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Abstract. An m × n matrix R with nonnegative entries is called row stochastic if the
sum of entries on every row of R is 1. LetMm,n be the set of all m× n real matrices. For
A,B ∈ Mm,n, we say that A is row Hadamard majorized by B (denoted by A ≺RH B)
if there exists an m × n row stochastic matrix R such that A = R ◦ B, where X ◦ Y is
the Hadamard product (entrywise product) of matrices X,Y ∈ Mm,n. In this paper, we
consider the concept of row Hadamard majorization as a relation onMm,n and characterize
the structure of all linear operators T : Mm,n → Mm,n preserving (or strongly preserv-
ing) row Hadamard majorization. Also, we find a theoretic graph connection with linear
preservers (or strong linear preservers) of row Hadamard majorization, and we give some
equivalent conditions for these linear operators on Mn.
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1. Introduction

LetMm,n be the set of all m×n real matrices. For X,Y ∈ Mm,n it is said that X

is matrix majorized by Y (denoted by X ≺ Y ), if there exists a row stochastic

matrix R ∈ Mn such that X = RY , see [2] and [3]. The linear preservers and strong

linear preservers of matrix majorization have been characterized in [4] and [5]. The

Hadamard product (Schur product) of two matrices X = [xij ], Y = [yij ] ∈ Mm,n is

their entrywise product X ◦ Y = [xijyij ]. In this paper, following the form of [6],

we replace the ordinary product by the Hadamard product on Mm,n and introduce

a new kind of majorization that is called row Hadamard majorization or, in brief,

R-Hadamard majorization.

Definition 1.1. Let X,Y ∈ Mm,n. We say that X is R-Hadamard majorized

by Y (denoted by X ≺RH Y ), if there exists a row stochastic matrix R ∈ Mm,n such

that X = R ◦ Y .
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For a linear operator T : Mm,n → Mp,q, it is said that T preserves (or strongly

preserves) R-Hadamard majorization if T (X) ≺RH T (Y ) whenever X ≺RH Y

(or T (X) ≺RH T (Y ) if and only if X ≺RH Y ). Throughout the paper, we de-

note by {E11, E12, . . . , Emn} the standard basis of Mm,n. We also denote by J the

m× n matrix of all ones. In this paper, we find some interesting properties of linear

operators preserving R-Hadamard majorization and a connection with graph theory.

In particular, we completely determine the structure of all linear and strong linear

preservers of R-Hadamard majorization onMm,n as follows:

Theorem 1.1. Let T : Mm,n → Mm,n be a linear operator. Then

(1) If n = 1, T is a linear preserver of ≺RH .

(2) If n > 2, T is a linear preserver of ≺RH if and only if there exists A ∈ Mm,n

and permutation matrices Q1, . . . , Qm ∈ Mn such that

(1.1) T (X) =




Xk1
Q1

Xk2
Q2

...

Xkm
Qm


 ◦A ∀X ∈ Mm,n,

where Xk1
, . . . , Xkm

are some rows of X (not necessarily distinct).

Theorem 1.2. Let T : Mm,n → Mm,n be a linear operator. Then:

(1) If n = 1, T is a strong linear preserver of ≺RH if and only if T is invertible.

(2) If n > 2, T is a strong linear preserver of ≺RH if and only if there exists

A ∈ Mm,n with no zero entries and permutation matrices P ∈ Mm and

Q1, . . . , Qm ∈ Mn such that

(1.2) T (X) = P




X1Q1

X2Q2
...

XmQm


 ◦A ∀X ∈ Mm,n,

where X1, . . . , Xm are the rows of X .

2. Linear preservers of R-Hadamard majorization

In this section, first we state some properties of R-Hadamard majorization and

its linear preservers. Then we find all linear operators that preserve R-Hadamard

majorization. The next remark gives some properties of R-Hadamard majorization

onMm,n.
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Remark 2.1. Let A,B,C ∈ Mm,n. The following statements hold:

(i) A ≺RH A if and only if A = A ◦R for some (0, 1)-row stochastic matrix R.

(ii) For arbitrary permutation matrices P ∈ Mm and Q ∈ Mn, P (B ◦ C)Q =

(PBQ) ◦ (PCQ) and hence a linear operator X 7→ T (X) preserves ≺RH if and

only if the linear operator X 7→ PT (X)Q preserves ≺RH .

(iii) If A has no zero entry, a linear operator X 7→ T (X) is a linear preserver of ≺RH

if and only if the linear operator X 7→ T (X) ◦A is a linear preserver of ≺RH .

Now we can prove the following theorem.

Theorem 2.1. Let n > 2. If T : Mm,n → Mm,n is a linear preserver of ≺RH ,

then the following conditions hold:

(1) T (Ers) ◦T (Epq) = 0 for every 1 6 r, p 6 m and 1 6 s, q 6 n with (r, s) 6= (p, q).

(2) For every 1 6 p 6 m and 1 6 q 6 n there exists a (0, 1)-row stochastic matrix R

such that T (Epq) = T (Epq) ◦R.

(3) For every 1 6 p, r 6 m and 1 6 q, s 6 n with p 6= r, T (Epq) and T (Ers) do not

simultaneously have a nonzero entry in any row.

P r o o f. (1) Assume if possible that T (Epq) ◦ T (Ers) 6= 0 for some (p, q) 6= (r, s).

Then [T (Epq)]ij = λ 6= 0 and [T (Ers)]ij = µ 6= 0 for some 1 6 i 6 m and 1 6 j 6 n.

Let Y = λ−1Epq − µ−1Ers and X = R ◦ Y , where R is a row stochastic matrix such

that the (p, q)th and (r, s)th entries of R are 1
3 and

2
3 , respectively. Now X ≺RH Y

but T (X) ⊀RH T (Y ), which is a contradiction.

(2) We have Epq ≺RH Epq, so by the assumption and part (i) of Remark 2.1 the

result is trivial.

(3) For arbitrary but fixed 1 6 p, r 6 m and 1 6 q, s 6 n with p 6= r, let

A = [aij ] = T (Epq) and B = [bij ] = T (Ers). We show that A and B do not

simultaneously have a nonzero entry in any row. If A = 0 or B = 0, there is nothing

to prove. Let A 6= 0 and by part (ii) of Remark 2.1, without loss of generality

assume that a11 6= 0. We show that the first row of B is zero. By part (1), b11 = 0.

Assume if possible that b1j 6= 0 for some 2 6 j 6 n, then by part (1), a1j = 0.

Set E = Epq + Ers. Since p 6= r, there exists a (0, 1)-row stochastic matrix R such

that E = R ◦ E and hence E ≺RH E. Now by the assumption we conclude that

T (E) = A + B ≺RH T (E) = A + B and by part (i) of Remark 2.1, there exists

a (0, 1)-row stochastic matrix S such that A+B = S ◦ (A+B) which is impossible.

Consequently, the first row of B is a zero row. �

In the following, Rn is the set of all 1 × n real (row) vectors, and for a linear

operator L : Rn → Rn, [L] is the matrix representation of L with respect to the

standard basis {e1, . . . , en} of Rn. The next lemma characterizes all linear operators

745



on Rn which preserve ≺RH . It is said that A ∈ Mm is dominated by a permutation

matrix if there exists a permutation matrix P ∈ Mm such that A = A ◦ P .

Lemma 2.1. Let L : Rn → Rn be a linear operator. Then L preserves≺RH if and

only if [L] is dominated by a permutation matrix. In other words, L preserves ≺RH

if and only if there exist an n × n permutation matrix P and a ∈ Rn such that

Lx = (xP ) ◦ a for all x ∈ Rn.

P r o o f. Let [L] = A = [aij ]. Then L(x) = xA for all x ∈ Rn. First assume that A

is dominated by a permutation matrix P . If x ≺RH y for some x, y ∈ Rn, there exists

a real 1 × n row stochastic matrix R = [r1 . . . rn] such that x = R ◦ y. Let σ be the

permutation corresponding to P . Then we have yA = [yσ(1)aσ(1)1 . . . yσ(n)aσ(n)n],

and hence

L(x) = L(R ◦ y) = [rσ(1)aσ(1)1yσ(1) . . . rσ(n)aσ(n)nyσ(1)]

= [rσ(1) . . . rσ(n)] ◦ [aσ(1)1yσ(1) . . . aσ(n)nyσ(n)]

= [rσ(1) . . . rσ(n)] ◦ L(y).

Since σ is a permutation, [rσ(1) . . . rσ(n)] is a real 1×n row stochastic matrix. There-

fore, L(x) ≺RH L(y). Conversely, assume that L preserves ≺RH . By part (1) of

Theorem 2.1, we have L(eq) ◦ L(es) = 0 for all q 6= s (1 6 q, s 6 n). Thus, the

rows of A have mutually disjoint supports. Since ei ≺RH ei and L preserves ≺RH ,

we have L(ei) ≺RH L(ei). Then by part (i) of Remark 2.1, L(ei) has at most one

nonzero entry. Therefore, A is dominated by a permutation matrix. �

The notation [X1/ . . . /Xm] is used for the matrix X ∈ Mm,n whose rows are

X1, . . . , Xm ∈ Rn. It is well known that every linear operator T on Mm,n has the

following form:

(2.1) T (X) = T [X1/ . . . /Xm] =

[ m∑

j=1

T1j(Xj)/ . . . /

m∑

j=1

Tmj(Xj)

]
,

where Tij = αiTαj and αi : Mm,n → Rn, αj : Rn → Mm,n are defined by

αi(X) = eiX, αj(x) = etjx

for each i, j = 1, . . . ,m, X ∈ Mm,n and x ∈ Rn.

Now we are ready to prove Theorem 1.1.

P r o o f of Theorem 1.1. (1) For X,Y ∈ Mm,1, X ≺RH Y is equivalent to X = Y

and hence every linear operator T : Mm,1 → Mm,1 preserves ≺RH .
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(2) If T is of the form (1.1), it is easy to show that T preserves ≺RH . Conversely,

assume that T : Mm,n → Mm,n is a linear preserver of ≺RH . By the above, T has

the form (2.1). We show that for each i (1 6 i 6 m), at most one element of Tij

(1 6 j 6 m) is nonzero. Assume if possible that Tir and Tis are nonzero for some

1 6 i, r, s 6 m and r 6= s. By Lemma 2.1, there exist nonzero vectors a, b ∈ Rn and

n×n permutation matrices P1, P2 such that Tir(x) = (xP1)◦a and Tis(x) = (xP2)◦b,

where a = (a1, . . . , an) and b = (b1, . . . , bn). Since a and b are nonzero, there exist

two integer numbers k and l (1 6 k, l 6 n) such that ak 6= 0 and bl 6= 0. Consider

the following two cases:

Case 1 : Let k 6= l. Put X = etrekP
t
1 + etselP

t
2 and hence X ≺RH X . Since the ith

row of T (X) has two nonzero components, T (X) ⊀RH T (X), which is a contradic-

tion.

Case 2 : Let k = l. Put X = etrekP
t
1 − akb

−1
k etsekP

t
2 and Y = etrekP

t
1 . Thus,

Y ≺RH X . Since the ith row of T (Y ) is nonzero and the ith row of T (X) is zero,

T (Y ) ⊀RH T (X), which is a contradiction.

Therefore, for every i (1 6 i 6 m) there exists ki (1 6 ki 6 m) such that Tij = 0

for all j (1 6 j 6 m) with j 6= ki. Then there exist vectors a1, . . . , am ∈ Rn and

n× n permutation matrices Q1, . . . , Qm such that for all i (1 6 i 6 m)

Tiki
(x) = (xQi) ◦ ai ∀x ∈ Rn.

Now, let A = [a1/ . . . /am]. Therefore,

T (X) =




Xk1
Q1

Xk2
Q2

...

Xkm
Qm


 ◦A ∀X ∈ Mm,n,

and the proof is completed. �

For a subset Ω of Mm,n, the set of extreme points of Ω is denoted by ext(Ω). In

the following, Rm,n is the set of all m× n row stochastic matrices.

Proposition 2.1. The set of all m × n row stochastic matrices is a convex set

whose extreme points are m× n, (0, 1)-row stochastic matrices, i.e.

ext(Rm,n) = {A ∈ Rm,n : A is a (0, 1)-row stochastic matrix}.
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P r o o f. It is easy to see that every m × n, (0, 1)-row stochastic matrix is an

extreme point of Rm,n. Now we show that if R ∈ Rm,n is not a (0, 1)-row stochastic

matrix, then R is not an extreme point of Rm,n. Without loss of generality we may

assume that the first row of R has k nonzero components with k > 2. Let

R =

(
r11 . . . r1n

A

)
,

and let r1j1 , . . . , r1jk be the nonzero components of the first row of R. Put

Rj1 = Ej1 +

(
0

A

)
, . . . , Rjk = Ejk +

(
0

A

)
.

Then Rj1 , . . . , Rjk ∈ Rm,n, and we have R = rj1Rj1 + . . .+ rjkRjk . Since k > 2, R is

not an extreme point of Rm,n and the proof is complete. �

In the following lemma, we mention some useful results.

Lemma 2.2. Let n > 2 and let T : Mm,n → Mm,n be a linear operator. Assume

that T (J) is a (0, 1)-matrix and T (Ers) ◦ T (Epq) = 0 for every 1 6 r, p 6 m and

1 6 s, q 6 n with (r, s) 6= (p, q). Then the following statements hold:

(i) If R is a (0, 1)-matrix, then T (R) is a (0, 1)-matrix.

(ii) If Z ◦ T (J) = 0 and R is a (0, 1)-matrix, then Z ◦ T (R) = 0.

(iii) T (X ◦ Y ) = T (X) ◦ T (Y ) for all X,Y ∈ Mm,n.

P r o o f. (i) It is enough to show that T (Epq) is a (0, 1)-matrix. Since T is a linear

operator onMm,n, T (J) =
m∑
i=1

n∑
j=1

T (Eij). For each (p, q) ∈ Nm×Nn, T (J)◦T (Epq) =

T (Epq) ◦ T (Epq). Therefore, T (Epq) is a (0, 1)-matrix.

(ii) Since T (Epq) is a (0, 1)-matrix, we have T (Epq) ◦ T (Epq) = T (Epq). And if

Z ◦ T (J) = 0, then Z ◦ T (Epq) = Z ◦ (T (J) ◦ T (Epq)) = (Z ◦ (T (J)) ◦ T (Epq) = 0.

(iii) Since T (Eij) ◦ T (Eij) = T (Eij), we have

T (X ◦ Y ) =

m∑

i=1

n∑

j=1

xijyijT (Eij) =

m∑

i=1

xijT (Eij) ◦
n∑

j=1

yijT (Eij) = T (X) ◦ T (Y ).

�

Proposition 2.2. Let n > 2 and let T : Mm,n → Mm,n be a linear operator.

Then T preserves ≺RH if and only if T satisfies the following conditions:

(1) T (Ers)◦T (Epq) = 0 for every 1 6 p, r 6 m and 1 6 q, s 6 n with (r, s) 6= (p, q).

(2) For every (0, 1)-matrix R ∈ Rm,n there exists a (0, 1)-matrix Z ∈ Mm,n such

that Z ◦ T (J) = 0 and T (R) + Z has exactly one nonzero entry in each row.
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P r o o f. First assume that T is a linear preserver of ≺RH . Now part (1) of

Theorem 2.1 implies (1) and part (2) of Theorem 1.1 implies (2). Conversely, assume

that T satisfies the conditions (1) and (2). By part (iii) of Remark 2.1, without loss

of generality we can assume that T (J) is a (0, 1)-matrix. Let X,Y ∈ Mm,n and

X ≺RH Y . Then there exists a row stochastic matrix R ∈ Mm,n such thatX = R◦Y ,

and hence by part (iii) of Lemma 2.2, T (X) = T (R)◦T (Y ). Now by Proposition 2.1,

R =
k∑

i=1

λiRi for some (0, 1)-row stochastic matrices R1, . . . , Rk ∈ Mm,n and some

positive numbers λ1, . . . , λk ∈ R such that
k∑

i=1

λi = 1. By the use of (2), for each

1 6 i 6 k, we can find matrices Zi ∈ Mm,n such that Zi ◦ T (J) = 0 and T (Ri) + Zi

is a matrix with exactly one nonzero entry in each row. By part (i) of Lemma 2.2,

Zi ◦ T (Ri) = 0 and so T (Ri) + Zi is a (0, 1)-matrix. Thus,

R′ =
k∑

i=1

λi(T (Ri) + Zi)

is a row stochastic matrix. Now we have

T (X)=T (R)◦T (Y )=T

( k∑

i=1

λiRi

)
◦T (Y )=

( k∑

i=1

λi(T (Ri)+Zi)

)
◦T (Y )=R′◦T (Y ).

Therefore, T preserves ≺RH . �

In the rest of this section, the graph characterization of linear preservers of

R-Hadamard majorization is investigated. A directed graph (for short, a digraph)

G = (V, E) consists of a finite set V of elements called vertices and a set E of

ordered pairs of vertices called (directed) edges. The order of the digraph G is the

number |V | (cardinal number of V ) of its vertices. If α = (x, y) is an edge, then x

is the initial vertex of α and y is the terminal vertex, and we say that α is an edge

from x to y. In case x = y, α is a loop with initial and terminal vertices both equal

to x. In a digraph G, a vertex has two degrees. The outdegree d+(v) of a vertex v is

the number of edges of which v is an initial vertex and the indegree d−(v) of v is the

number of edges of which v is a terminal vertex. A loop at a vertex contributes 1 to

both its indegree and its outdegree. Two graphs G1 = (V, E1) and G2 = (V, E2) are

edge-disjoint if E1 ∩ E2 = ∅, see for more details [1]. In the following, Gn is the set

of all digraphs of order n and G
1
n is the set of all digraphs of order n, where every

vertex of these graphs has outdegree equal 1.

Let A = [aij ] ∈ Mn. Associate with A a digraph D(A) = (V, E), where V =

{1, . . . , n} and E = {(i, j) : aij 6= 0}. Then we have the map D : Mn → Gn defined

by A 7→ D(A). Also, let G = (V, E) ∈ Gn. The adjacency matrix of G is A(G) =

(aij) ∈ Mn, where aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E . So, we have the map
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A : Gn → Mn defined by G 7→ A(G). For each linear operator T : Mn → Mn, we

associate the map ϕT : Gn → Gn defined by ϕT = D◦T ◦A, i.e. the below diagram

commutes:

(2.2) Mn
T // Mn

D

��
M ′

ϕT //

A

OO

Gn.

In the following theorem, we give a graph theoretic connection to the linear pre-

servers of R-Hadamardmajorization onMn. For every 1 6 i, j 6 n, letGi,j=D(Eij).

Theorem 2.2. Let T be a linear operator onMn. Then T preserves ≺RH if and

only if ϕT preserves edge-disjoint graphs and for all G ∈ G
1
n there exists H ∈ Gn

such that H and D(T (J)) are edge-disjoint and ϕT (G) ∪H ∈ G
1
n.

P r o o f. Assume that T preserves ≺RH . Let G1, G2 ∈ Gn be two edge-disjoint

graphs. Then G1 =
⋃

(i,j)∈α

Gi,j and G2 =
⋃

(i,j)∈β

Gi,j for some α, β ⊆ Nn × Nn such

that α∩β = ∅. Therefore, A(G1) =
∑

(i,j)∈α

Eij and A(G2) =
∑

(i,j)∈β

Eij . These imply

that ϕT (G1) =
⋃

(i,j)∈α

D(T (Eij)) and ϕT (G2) =
⋃

(i,j)∈β

D(T (Eij)) and by the use of

part (1) of Proposition 2.2, D(T (Ers)) and D(T (Epq)) are edge-disjoint graphs for

every (r, s) ∈ α and (p, q) ∈ β. Thus, ϕT (G1) and ϕT (G2) are edge-disjoint graphs,

and hence ϕT preserves edge-disjoint graphs. Now, let G ∈ G
1
n and R = A(G).

Then R ∈ Mn is a (0, 1)-row stochastic matrix. By part (2) of Proposition 2.2, there

exists a (0, 1)-matrix Z ∈ Mn such that Z + T (R) is a matrix which in each row

has exactly one nonzero entry and Z ◦ T (J) = 0. Put H = D(Z) and the proof is

complete.

Conversely, let (p, q) 6= (r, s). Then Gp,q and Gr,s are edge-disjoint graphs.

Since ϕT preserves edge-disjoint graphs, ϕT (Gp,q) and ϕT (Gr,s) are edge-disjoint

graphs, which implies that T (Epq) ◦ T (Ers) = 0. Now, let R ∈ Mn be a (0, 1)-row

stochastic matrix. Then D(R) ∈ G
1
n, and by the assumption there exists H ∈ Gn

such that H and D(T (J)) are edge-disjoint graphs and ϕT (D(R)) ∪ H ∈ G
1
n. Let

Z = A(H). It is easy to check that Z + T (R) has exactly one nonzero entry in each

row and Z ◦ T (J) = 0. Therefore, by Proposition 2.2, T preserves ≺RH . �

Example 2.1. Let T : M2 → M2 be linear operator defined by:

T

(
x11 x12

x21 x22

)
=

(
x22 0

x12 x11

)
.

750



G4 ϕT (G4) ϕT (G4) ∪H4

ϕT ∪H4

2 2 2

1 1 1

7−→ 7−→

G3 ϕT (G3) ϕT (G3) ∪H3

ϕT ∪H3

2 2 2

1 1 1

7−→ 7−→

G2 ϕT (G2) ϕT (G2) ∪H2

ϕT ∪H2

2 2 2

1 1 1

7−→ 7−→

G1 ϕT (G1) ϕT (G1) ∪H1

ϕT ∪H1

2 2 2

1 1 1

7−→ 7−→

Figure 1.

Consider G1, G2, G3 and G4 as Figure 1. It is easy to see that for 1 6 i 6 4, Hi

and D(T (J)) are edge-disjoint graphs and ϕT (Gi)∪Hi ∈ G
1
n, where H1, H2, H3 and

H4 are as Figure 2. Therefore, by Theorem 2.2, T is a linear preserver of ≺RH .

2 2

1 1

H1, H2 H3, H4

Figure 2.

In the next example, by using graphs, it is shown that the given linear operator T

does not preserve R-Hadamard majorization.

Example 2.2. Define T : M3 → M3 by

(2.3) T (X) =




x11 + x12 0 0

0 x22 0

0 0 x33



 , ∀X = [xij ] ∈ M3.
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Consider G1 and G2 as Figure 3. Then G1 and G2 are edge-disjoint graphs,

but ϕT (G1) and ϕT (G2) are not edge-disjoint graphs. Therefore, by Theorem 2.2,

T does not preserve ≺RH onM3.

7−→
ϕT

2 3

1

2 3

1

7−→
ϕT

2 3

1

2 3

1

G2 ϕT (G2)

G1 ϕT (G1)

Figure 3.

3. Strong linear preservers of R-Hadamard majorization

In this section, we consider the linear operators that strongly preserve R-Hadamard

majorization onMm,n. The following lemma can be obtained from the definition of

R-Hadamard majorization.

Lemma 3.1. Let T : Mm,n → Mm,n be a linear operator. If T strongly pre-

serves ≺RH , then T is invertible.

Now we prove Theorem 1.2.

P r o o f of Theorem 1.2. (1) It is obtained by using part (1) of Theorem 1.1 and

Lemma 3.1.

(2) First assume that T strongly preserves ≺RH . By part (2) of Theorem 1.1,

there are A ∈ Mm,n and permutation matrices Q̃1, . . . , Q̃1 ∈ Mn such that

T (X) =




Xi1Q̃1

Xi2Q̃2

...

XimQ̃m


 ◦A ∀X ∈ Mm,n,

where Xi1 , . . . , Xim are some rows of X . By Lemma 3.1, T is invertible and hence A
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has no zero entry and Xi1 , . . . , Xim are distinct rows of X . Therefore,

T (X) = P




X1Q1

X2Q2
...

XmQm


 ◦A ∀X ∈ Mm,n,

where P is an m ×m permutation matrix so that P (1, . . . ,m)t = (i1, . . . , im)t and

Qij = Q̃j (1 6 j 6 m). Conversely, if T is of the form (1.2), we conclude that

T−1(X) = P−1




X1Q
−1
1

X2Q
−1
2
...

XmQ−1
m


 ◦B ∀X ∈ Mm,n,

where B = [a−1
ij ] ∈ Mm,n. Now by Theorem 1.1, T and T−1 preserve ≺RH . There-

fore, T strongly preserves ≺RH and the proof is complete. �

The next proposition gives necessary and sufficient conditions for a linear opera-

tor T onMm,n that strongly preserves R-Hadamard majorization.

Proposition 3.1. Let T : Mm,n → Mm,n be a linear operator. Then T strongly

preserves ≺RH if and only if T is invertible and T satisfies the following conditions:

(1) T (Ers)◦T (Epq) = 0 for every 1 6 p, r 6 m and 1 6 q, s 6 n with (r, s) 6= (p, q).

(2) T (R) has exactly one nonzero entry in each row for every (0, 1)-row stochastic

matrix R ∈ Mm,n.

P r o o f. Similar to the proof of Proposition 2.2, without loss of generality we

can assume that T (J) is a (0, 1)-matrix. Assume that T strongly preserves ≺RH .

By Lemma 3.1, T is invertible and by part (1) of Proposition 2.2, (1) holds. Now

by part (2) of Proposition 2.2 for every (0, 1)-row stochastic matrix R ∈ Mn there

exists a (0, 1)-matrix Y ∈ Mn such that Y ◦ T (J) = 0 and T (R) + Y has exactly

one nonzero entry in each row. Since T is invertible, T (J) has no zero entry. Hence

Y = 0 and the conclusion is desired. Conversely, since T is invertible and satisfies (2),

T−1 maps every (0, 1)-row stochastic matrix to a (0, 1)-row stochastic matrix and

hence T−1 satisfies (2). For 1 6 p, r 6 m and 1 6 q, s 6 n with (r, s) 6= (p, q),

let A = T−1(Ers) and B = T−1(Epq). Thus, by using part (iii) of Lemma 2.2,

T (A ◦ B) = T (A) ◦ T (B) = Ers ◦ Epq = 0. This implies that A ◦ B = 0 and

hence T−1 satisfies (1). Therefore, by Theorem 2.2, T−1 preserves ≺RH and hence T

strongly preserves ≺RH . �
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In the next theorem, we give a graph characterization for linear operators which

are preservers of R-Hadamard majorization on Mn.

Theorem 3.1. Let T be a linear operator onMn. Then T strongly preserves≺RH

if and only if ϕT preserves edge-disjoint graphs and ϕT (G
1
n) ⊆ G

1
n.

P r o o f. Let T strongly preserve ≺RH . Then T preserves ≺RH , and by Theo-

rem 2.2, ϕT preserves edge-disjoint graphs. Assume that G ∈ G
1
n and R = A(G).

Then R ∈ Mn is a (0, 1)-row stochastic matrix and part (2) of Theorem 3.1 im-

plies that T (R) is a matrix with exactly one nonzero entry in each row. Therefore,

D(T (R)) ∈ G
1
n and hence ϕT (G

1
n) ⊆ G

1
n. Conversely, let ϕT preserve edge-disjoint

graphs and ϕT (G
1
n) ⊆ G

1
n. By the proof of Theorem 2.2, T (Ers)◦T (Epq) = 0, where

(r, s) 6= (p, q). Assume thatR ∈ Mn is a (0, 1)-row stochastic matrix. So D(R) ∈ G
1
n,

and by the assumption ϕT (D(R)) ∈ G
1
n. This implies that D(T (R)) ∈ G

1
n. There-

fore, T (R) has exactly one nonzero entry in each row and so by Theorem 3.1,

T strongly preserves ≺RH . �
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