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Abstract. The Riccati equation method is used to study the oscillatory and non-
oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One
oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results
are compared with some well known ones.

Keywords: Riccati equation; oscillation; non-oscillation; conjoined (prepared, preferred)
solution; Liouville’s formula

MSC 2020 : 34C10

1. Introduction

Let A(t) ≡ (ajk(t))
2
j,k=1, B(t) ≡ (bjk(t))

2
j,k=1, C(t) ≡ (cjk(t))

2
j,k=1, t > t0, be

complex-valued continuous matrix functions on [t0,∞) and let B(t) and C(t) be

Hermitian, i.e. B(t) = B∗(t), C(t) = C∗(t), t > t0. Consider the four-dimensional

Hamiltonian system

(1.1)

{
ϕ′ = A(t)ϕ +B(t)ψ,

ψ′ = C(t)ϕ−A∗(t)ψ, t > t0.

Here ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) are unknown continuously differentiable vector

functions on [t0,∞). Along with the system (1.1) consider the linear system of

matrix equations

(1.2)

{
Φ′ = A(t)Φ + B(t)Ψ,

Ψ′ = C(t)Φ−A∗(t)Ψ, t > t0,

where Φ(t) and Ψ(t) are unknown continuously differentiable matrix functions of

dimension 2× 2 on [t0,∞).
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Definition 1.1. A solution (Φ(t),Ψ(t)) of the system (1.2) is called conjoined

(or prepared, preferred) if Φ∗(t)Ψ(t) = Ψ∗(t)Φ(t), t > t0.

Definition 1.2. A solution (Φ(t),Ψ(t)) of the system (1.1) is called oscillatory

if detΦ(t) has arbitrarily large zeros.

Definition 1.3. The system (1.1) is called oscillatory if all conjoined solutions

of the system (1.2) are oscillatory, otherwise it is called non-oscillatory.

The study of the oscillatory and non-oscillatory behavior of Hamiltonian systems

(in particular of the system (1.1)) is an important problem of qualitative theory of

differential equations and many works are devoted to it (see, e.g., [1], [4], [11]–[14],

[16], [18]–[20] and works cited therein). For any Hermitian matrix H , we denote

by H > 0, H > 0, its nonnegative (positive) definiteness. In the works [1], [4],

[12]–[14], [16], [18]–[20], the oscillatory behavior of general Hamiltonian systems is

studied under the condition that the coefficient corresponding to B(t) is assumed

to be positive definite. In this paper we study the oscillatory and non-oscillatory

behavior of the system (1.1) in the case where the assumption B(t) > 0, t > t0, may

be violated.

2. Auxiliary propositions

Let f(t), g(t), h(t), h1(t) be real-valued continuous functions on [t0,∞). Consider

the Riccati equations

y′ + f(t)y2 + g(t)y + h(t) = 0, t > t0,(2.1)

y′ + f(t)y2 + g(t)y + h1(t) = 0, t > t0.(2.2)

Theorem 2.1. Let equation (2.2) have a real-valued solution y1(t) on [t1, t2)

(t0 6 t1 < t2 6 ∞), and let f(t) > 0, h(t) 6 h1(t), t ∈ [t1, t2). Then for each

y(0) > y1(t0) equation (2.1) has a solution y0(t) on [t1, t2) with y0(t0) = y(0), and

y0(t) > y1(t), t ∈ [t1, t2).

P r o o f. A proof for a more general theorem is presented in [6] (see also [7]). �

Denote

Ig,h(ξ; t) ≡
∫ t

ξ

exp

(
−
∫ t

τ

g(s) ds

)
h(τ) dτ, t > ξ > t0.

Let t0 < τ0 6 ∞ and let t0 < t1 < . . . be a finite or infinite sequence such that

tk ∈ [t0, τ0], k = 1, 2, . . . We assume that if {tk} is finite then the maximum of tk is
equal to τ0 and if {tk} is infinite then lim

k→∞
tk = τ0.
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Theorem 2.2. Let f(t) > 0, t ∈ [t0, τ0), and

∫ t

tk

exp

(∫ τ

tk

(g(s)− Ig,h(tk; s)) ds

)
h(τ) dτ 6 0, t ∈ [tk, tk+1), k = 0, 1, . . .

Then for every y(0) > 0 equation (2.1) has a solution y0(t) on [t0, τ0) satisfying the

initial condition y0(t0) = y(0) and y0(t) > 0, t ∈ [t0, τ0).

P r o o f. See the proof in [7]. �

Consider the matrix Riccati equation

(2.3) Z ′ + ZB(t)Z + A∗(t)Z + ZA(t)− C(t) = 0, t > t0.

The solutions Z(t) of this equation existing on an interval [t1, t2) (t0 6 t1 < t2 6 ∞)
are connected with solutions (ϕ(t),Ψ(t)) of the system (1.2) by the following relations

(see [11]):

(2.4) Φ′(t) = (A(t) +B(t)Z(t))Φ(t), Φ(t1) 6= 0, Ψ(t) = Z(t)Φ(t), t ∈ [t1, t2).

Let Z0(t) be a solution to equation (2.3) on [t1, t2).

Definition 2.1. We say that [t1, t2) is the maximum existence interval for Z0(t)

if Z0(t) cannot be continued to the right of t2 as a solution of equation (2.3).

Lemma 2.1. Let Z0(t) be a solution of equation (2.3) on [t1, t2) and let t2 <∞.
Then [t1, t2) cannot be the maximum existence interval for Z0(t) provided the func-

tion G(t) ≡
∫ t

t1
tr(B(τ)Z0(τ)) dτ , t ∈ [t1, t2), is bounded from below on [t1, t2).

P r o o f. The proof is similar to that of Lemma 2.1 in [11]. �

Assume B(t) = diag{b1(t), b2(t)}, t > t0. Then it is not difficult to verify that for

Hermitian unknowns Z =

(
z11 z12
z12 z22

)
, equation (2.3) is equivalent to the following

nonlinear system:

(2.5)





z′11 + b1(t)z
2
11 + 2Rea11(t)z11 + b2(t)|z12|2

+ a21(t)z12 + ā21(t)z12 − c11(t) = 0,

z′12 + (b1(t)z11 + b2(t)z22 + ā11(t) + a22(t))z12

+ a12(t)z11 + a21(t)z22 − c12(t) = 0,

z′22 + b2(t)z
2
22 + 2Rea22(t)z22 + b1(t)|z12|2

+ ā12(t)z12 + a12(t)z12 − c22(t) = 0,

t > t0.
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If b2(t) 6= 0, t > t0, then it is not difficult to verify that the first equation of the

system (2.5) can be rewritten in the form

(2.6) z′11 + b1(t)z
2
11 + 2Rea11(t)z11

+ b2(t)
∣∣∣z12 +

ā21(t)

b2(t)

∣∣∣
2

− |a21(t)|2
b2(t)

− c11(t) = 0, t > t0,

and if, in addition, ā21(t)/b2(t) is continuously differentiable on [t0,∞), then by the

substitution

(2.7) z12 = y − ā21(t)

b2(t)
, t > t0,

in the first and second equations of the system (2.5), we get the subsystem




z′11 + b1(t)z
2
11 + 2Rea11(t)z11 + b2(t)|y|2 −

|a21(t)|2
b2(t)

− c11(t) = 0,

y′ + (b1(t)z11 + b2(t)z22 + ā11(t) + a22(t))y

+
(
a12(t)−

b1(t)

b2(t)
ā21(t)

)
z11 −

( ā21(t)
b2(t)

)′

− ā21(t)

b2(t)
(ā11(t) + a22(t))− c12(t) = 0, t > t0.

(2.8)

Analogously, if b1(t) 6= 0, t > t0, then the third equation of the system (2.5) can be

rewritten in the form

(2.9) z′22 + b2(t)z
2
22 + 2Rea22(t)z22

+ b1(t)
∣∣∣z12 +

a12(t)

b1(t)

∣∣∣
2

− |a12(t)|2
b1(t)

− c22(t) = 0, t > t0,

and if, in addition, a12(t)/b1(t) is continuously differentiable on [t0,∞), then by the

substitution

(2.10) z12 = v − a12(t)

b1(t)
, t > t0,

in the second and third equations of the system (2.5) we obtain the subsystem

(2.11)





z′22 + b2(t)z
2
22 + 2Rea22(t)z22

+ b1(t)|v|2 −
|a12(t)|2
b1(t)

− c22(t) = 0,

v′ + (b1(t)z11 + b2(t)z22 + ā11(t) + a22(t))v

+
(
ā21(t)−

b2(t)

b1(t)
a12(t)

)
z22 −

(a12(t)
b1(t)

)′

− a12(t)

b1(t)
(ā11(t) + a22(t))− c12(t) = 0, t > t0.
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If (z11(t), y(t)) is a solution of the subsystem (2.8) on [t0, t1) (t0 < t1 6 ∞) with

y(t0) = 0 and (z22(t), v(t)) is a solution of the subsystem (2.11) on [t0, t1) with

v(t0) = 0, then by Cauchy formula from the second equation of the subsystem (2.8)

and from the second equation of the subsystem (2.11), we have, respectively,

y(t) = − exp

(
−
∫ t

t0

b1(τ)z11(τ) dτ

)∫ t

t0

(
exp

(∫ τ

t0

b1(s)z11(s) ds

))′

×
(a12(τ)
b1(τ)

− ā21(τ)

b2(τ)

)
exp

(
−
∫ t

τ

(b2(s)z22(s) + ā11(s) + a22(s)) ds

)
dτ

+

∫ t

t0

exp

(
−
∫ t

τ

(b1(s)z11(s) + b2(s)z22(s) + ā11(s) + a22(s)) ds

)

×
(( ā21(τ)

b2(τ)

)′
+
ā21(τ)

b2(τ)
(ā11(τ) + a22(τ)) + c12(τ)

)
dτ,

v(t) = − exp

(
−
∫ t

t0

b2(τ)z22(τ) dτ

)∫ t

t0

(
exp

(∫ τ

t0

b2(s)z22(s) ds

))′

×
( ā21(τ)
b2(τ)

− a12(τ)

b1(τ)

)
exp

(
−
∫ t

τ

(b1(s)z11(s) + ā11(s) + a22(s)) ds

)
dτ

+

∫ t

t0

exp

(
−
∫ t

τ

(b1(s)z11(s) + b2(s)z22(s) + ā11(s) + a22(s)) ds

)

×
((a12(τ)

b1(τ)

)′
+
a12(τ)

b1(τ)
(ā11(τ) + a22(τ)) + c12(τ)

)
dτ, t ∈ [t0, t1).

From here it is easy to derive the following lemma.

Lemma 2.2. Let bj(t) > 0, j = 1, 2, let the functions a12(t)/b1(t), ā21(t)/b2(t)

be continuously differentiable on [t0, t1) (t0 < t1 < ∞) and let (z11(t), y(t)) and

(z22(t), v(t)) be solutions of the subsystems (2.8) and (2.11), respectively, on [t0, t1)

such that zjj(t) > 0, t ∈ [t0, t1), j = 1, 2, y(t0) = v(t0) = 0. Then

|y(t)| 6 M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
(( ā21(τ)

b2(τ)

)′
+
ā21(τ)

b2(τ)
(ā11(τ) + a22(τ)) + c12(τ)

)∣∣∣∣dτ,

|v(t)| 6 M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
((a12(τ)

b1(τ)

)′
+
a12(τ)

b1(τ)
(ā11(τ) + a22(τ)) + c12(τ)

)∣∣∣∣dτ, t ∈ [t0, t1),

where

M(t) ≡ max
τ∈[t0,t]

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)(a12(τ)
b1(τ)

− ā21(τ)

b2(τ)

)∣∣∣∣, t > t0.
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Lemma 2.3. For any two square matrices M1 ≡ (m1
ij)

n
ij=1, M2 ≡ (m2

ij)
n
ij=1 the

equality

tr(M1M2) = tr(M2M1)

is valid.

P r o o f. We have tr(M1M2) =
n∑

j=1

( n∑
k=1

m1
jkm

2
kj

)
=

n∑
k=1

( n∑
j=1

m1
jkm

2
kj

)
=

n∑
k=1

( n∑
j=1

m2
kjm

1
jk

)
= tr(M2M1). The lemma is proved. �

3. Main results

Let fjk(t), j, k = 1, 2, t > t0, be real-valued continuous functions on [t0,∞).

Consider the linear system of equations

(3.1)

{
ϕ′
1 = f11(t)ϕ1 + f12(t)ψ1,

ψ′
1 = f21(t)ϕ1 + f22(t)ψ1, t > t0,

and the Riccati equation

(3.2) y′ + f12(t)y
2 + (f11(t)− f22(t))y − f12(t) = 0, t > t0.

All solutions y(t) of the last equation, existing on some interval [t1, t2) (t0 6 t1 <

t2 6 ∞), are connected with solutions (ϕ1(t), ψ1(t)) of the system (3.1) by the

following relations (see [8]):

(3.3) ϕ1(t) = ϕ1(t1) exp

(∫ t

t1

(f12(τ)y(τ) + f11(τ)) dτ

)
, ϕ1(t1) 6= 0,

ψ1(t) = y(t)ϕ1(t), t ∈ [t1, t2).

Definition 3.1. The system (3.1) is called oscillatory if for its every solution

(ϕ1(t), ψ1(t)) the function ϕ1(t) has arbitrarily large zeros.

R em a r k 3.1. Some explicit oscillatory criteria for the system (3.1) are proved

in [10] and [11].

3.1. The case where B(t) is a diagonal matrix. In this subsection we will

assume that B(t) = diag{b1(t), b2(t)}. Denote:

χj(t) ≡





cjj(t) if b3−j(t) = 0,

cjj(t) +
|a3−j,j(t)|2
b3−j(t)

if b3−j(t) 6= 0,
t > t0, j = 1, 2.
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Theorem 3.1. Assume bj(t) > 0, t > t0, and if bj(t) = 0 then a3−j,j(t) = 0,

j = 1, 2, t > t0. Under these restrictions, the system (1.1) is oscillatory provided one

of the systems

(3.4j)

{
ϕ′
1 = 2Re(ajj(t))ϕ1 + bj(t)ψ1,

ψ′
1 = −χj(t)ϕ1, t > t0,

j = 1, 2, is oscillatory.

P r o o f. Suppose the system (1.1) is not oscillatory. Then for some conjoined

solution (Φ(t),Ψ(t)) of the system (1.2), there exists t1 > t0 such that detΦ(t) 6= 0,

t > t1. Due to (2.4), it follows that Z(t) ≡ Ψ(t)Φ−1(t), t > t1, is a Hermitian

solution to equation (2.3) on [t1,∞). Let Z(t) =

(
z11(t) z12(t)

z12(t) z22(t)

)
, t > t1. Consider

the Riccati equations

y′ + b1(t)y
2 + 2(Rea11(t))y + b2(t)|z12(t)|2(3.5)

+ a21(t)z12(t) + ā21(t)z12(t)− c11(t) = 0,

y′ + b2(t)y
2 + 2(Rea22(t))y + b1(t)|z12(t)|2(3.6)

+ ā12(t)z12(t) + a12(t)z12(t)− c22(t) = 0,

(3.7j) y′ + bj(t)y
2 + 2(Re ajj(t)y + χj(t) = 0, j = 1, 2, t > t1.

By (2.6) and (2.9), from the conditions of the theorem it follows that

χ1(t) 6 b2(t)|z12(t)|2 + a21(t)z12(t) + ā21(t)z12(t)− c11(t), t > t1,

χ2(t) 6 b1(t)|z12(t)|2 + ā12(t)z12(t) + a12(t)z12(t)− c22(t), t > t1.

Using Theorem 2.1 to the pairs of equations (3.5), (3.71) and (3.6), (3.72) we conclude

that the equations (3.7j), j = 1, 2, have solutions on [t1,∞). By (3.1)–(3.3), it follows

that the systems (3.4j), j = 1, 2, are not oscillatory, which contradicts the condition

of the theorem. The obtained contradiction completes the proof of the theorem. �

Denote Ij(ξ; t) ≡
∫ t

ξ
exp

(
−
∫ t

τ
2(Re ajj(s)) ds

)
χj(τ) dτ , t > ξ > t0, j = 1, 2.

Theorem 3.2. Assume b1(t) > 0 (6 0), b2(t) 6 0 (> 0), and if bj(t) = 0 then

aj,3−j(t) = 0, j = 1, 2, t > t0; in addition, assume there exist infinitely large se-

quences ξj,0 = t0 < ξj,1 < . . . < ξj,m < . . ., j = 1, 2, such that

(1j) (−1)j
∫ t

ξj,m

exp

(∫ τ

ξj,m

(2Re ajj(s)− (−1)jIj(ξj,m, s)) ds

)
χj(τ) dτ > 0 (6 0),

t ∈ [ξj,m, ξj,m+1), m = 1, 2, 3, . . ., j = 1, 2. Then the system (1.1) is non-oscillatory.
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P r o o f. Let us prove the theorem only for the case b1(t) > 0, b2(t) 6 0, t > t0.

The case b1(t) 6 0, b2(t) > 0, t > t0, can be proved analogously. Let (Φ(t),Ψ(t))

be a conjoined solution of the system (1.2) with Φ(t0) =

(
1 0

0−1

)
and let [t0, T ) be

the maximum interval such that detΦ(t) 6= 0, t ∈ [t0, T ). Then by (2.4) the matrix

function Z(t) ≡ Ψ(t)ϕ−1(t), t ∈ [t0, T ), is a Hermitian solution to equation (2.3)

on [t0, T ). By (2.5), (2.7), (2.8), (2.10), (2.11) it follows that the subsystems (2.8)

and (2.11) have solutions (z11(t), y(t)) and (z22(t), v(t)), respectively, on [t0, T ) with

z11(t0) = 1, z22(t0) = −1. We wish to show that

(3.8) z11(t) > 0, t ∈ [t0, T ).

Consider the Riccati equations

z′ + b1(t)z
2 + 2(Re a11(t))z + b2(t)|y(t)|2 + χ1(t) = 0, t ∈ [t0, T ),(3.9)

z′ + b1(t)z
2 + 2(Re a11(t))z + χ1(t) = 0, t ∈ [t0, T ).(3.10)

By Theorem 2.2, it follows that the last equation has a nonnegative solution on

[t0, T ). Then using Theorem 2.1 to the pair of equations (3.9), (3.10) we conclude

that equation (3.9) has a nonnegative solution z0(t) on [t0, T ) with z0(t0) = 0. Then,

since z11(t) is a solution to equation (3.9) on [t0, T ) and z11(t0) = 1, we have (3.8).

To show that

(3.11) z22(t) 6 0, t ∈ [t0, T ),

consider the Riccati equations

z′ − b2(t)z
2 + 2(Re a22(t))z − χ2(t) = 0, t ∈ [t0, T ),(3.12)

z′ − b2(t)z
2 + 2(Re a22(t))z − b1(t)|v(t)|2 − χ2(t) = 0, t ∈ [t0, T ).(3.13)

By Theorem 2.2 it follows that equation (3.12) has a nonnegative solution z1(t) on

[t0, T ) with z1(t0) = 0. Then using Theorem 2.1 to the pair of equations (3.12)

and (3.13) we derive that equation (3.13) has a nonnegative solution z2(t) on [t0, T )

with z2(t0) = 0. Hence, since obviously −z22(t) is a solution of equation (3.13) on
[t0, T ) and −z11(t0) = 1, we have (3.11). Since b1(t) > 0, b2(t) 6 0, t ∈ [t0, T ),

from (3.8) and (3.11) it follows that

(3.14)

∫ t

t0

(b1(τ)z11(τ) + b2(τ)z22(τ)) dτ > 0, t ∈ [t0, T ).
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To complete the proof of the theorem, it remains to show that T = ∞. Suppose
T < ∞. Then, by virtue of Lemma 2.1, from (3.14) it follows that [t0, T ) is not
the maximum existence interval for Z(t). By (2.4), it follows that detΦ(t) 6= 0,

t ∈ [t0, T1) for some T1 > T . We have obtained a contradiction, which completes the

proof of the theorem. �

R em a r k 3.2. The conditions (1j), j = 1, 2, are satisfied if in particular

(−1)jχj(t) > 0 (6 0), t > t0.

Denote:

χ3(t) ≡ b2(t)

(
M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
(( ā21(t)

b2(t)

)′
+
ā21(τ)

b2(τ)
(ā11(τ) + a22(τ)) + c12(τ)

)∣∣∣∣dτ
)2

− |a21(t)|2
b2(t)

− c11(t),

χ4(t) ≡ b1(t)

(
M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
((a12(t)

b1(t)

)′

+
a12(τ)

b1(τ)
(ā11(τ) + a22(τ)

)
+ c12(τ)

)∣∣∣∣ dτ
)2

− |a12(t)|2
b1(t)

− c22(t),

Ij+2(ξ; t) ≡
∫ t

ξ

exp

(
−
∫ t

τ

2(Reajj(s)) ds

)
χj+2(τ) dτ, t > ξ > t0, j = 1, 2.

Theorem 3.3. Let the following conditions be satisfied:

(1) bj(t) > 0, t > t0, j = 1, 2;

(2) the functions a12(t)/b1(t) and ā21(t)/b2(t) are continuously differentiable on

[t0,∞);

(3) there exist infinitely large sequences ξj,0 = t0 < ξj,1 < . . . < ξj,m < . . ., j = 1, 2,

such that

∫ t

ξj,m

exp

(∫ τ

ξj,m

(2Re ajj(s)− Ij+2(ξj,m, s)) ds

)
χj+2(τ) dτ 6 0, t ∈ [ξj,m, ξj,m+1),

m = 1, 2, 3, . . ., j = 1, 2.

Then the system (1.1) is non-oscillatory.
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P r o o f. Let Z(t) ≡
(
z11(t) z12(t)

z12(t) z22(t)

)
be the Hermitian solution of equa-

tion (2.3) on [t0, T ) satisfying the initial condition Z(t0) =

(
1 0

0 1

)
, where [t0, T )

is the maximum existence interval for Z(t). Due to (2.4), to prove the theorem it is

enough to show that

(3.15) T = ∞.

By (2.5), (2.7), (2.8), (2.10), (2.11), from conditions (1) and (2), it follows that

(z11(t), z12(t) + ā21(t)/b2(t)) and (z22(t), z12(t) + a12(t)/b1(t)) are solutions of the

subsystems (2.8) and (2.11), respectively, on [t0, T ). To show that

(3.16) zjj(t) > 0, t ∈ [t0, T ),

assume it is not so. Then there exists T1 ∈ (t0, T ) such that

(3.17) z11(t)z22(t) > 0, t ∈ [t0, T1), z11(T1)z22(T1) = 0.

Without loss of generality we may take that a12(t0) = a21(t0) = 0. Then by virtue

of Lemma 2.2, from (3.17) it follows that

∣∣∣z12(t) +
ā21(t)

b2(t)

∣∣∣

6 M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
(( ā21(τ)

b2(τ)

)′
+
ā21(τ)

b2(τ)
(ā11(τ) + a22(τ)) − c12(τ)

)∣∣∣∣ dτ,
∣∣∣z12(t) +

a12(t)

b1(t)

∣∣∣

6 M(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(ā11(s) + a22(s)) ds

)

×
((a12(τ)

b1(τ)

)′
+
a12(τ)

b1(τ)
(ā11(τ) + a22(τ)) − c12(τ)

)∣∣∣∣dτ, t ∈ [t0, T1).

Hence

b2(t)
∣∣∣z12(t) +

ā21(t)

b2(t)

∣∣∣− |a21(t)|2
b2(t)

− c11(t) 6 χ3(t),

b1(t)
∣∣∣z12(t) +

a12(t)

b1(t)

∣∣∣
2

− |a12(t)|2
b2(t)

− c22(t) 6 χ4(t), t ∈ [t0, T1),
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By virtue of Theorem 2.1 and Theorem 2.2 and from condition (3), it follows that

the Riccati equations

z′ + b1(t)z
2 + 2(Re a11(t))z + b2(t)

∣∣∣z12(t) +
ā21(t)

b2(t)

∣∣∣− |a21(t)|2
b2(t)

− c11(t) = 0,(3.18)

z′ + b2(t)z
2 + 2(Re a22(t))z + b1(t)

∣∣∣z12(t) +
a12(t)

b1(t)

∣∣∣
2

− |a12(t)|2
b2(t)

− c22(t) = 0,(3.19)

t ∈ [t0, T1), have nonnegative solutions z1(t) and z2(t), respectively, on [t0, T1) with

z1(t0) = z2(t0) = 0. Obviously z11(t) and z22(t) are solutions of equation (3.18)

and (3.19), respectively, on [t0, T1]. Therefore, since zjj(t0) = 1 > zj(t0) = 0,

j = 1, 2, due to the uniqueness theorem zjj(t) > 0, t ∈ [t0, T1], j = 1, 2, which

contradicts (3.17). The obtained contradiction proves (3.16). From (3.16) and con-

dition (1) it follows that

(3.20)

∫ t

t0

(b1(τ)z11(τ) + b2(τ)z22(τ)) dτ > 0, t ∈ [t0, T ).

Suppose T < ∞. Then by Lemma 2.1, from (3.20) it follows that [t0, T ) is not
the maximum existence interval for Z(t), which contradicts our assumption. The

obtained contradiction proves (3.15). The theorem is proved. �

R em a r k 3.3. Condition (3) of Theorem 3.3 is satisfied if in particular χj(t) 6 0,

t > t0, j = 1, 2.

3.2. The case where B(t) is nonnegative definite. In this subsection we will

assume that B(t) is nonnegative definite and
√
B(t) is continuously differentiable on

[t0,∞). Consider the matrix equation

(3.21)
√
B(t)X

(
A(t)

√
B(t)−

√
B(t)

′)
= A(t)

√
B(t)−

√
B(t)

′
, t > t0.

Obviously this equation has always a solution on [a, b] (⊂ [t0,∞)) when B(t) > 0,

t ∈ [a, b] (X(t) = B−1(t), t ∈ [a, b]). It may have also a solution on [a, b] in some

cases when B(t) > 0, t ∈ [a, b] (e.g., A(t) =

(
a1(t) a2(t)

0 0

)
, B(t) =

(
b1(t) 0

0 0

)
,

b1(t) > 0, t ∈ [a, b]). In this subsection we also will assume that equation (3.21) has

always a solution on [t0,∞). Let F (t) be a solution of equation (3.21) on [t0,∞).

Denote

(3.22) P (t) ≡ F (t)
(
A(t)

√
B(t)−

√
B(t)

′)
= (pjk(t))

2
j,k=1,

Q(t) ≡
√
B(t)C(t)

√
B(t) = (qjk(t))

2
j,k=1,

χ̃j(t) ≡ qjj(t) + |p3−j,j(t)|2, j = 1, 2, t > t0.
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Corollary 3.1. The system (1.1) is oscillatory provided one of the equations

(3.23j) ϕ′′
1 + 2(Re pjj(t))ϕ

′
1 + χ̃j(t)ϕ1 = 0, j = 1, 2, t > t0

is oscillatory.

P r o o f. Multiply equation (2.3) on the left and on the right by
√
B(t). Taking

into account the equality
(√

B(t)Z
√
B(t)

)′
=

√
B(t)Z ′

√
B(t) +

√
B(t)

′
Z
√
B(t) +√

B(t)Z
√
B(t)

′
, t > t0, we obtain

(3.24) V ′ + V 2 + P ∗(t)V + V P (t)−Q(t) = 0, t > t0,

where V ≡
√
B(t)Z

√
B(t). This equation corresponds to the following matrix

Hamiltonian system

(3.25)

{
Φ′ = P (t)Φ + Ψ,

Ψ′ = Q(t)Φ− P ∗(t)Ψ, t > t0.

Suppose the system (1.1) is not oscillatory. Then by (2.4), equation (2.3) has a Hermi-

tian solution Z(t) on [t1,∞) for some t1 > t0. Therefore, V (t) ≡
√
B(t)Z(t)

√
B(t),

t > t1, is a Hermitian solution of equation (3.24) on [t1,∞) and hence the sys-

tem (3.25) has a conjoined solution (Φ(t),Ψ(t)) such that detΦ(t) 6= 0, t > t. It

means that the Hamiltonian system

{
ϕ′ = P (t)ϕ + ψ,

ψ′ = Q(t)ϕ− P ∗(t)ψ, t > t0,

is not oscillatory. By Theorem 3.1, it follows that the scalar systems

{
ϕ′
1 = 2Re pjj(t)ϕ1 + ψ1,

ψ′
1 = −χ̃j(t)ϕ1, t > t0,

j = 1, 2, are not oscillatory. Therefore, the corresponding equations (3.23j), j = 1, 2,

are not oscillatory, which contradicts the conditions of the corollary. This completes

the proof. �
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Denote:

M̃(t) ≡ max
τ∈[t0,t]

∣∣∣∣exp
(
−
∫ t

τ

(p̄11(s) + p22(s)) ds

)
(p12(τ) − p̄21(τ))

∣∣∣∣;

χ̃3(t) ≡
(
M̃(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

(p̄11(s) + p22(s)) ds

)

× (p′21 + p̄21(τ)(p̄11(τ) + p22(τ)) + q12(τ))

∣∣∣∣ dτ
)2

− |p21(t)|2 − q11(t);

χ̃4(t) ≡
(
M̃(t) +

∫ t

t0

∣∣∣∣exp
(
−
∫ t

τ

p̄11(s) + p22(s) ds

)

× (p′12(t) + p12(τ)(p̄11(τ) + p22(τ)) + q12(τ))

∣∣∣∣ dτ
)2

− |p12(t)|2 − q22(t), t > t0;

Ĩj+2(ξ, t) ≡
∫ t

ξ

exp

(
−
∫ t

τ

2(Re pjj(s)) ds

)
χ̃j+2(τ) dτ, t > ξ > t0, j = 1, 2.

Theorem 3.4. Let the following conditions be satisfied:

(1′) B(t) > 0, t > t0;

(2′) equation (3.21) has a solution F (t) on [t0,∞);

(3′) the functions p12(t) and p21(t), defined by (3.22), are continuously differentiable

on [t0,∞);

(4′) there exist infinitely large sequences ξj,0 = t0 < ξj,1 < . . . < ξj,m < . . . such

that

∫ t

ξj,m

exp

(∫ τ

ξj,m

(2Re ajj(s)− Ĩj+2(ξj,m, s)) ds

)
χ̃j+2(τ) dτ 6 0, t ∈ [ξj,m, ξj,m+1),

m = 1, 2, 3, . . ., j = 1, 2.

Then the system (1.1) is non-oscillatory.

Proof. Let Z(t) ≡
(
z11(t) z12(t)

z12(t) z22(t)

)
be the Hermitian solution of equation (2.3)

satisfying the initial condition Z(t0) =

(
1 0

0 1

)
, and let [t0, T ) be the maximum

existence interval for Z(t). Then V (t) ≡
√
B(t)Z(t)

√
B(t) is a solution of equa-

tion (3.24) on [t0, T ). Without loss of generality, we may assume that B(t0) =(
1 0

0 1

)
. Then, V (t0) =

(
1 0

0 1

)
, and similarly to the proof of Theorem 3.3, we

can show that

(3.26)

∫ t

t0

tr V (τ) dτ > 0, t ∈ [t0, T ).
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By virtue of Lemma 2.3 we have tr V (t) = tr(B(t)Z(t)), t ∈ [t0, T ). From this and

from (3.26) it follows that

(3.27)

∫ t

t0

tr(B(τ)Z(τ)) dτ > 0, t ∈ [t0, T ).

To complete the proof of the theorem, it remains to show that T = ∞. Suppose
T < ∞. Then, by virtue of Lemma 2.2, from (3.27) it follows that [t0, T ) is not
the maximum existence interval for Z(t), which contradicts our assumption. This

contradiction shows that T = ∞, and the theorem is proved. �

E x am p l e 3.1. Consider the second-order vector equation

(3.28) ϕ′′ +K(t)ϕ = 0, t > t0,

where K(t) ≡
(
µ(t) 10i

−10i −t2
)
, µ(t) ≡ p1 sin(λ1t + θ1) + p2 sin(λ2t + θ2), t > t0, pj ,

λj 6= 0, θj , j = 1, 2, are real constants such that λ1 and λ2 are rational independent.

This equation is equivalent to the system (1.1) with A(t) ≡ 0, B(t) ≡
(
1 0

0 1

)
,

C(t) = −K(t), t > t0. Hence, by Theorem 3.1, equation (3.28) is oscillatory provided

the scalar system {
ϕ′
1 = ψ1,

ψ′
1 = −µ(t)ϕ1, t > t0,

is oscillatory. This system is equivalent to the second-order scalar equation

ϕ′′
1 + µ(t)ϕ1 = 0, t > t0,

which is oscillatory (see [9]). Therefore, equation (3.28) is oscillatory. It is not

difficult to verify that the results in works [2], [3], [5], [15], [17] are not applicable to

equation (3.28).

E x am p l e 3.2. Let

(3.29) B(t) =

(
1 1

1 1

)
, t > t0.

Then
√
B(t) =

√
2
2

(
1 1

1 1

)
,
√
B(t)

′ ≡ 0, t > t0, and F (t) =
√
2

(
1 0

0 1

)
, t > t0, is

a solution of equation (3.21) on [t0,∞),

P (t) =

(
a11(t) + a12(t)a11(t) + a12(t)

a21(t) + a22(t)a21(t) + a22(t)

)
,(3.30)

Q(t) = (c11(t) + 2Re c12(t) + c22(t))B(t), t > t0.(3.31)
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Assume

(3.32) a11(t) + a12(t) = a21(t) + a22(t) ≡ 0, t > t0.

Then taking into account (3.30) and (3.31) we have χ̃1(t) = χ̃2(t) = −c11(t) −
2Re c12(t) − c22(t), t > t0. Therefore, by Corollary 3.1, (3.29), and (3.32), the sys-

tem (1.1) is oscillatory provided the scalar equation

ϕ′′
1 (t)− (c11(t) + 2Re c12(t) + c22(t))ϕ1(t) = 0, t > t0,

is oscillatory.

Assume now:

(3.33) a11(t) + a12(t) = a21(t) + a22(t) =
α

t
,

c11(t) + 2Re c12(t) + c22(t) =
α− α2

t2
,

0 6 α 6 1, t > 1. Then taking into account (3.30) and (3.31), it is not difficult to

verify that χ̃3(t) = χ̃4(t) = (α2 − α)/t2 6 0, t > 1. Hence, by Theorem 3.4, (3.29)

and (3.33) the system (1.1) is non-oscillatory.

Now assume:

(α1) a11(t) + a12(t) = a21(t) + a22(t) > 0, t > t0;

(α2) a11(t) + a12(t) is increasing and continuously differentiable on [t0,∞);

(α3) |(a11(t) + a12(t))
′ + c11(t) + 2Re c12(t) + c22(t)|/(a11(t) + a12(t)) 6 λ = const.,

t > t0.

Then taking into account (3.30) and (3.31) it is not difficult to verify that χ̃3(t) 6

λ−(c11(t)+2Re c12(t)+c22(t)), χ̃4(t) 6 λ−(c11(t)+2Re c12(t)+c22(t)), t > t0. There-

fore by virtue of Theorem 3.4, (3.29), and conditions (α1)–(α3), the system (1.1) is

non-oscillatory.

R em a r k 3.4. Under the restriction (3.29), detB(t) ≡ 0, t > t0, the results

of works [1], [4], [12]–[14], [16], [18]–[20] are not applicable to the system (1.1)

with (3.29).
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