = ua, y = ub,

z = uc, where 1 6 a, b, c 6 p. We first get some internally disjoint S-trees in T (Kp)

such as path zxy and trees Ti = uiz ∪ uix ∪ uiy for i ∈ {1, 2, . . . , p} \ {a, b, c}.

Then we obtain internally disjoint S-trees such as paths xeabyz, xeaczebcy and trees
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Tj = xejaejby∪ ejbejcz for j ∈ {1, 2, . . . , p} \ {a, b, c}. Total up all, we will get 2p− 3

internally disjoint S-trees in T (Kp). Note that 2p− 3 > ⌊ 3
2 (p− 2)⌋+ 1, as desired.

Case 2 : |S ∩ V (Kp)| = 2. Assume x, y ∈ V (Kp) and z ∈ V (L(Kp)). With-

out loss of generality, let x = ua, y = ub, z = ecd with 1 6 a, b, c, d 6 n. If

|{ua, ub} ∩ {uc, ud}| = 0, this means edges uaub and ucud are nonadjacent in Kp,

then for every i ∈ {1, 2, . . . , p} \ {a, b}, trees Ti = xuiy ∪ uieicz are p− 2 internally

disjoint S-trees for every i ∈ {1, 2, . . . , p} \ {a, b, d}, trees T ′
i = xeaiebiy ∪ ebieidz are

p−3 internally disjoint S-trees. Putting all Ti, T
′
i with trees yxeadz and xeabyebdz to-

gether, we get 2p−3 internally disjoint S-trees in T (Kp). If |{ua, ub}∩{uc, ud}| = 1,

the edges uaub and ucud are adjacent in Kp. By similar discussion as above, we also

get 2p−3 internally disjoint S-trees in T (Kp). If |{ua, ub}∩{uc, ud}| = 2, this means

uaub = ucud, then for every two integers i, j ∈ {1, 2, . . . , p} \ {a, b} we can get three

internally disjoint S-trees such as xuieaiz ∪ uiy, xujebjz ∪ ujy and xeajzebiy, and

thus we get at least ⌊ 3
2 (p − 2)⌋ internally disjoint S-trees. Putting these trees with

xyz together, we obtain at least ⌊ 3
2 (p− 2)⌋+ 1 internally disjoint S-trees in T (Kp).

Note that 2p− 3 > ⌊ 3
2 (p− 2)⌋+ 1, as desired.

Case 3 : |S ∩ V (Kp)| = 1. Assume x ∈ V (Kp), y, z ∈ V (L(Kp)), let x = ua,

y = ebc, z = edf with 1 6 a, b, c, d, f 6 p. If |{ua} ∩ {ub, uc} ∩ {ud, uf}| = 0, then

for every i ∈ {1, 2, . . . , p} \ {a, d}, trees Ti = xuieicy ∪ uieidz are p − 2 internally

disjoint S-trees, for every i ∈ {1, 2, . . . , p} \ {a, b}, trees T ′
i = xeai ∪ zeifeaieiby are

p − 2 internally disjoint S-trees. Putting all Ti, T
′
i with tree yeabxudz together,

we can get 2n − 3 internally disjoint S-trees in T (Kp). If |{ub, uc} ∩ {ud, uf}| = 1

and a /∈ {b, c, d, f}, suppose c = d, then for every i ∈ {1, 2, . . . , p} \ {a, f}, trees

Ti = xuieicy ∪ eicz are p − 2 internally disjoint S-trees, for every i ∈ {1, 2, . . . , p} \

{a, b, f}, trees T ′
i = xeai ∪ zeifeaieiby are p − 3 internally disjoint S-trees. Putting

all Ti, T
′
i with trees xufebfy ∪ ebfz and xeabeafz ∪ eaby together, we will get 2p− 3

internally disjoint S-trees in T (Kp). If |{ub, uc} ∩ {ud, uf}| = 1 and a ∈ {b, c, d, f} \

{ub, uc} ∩ {ud, uf}, suppose c = d and a = b, then the trees Ti = xuieicy ∪ eicz

for every i ∈ {1, 2, . . . , p} \ {f} and trees T ′
i = xeai ∪ zeifeaieiby for every i ∈

{1, 2, . . . , p}\{a, c} are 2p−3 internally disjoint S-trees in T (Kp). If |{ua}∩{ub, uc}∩

{ud, uf}| = 1, suppose a = d = c. Then trees Ti = xuieiby ∪ uieif z for every

i ∈ {1, 2, . . . , p} \ {a, f} and T ′
i = xeaiy ∪ eaiz for every i ∈ {1, 2, . . . , p} \ {c, f} are

2p−4 internally disjoint S-trees. In addition to these, adding tree yubxz together, we

will get 2p−3 internally disjoint S-trees in T (Kp). Note that 2p−3 > ⌊ 3
2 (p−2)⌋+1,

as desired.

Case 4 : |S ∩ V (Kp)| = 0. This means S ⊆ V (L(Kp)) in this case. By Lemma 4.1

there exist at most ⌊ 3
2 (p − 2)⌋ internally disjoint S-trees in L(Kp). Putting these

S-trees with eabuaucecd ∪ ucugegf together, we get ⌊
3
2 (n− 2)⌋+1 internally disjoint

S-trees in T (Kp), as desired. This completes the proof. �
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Theorem 4.4. Let T (Kp) be the total graph of Kp with order p (> 2). Then

λ3(T (Kp)) = 2p− 3.

P r o o f. Since T (Kp) is (2p− 2)-regular, by Proposition 2.2 (1), we get

λ3(T (Kp)) 6 2p− 3.

It suffices to prove that λ3(T (Kp)) > 2p − 3. Let S = {x, y, z} be a 3-subset

of V (T (Kp)). We prove that there exist at least 2p − 3 internally disjoint S-trees

in T (Kp).

Recall of the proof of Theorem 4.3. For all cases except |S ∩ V (Kp)| = 0 and

|{ua, ub}∩ {uc, ud}| = 2 with x = ua, y = ub and z = ecd, we have proved that there

exist at least 2p− 3 internally disjoint S-trees in T (Kp), which are also edge disjoint

S-trees in T (Kp), as desired. So here we mainly consider these two exceptional cases.

For the exceptional when case |S ∩ V (Kp)| = 0, assume S = {eab, ecd, eef} ⊂

V (L(Kp)). By Theorem 4.2, there exist at least 2p−5 edge disjoint S-trees in L(Kp).

Putting these S-trees with eabuaucecd ∪ ucueeef and eabubudecd ∪ udufeef together,

we obtain 2p− 3 edge disjoint S-trees in T (Kp), as desired.

For the exceptional when case |{ua, ub} ∩ {uc, ud}| = 2 with x = ua, y = ub and

z = ecd, S = {ua, ub, eab}. Then for every i ∈ {1, 2, . . . , p} \ {a, b}, trees T 1
i =

xuiebiz∪ebiy and T
2
i = xeaiuiy∪eaiz are 2p−4 edge disjoint S-trees. Putting all T 1

i

and T 2
i with tree xzy together, we get 2p−3 edge disjoint S-trees in T (Kp), as desired.

By the above argument, there exist at least 2p− 3 edge disjoint S-trees in T (Kp)

and thus we get λ3(T (Kp)) > 2p− 3. This completes the proof. �

5. Bound for generalized 3-connectivity of line graphs

In fact, it is not easy to determine the generalized k-connectivity for general

graph G even if k = 3. So in this section, we discuss the bounds of the general-

ized 3-(edge-)connectivity for line graph L(G) of graph G.

First, we denote K−
p = Kp \ {e}, where e ∈ E(Kp). Clearly, by Proposition 2.3,

we have λ3(K
−
p ) = p− 2 = λ(K−

p ). Now we determine the value of λ3(L(K
−
p )).

Theorem 5.1. Let L(K−
p ) be a line graph of K−

p with p > 4. Then λ3(L(K
−
p )) =

2p− 6.

P r o o f. Since the minimum degree δ(L(K−
p )) is 2p− 5 and there exist two adja-

cent vertices in L(K−
p ) with degree 2p−5, by Proposition 2.2 (1), we get λ3(L(K

−
p )) 6

2p − 6. Now we prove λ(S) > 2p − 6 for any 3-subset S ⊆ V (L(K−
p )). And thus

λ3(L(K
−
p )) > 2p− 6. This completes the proof.
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Suppose V (K−
p ) = {u1, u2, . . . , up}, V (L(K−

p )) = {eij : eij = uiuj ∈ E(Kp)} −

{e12} and S = {x, y, z} ⊆ V (L(K−
p )). Note that the graph K−

n can be seen as

2K1 +Kp−2 with 2K1 = u1 ∪ u2. For convenience of narration, we color the edges

of K−
p incident to u1 red, incident to u2 blue and the others green, and thus every

vertex of V (L(K−
p )) that corresponds to an edge inK−

p meets the corresponding color

automatically. Thus, we use Sg, Sb, Sr, Sbg, Srg, Sbr to denote S which consists of

green, blue, red, blue and green, red and green, blue and red vertices, respectively.

It is clear that S ⊆ V (L(Kp−1)) for S ∈ {Sg, Sb, Sr, Sbg, Srg}. By Theorem 4.2,

it follows that there are at least 2(p − 1) − 5 = 2p − 7 edge disjoint S-trees in

L(Kp−1) ⊂ L(K−
p ). In addition to these S-trees, by using red or blue vertices

in L(K−
p ) we can also get one S-tree. Putting all together, we obtain at least 2p− 6

edge disjoint S-trees in L(K−
p ), i.e., λ(S) > 2p− 6.

As for the case for S = Sbr, suppose S = {e2i, e2j , e1k}. Since e2i, e2j ∈ L(Kp−1)

and λ(L(Kp−1)) = 2p−6, then there exist at least 2p−6 edge disjoint e2i−e2j paths

in L(Kp−1). Based on these 2p− 6 edge disjoint e2i − e2j paths, by using neighbor

vertices of e1k to connect e1k with each e2i − e2j path we get 2p − 6 edge disjoint

S-trees in L(K−
p ). This implies λ(S) > 2p − 6. Thus we get λ3(L(K

−
p )) = 2p − 6.

This completes the proof. �

Now we discuss the bounds of the generalized 3-(edge-)connectivity for line

graph L(G).

Lemma 5.1 ([6]). Let G be a graph with λ(G) 6= 2. Then λ(L(G)) = 2λ(G)− 2

if and only if there exist two adjacent vertices in G with degree λ(G).

Lemma 5.2 ([6]). Let G be a graph for which λ(G) 6= 1, 2. Then λ(L(G)) =

2λ(G)− 1 if and only if there exist two adjacent vertices in G with one degree λ(G)

and the other degree λ(G) + 1.

Theorem 5.2. Let L(G) be a line graph of G. Then λ3(G) 6 κ3(L(G)).

P r o o f. Let V (G) = {u1, u2, . . . , up} and then V (L(G)) = {eij : eij = uiuj ∈

E(G)} for ui, uj ∈ V (G). Assume λ3(G) = m, now prove κ3(L(G)) > m. Suppose

S = {epq, ers, etk} be a 3-element vertex set of L(G) and also a 3-element edge set

of G. Then the edge induced subgraph G[S] may be one of 3K2,K1,3,K2 ∪ P3, P4

and K3. If G[S] = 3K2, suppose upuq ∪ urus ∪ utuk. Let S
′ = {up, ur, ut}. Since

λ3(G) = m, there exist at least m edge disjoint S′-trees in G and each S′-tree

corresponds to the unique S-tree in L(G). Thus, there exist at least m internally

disjoint S-trees in L(G). If G[S] = K1,3,K2 ∪P3, P4,K3, by similar consideration as

above, we can prove that there exist at leastm internally disjoint S-trees in L(G). So

we get κ(S) > m for any 3-element vertex set S of L(G). Thus, κ3(L(G)) > m. �
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Theorem 5.3. Let G be a connected graph with λ3(G) = λ(G) 6= 2 and there

exist two adjacent vertices in G with degree λ(G). Then

λ(G) 6 κ3(L(G)) 6 λ3(L(G)) 6 2λ(G)− 2.

P r o o f. By Lemma 5.1, we get λ(L(G)) = 2λ(G) − 2. On the one hand, by

Observation 1 and Proposition 2.2 (2), we get κ3(L(G)) 6 λ3(L(G)) 6 λ(L(G)) =

2λ(G) − 2. On the other hand, by Theorem 5.2 and combining λ3(G) = λ(G), we

get λ(G) = λ3(G) 6 κ3(L(G)). Thus, we have λ(G) 6 κ3(L(G)) 6 λ3(L(G)) 6

2λ(G)− 2. �

Remark 1. In Theorem 5.3, the upper bound is sharp for graph K−
p with p > 3,

see Theorem 5.1. The condition “two adjacent vertices in G with degree λ(G)” is

necessary since the conclusion is not right for a tree.

By Theorem 5.3 and Lemma 5.2, we immediately get:

Theorem 5.4. Let G be a connected graph with λ3(G) = λ(G) 6= 1, 2 and there

exist two adjacent vertices in G with one degree λ(G) and the other degree λ(G)+1.

Then λ(G) 6 κ3(L(G)) 6 λ3(L(G)) 6 2λ(G)− 1.
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