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Abstract. In this paper, we investigate the growth of solutions of a certain class of linear
differential equation where the coefficients are analytic functions in the closed complex
plane except at a finite singular point. For that, we will use the value distribution theory
of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.
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1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-

mental results and the standard notations of the Nevanlinna value distribution

theory of a meromorphic function on the complex plane C and in the unit disc

D = {z ∈ C : |z| < 1} (see [7], [12], [17]). The importance of this theory has inspired

many authors to find modifications and generalizations to different domains. Exten-

sions of Nevanlinna theory to annuli have been made by [1], [8], [10], [11], [14]. In [4],

Hamouda studied the growth of solutions of linear differential equations with analytic

coefficients in the unit disc based on the behavior of the coefficients on a neighbor-

hood of a point on the boundary of the unit disc. Recently in [2], [6], Fettouch and

Hamouda investigated the growth of solutions of certain linear differential equations

near a finite singular point. In this paper, we continue this investigation near a finite

singular point to study other types of linear differential equations. First, we recall
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the appropriate definitions. Set C = C∪{∞} and suppose that f(z) is meromorphic

in C \ {z0} where z0 ∈ C. Define the counting function near z0 by

(1.1) Nz0(r, f) = −

∫ r

∞

n(t, f)− n(∞, f)

t
dt− n(∞, f) log r,

where n(t, f) counts the number of poles of f(z) in the region

{z ∈ C : t 6 |z − z0|} ∪ {∞}

each pole according to its multiplicity; and the proximity function by

(1.2) mz0(r, f) =
1

2π

∫ 2π

0

ln+ |f(z0 − reiϕ)| dϕ.

The characteristic function of f is defined in the usual manner by

(1.3) Tz0(r, f) = mz0(r, f) +Nz0(r, f).

In addition, the order of the meromorphic function f(z) near z0 is defined by

(1.4) σT (f, z0) = lim sup
r→0

log+ Tz0(r, f)

− log r
.

For an analytic function f(z) in C \ {z0}, we have also the definition

(1.5) σM (f, z0) = lim sup
r→0

log+ log+ Mz0(r, f)

− log r
,

where Mz0(r, f) = max{|f(z)| : |z − z0| = r}.

By the usual manner of the definition of the iterated order of a meromorphic

function in the complex plane (see [9]), we define the n-iterated order near z0 as

follows:

(1.6) σn,T (f, z0) = lim sup
r→0

log+n Tz0(r, f)

− log r
,

and for an analytic function f(z) in C \ {z0}, we have also the definition

(1.7) σn,M (f, z0) = lim sup
r→0

log+n+1 Mz0(r, f)

− log r
,

where log+n+1(x) = ln+ log+n (x) (n > 1 is an integer) and ln+(x) = max(lnx, 0).
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R em a r k 1.1. It is shown in [2] that if f is a non constant meromorphic function

in C− {z0} and g(w) = f(z0 − 1/w), then g(w) is meromorphic in C and we have

T (R, g) = Tz0

( 1

R
, f

)

;

and so σ(f, z0) = σ(g). Also, if f(z) is analytic in C \ {z0}, then, g(w) is entire and

thus σT (f, z0) = σM (f, z0) and in general σn,T (f, z0) = σn,M (f, z0)n > 1. So, we can

use the notation σn(f, z0) without any ambiguity.

We recall the following definitions.

Definition 1.1. The linear measure of a set E ⊂ (0,∞) is defined as
∫∞

0 χE(t) dt

and the logarithmic measure of E is defined by
∫∞

0
χE(t)t

−1 dt where χE(t) is the

characteristic function of the set E.

In 2016, Fettouch and Hamouda proved the following result.

Theorem A ([2]). Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be analytic functions in

C\{z0} satisfying max{σ(Aj , z0) : j 6= 0} < σ(A0, z0). Then, every solution f(z) 6≡ 0

of the differential equation

f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f

′ +A0(z)f = 0

satisfies σ(f, z0) = ∞ with σ2(f, z0) = σ(A0, z0).

In the following two results, we will base our study on the domination of A0 on

only a curve tending to z0. In this case, it may hapen that

σ(A0, z0) 6 max{σ(Aj , z0) : j 6= 0}.

Theorem 1.1. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be analytic functions in

C \ {z0}. If there exists a subset γ of a curve tending to z0 such that the set

γ0 = {|z0 − z| : z ∈ γ} ∩ (0, 1) is of infinite logarithmic measure, such that for z ∈ γ,

r = |z0 − z| ∈ γ0 and for any fixed µ > 0, we have

(1.8) lim
r→0

1

|A0(z)|rµ

(k−1
∑

j=1

|Aj(z)|+ 1

)

= 0,

then every solution f(z) 6≡ 0 of the differential equation

(1.9) f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f +A0(z)f = 0,

that is analytic in C \ {z0} is of infinite order.
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Corollary 1.1. Let Pj(z), j = 1, 2, . . . , k−1 be polynomials and P0(z) be a tran-

scendental entire function; let Aj(z) = Pj(1/(z0 − z)); then every solution f(z) 6≡ 0

of (1.9), that is analytic in C \ {z0}, is of infinite order.

E x am p l e 1.1. The differential equation

(1.10) f ′′′ +
1

z3
f ′′ +

1

z2
f ′ +

∞
∑

n=1

1

nn2zn
f = 0,

fulfills the assumptions of Theorem 1.1 as z tends to z0 = 0 on the ray arg θ = 0. So,

every solution f(z) 6≡ 0 of (1.10) is of infinite order. We signal here that σ(A0, 0) =

σ(A1, 0) = σ(A2, 0) = 0.

Theorem 1.2. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be analytic functions in

C \ {z0}. If there exists a subset γ of a curve tending to z0 such that the set

γ0 = {|z0 − z| : z ∈ γ} ∩ (0, 1) is of infinite logarithmic measure, such that for z ∈ γ

and r = |z0 − z| ∈ γ0, we have

(1.11) lim
r→0

1

|A0(z)|

(k−1
∑

j=1

|Aj(z)|+ 1

)

expn
λ

rµ
= 0

where n > 1 is an integer, λ > 0, µ > 0 are real constants, then every solution

f(z) 6≡ 0 of (1.9), that is analytic in C\{z0}, satisfies σn(f, z0) = ∞ and furthermore

σn+1(f, z0) > µ.

E x am p l e 1.2. The differential equation

(1.12) f ′′′ + f ′′ exp
1

z
+ f ′ exp2

1

z3
+ f exp2

1

z2
= 0,

fulfills the assumptions of Theorem 1.2 as z tends to z0 = 0 on the ray arg θ = 1
5π.

So, every solution f(z) 6≡ 0 of (1.12) is of infinite order with σ3(f, 0) > 2.

Now, we will investigate the case when As, s 6= 0 dominates the other coeffi-

cients in a sector. Let I(ε) = (θ1 + ε, θ2 − ε) ⊂ [0, 2π) and S(ε) denote the sector

{z : arg(z0 − z) ∈ I(ε)}, ε > 0.

Theorem 1.3. Let A0(z), . . . , Ak−1(z) be analytic functions in C\{z0} satisfying

that there exist real constants 0 6 θ1 < θ2 6 2π such that for any θ ∈ (θ1, θ2) there

exists a set Γθ = {r = |z − z0| : arg(z − z0) = θ} ⊂ (0, 1) of infinite logarithmic

measure, and for every fixed µ > 0, we have

(1.13) lim
z→z0

1

|As(z)|rµ

( k−1
∑

j=0, j 6=s

|Aj(z)|+ 1

)

= 0, s 6= 0
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where arg(z0 − z) = θ ∈ I(0) and |z0 − z| = r ∈ Γθ. Given ε > 0 small enough, if

f 6≡ 0 is a solution of (1.9) that is analytic in C\{z0} and of finite order σ(f, z0) < ∞,

then the following statements hold.

(i) There exist j ∈ {0, . . . , s − 1} and a complex constant bj 6= 0 such that

f (j)(z) → bj as z → z0 in the sector S(ε). More precisely, for every fixed µ > 0

we have

(1.14) lim
z→z0

|f (j)(z)− bj |

rµ
= 0

with z ∈ S(ε) and |z0 − z| = r ∈ Γθ.

(ii) For each integer m > j + 1, f (m)(z) → 0 as z → z0 in S(ε). More precisely, for

every fixed µ > 0 we have

(1.15) lim
z→z0

|f (m)(z)|

rµ
= 0

with z ∈ S(ε) and |z0 − z| = r ∈ Γθ.

E x am p l e 1.3. The function f(z) = e1/z − 1 satisfies the differential equation

(1.16) f ′′′ + e−1/zf ′′ +
(2

z
−

5

z2
−

6

z3
−

1

z4

)

f ′ +
( 2

z3
+

1

z4

)

f = 0.

The differential equation (1.16) fulfills the assumptions of Theorem 1.3 in any sector

(θ1, θ2) ⊂ (12π, 3
2π) with z0 = 0. In this example, A2(z) = e−1/z is the dominating

coefficient, while we have j = 0 and bj = −1.

Theorem 1.4. Let A0(z), . . . , Ak−1(z) be analytic functions in C\{z0} satisfying

that there exist real constants 0 6 θ1 < θ2 6 2π such that for any θ ∈ (θ1, θ2) there

exists a set Γθ = {r = |z − z0| : arg(z − z0) = θ} ⊂ (0, 1) of infinite logarithmic

measure such that we have

(1.17) lim
z→z0

1

|As(z)|

( k−1
∑

j=0, j 6=s

|Aj(z)|+ 1

)

exp
λ

rα
= 0, s 6= 0

where arg(z0 − z) = θ ∈ I(0) and |z0 − z| = r ∈ Γθ, λ > 0, α > 0 are real constant.

Given ε > 0 small enough, if f 6≡ 0 is a solution of (1.9), analytic in C \ {z0} and of

finite order σ(f, z0) < ∞, then the following statements hold.

(i) There exists j ∈ {0, . . . , s − 1} and a complex constant bj 6= 0 such that

f (j)(z) → bj as z → z0 in the sector S(ε). More precisely, for λ > λ′ > 0

we have

|f (j)(z)− bj | < exp
(

−
λ′

rα

)

for all z ∈ S(ε) with |z0 − z| = r ∈ Γθ.
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(ii) For each integer m > j + 1, f (m)(z) → 0 as z → z0 in S(ε). More precisely, for

λ′ > 0 we have

|f (m)(z)| < exp
(

−
λ′

rα

)

for all z ∈ S(ε) with |z0 − z| = r ∈ Γθ.

Corollary 1.2. Let A0(z), . . . , Ak−1(z) be analytic functions in C\{z0} satisfying

that there exist real constants 0 6 θ1 < θ2 6 2π such that for any θ ∈ (θ1, θ2) there

exists a set Γθ = {r = |z − z0| : arg(z − z0) = θ} ⊂ (0, 1) of infinite logarithmic

measure, we have

|As(z)| > exp
α

rµ
, s 6= 0,

|Aj(z)| 6 exp
β

rµ

where arg(z0 − z) = θ ∈ (θ1, θ2) and |z0 − z| = r ∈ Γθ, α > β > 0, µ > 0 are real

constant. Given ε > 0 small enough, if f 6≡ 0 is a solution of (1.9) that is analytic in

C \ {z0} and of finite order σ(f, z0) < ∞, then the following statements hold.

(i) There exists j ∈ {0, . . . , s − 1} and a complex constant bj 6= 0 such that

f (j)(z) → bj as z → z0 in the sector S(ε). More precisely, for α−β > λ′ > 0 we

have

(1.18) |f (j)(z)− bj | < exp
(

−
λ′

rµ

)

for all z ∈ S(ε) with |z0 − z| = r ∈ Γθ.

(ii) For each integer m > j + 1, f (m)(z) → 0 as z → z0 in S(ε). More precisely, for

α− β > λ′ > 0 we have

(1.19) |f (m)(z)| < exp
(

−
λ′

rµ

)

for all z ∈ S(ε) with |z0 − z| = r ∈ Γθ.

Indeed, by taking α−β > λ > 0, the condition (1.17) holds; and then the assertions

(1.18)–(1.19) hold by taking λ > λ′ > 0.We can see similar results of these theorems

in the complex plane and in the unit disc in [3], [5], [13].
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2. Preliminary lemmas

To prove these results we need the following lemmas.

Lemma 2.1 ([2]). Let f be a non constant meromorphic function in C \ {z0}; let

α > 0, ε > 0 be given real constants and j ∈ N; then

(i) there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure and a con-

stant A > 0 that depends on α and j such that for all r = |z − z0| satisfying

r ∈ (0, 1) \ E1, we have

(2.1)
∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6 A

( 1

r2
Tz0(αr, f) log Tz0(αr, f)

)j

;

(ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero and a constant

A > 0 that depends on α and j such that for all θ ∈ [0, 2π) \ E2 there exists a

constant r0 = r0(θ) > 0 such that (2.1) holds for all z satisfying arg(z − z0) ∈

[0, 2π) \ E2 and r = |z − z0| < r0.

Lemma 2.2 ([2]). Let f be a non constant meromorphic function in C \ {z0} of

finite order σ(f, z0) < ∞; let ε > 0 be a given constant. Then,

(i) there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure such that for

all r = |z − z0| ∈ (0, 1) \ E1, we have

(2.2)
∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣
6

1

rk(σ+2+ε)
, k ∈ N;

(ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero such that for all

θ ∈ [0, 2π)\E2 there exists a constant r0 = r0(θ) > 0 such that for all z satisfying

arg(z − z0) ∈ [0, 2π) \ E2 and r = |z − z0| < r0, the inequality (2.2) holds.

Lemma 2.3. Let f be a non constant meromorphic function in C \ {z0} of finite

order σn(f, z0) = σn < ∞ (n > 1) and let ε > 0 be a given constant. Then,

there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure such that for all

r = |z − z0| ∈ (0, 1) \ E1, we have

(i) if n = 1, (2.2) holds,

(ii) and if n > 2

(2.3)
∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣
6

(

expn−1

1

rσn+ε

)k

, k ∈ N.
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P r o o f. By the definition

σn(f, z0) = lim sup
r→0

logn Tz0(r, f)

− log r
= σn,

for given ε′ > 0 there exists r0 such that for 0 < r < r0, we have

logn Tz0(r, f)

− log r
< σn + ε′;

which implies

(2.4) Tz0(r, f) < expn−1

1

rσn+ε′
.

Combining (2.4) with Lemma 2.1, for α > 0, there exists a set E1 ⊂ (0, 1) that has

finite logarithmic measure and a constant A > 0 that depends only on α such that

for all r = |z − z0| satisfying r /∈ (0, 1) \ E1, we have

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣
6 A

( 1

r2
expn−1

(α

r

)σn+ε′

expn−2

(α

r

)σn+ε′)k

.

Then, for ε > ε′ > 0 and r near enough to 0, we have

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣
6

(

expn−1

1

rσn+ε

)k

.

�

Lemma 2.4. Let f(z) be a non constant meromorphic function in C\{z0}. Then

σ(f (j), z0) = σ(f, z0), j ∈ N.

P r o o f. It is sufficient to prove that σ(f ′, z0) = σ(f, z0). By Remark 1.1, g(w) =

f(z0 − 1/w) is meromorphic in C and σ(g) = σ(f, z0). It is well known that for

a meromorphic function in C we have σ(g′) = σ(g), (see [16], [15]). We have

f ′(z) = g′(w)/w2. Set h(w) = g′(w)/w2. Obviously, we have σ(h) = σ(g′). On

the other hand, by Remark 1.1, we have σ(h) = σ(f ′, z0). So, we conclude that

σ(f ′, z0) = σ(f, z0). �

Lemma 2.5. Let f be a non constant meromorphic function in C \ {z0} and

suppose that |f (k)(z)| is unbounded on some ray arg(z0 − z) = θ. Then there exists

an infinite sequence of points zm = z0 − rmeiθ, m = 1, 2, . . . , where rm → 0, such

that f (k)(zm) → ∞ and
∣

∣

∣

f (j)(zm)

f (k)(zm)

∣

∣

∣
6 M,

where M > 0 and j ∈ (0, 1, . . . , k − 1).
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P r o o f. LetM(r, θ, f (k)) = max |f (k)(z)| where z ∈ [z0− r1e
iθ, z0− reiθ]. Clearly,

we may construct a sequence of points zm = z0 − rmeiθ, m > 1, rm → 0, such that

M(r, θ, f (k)) = |f (k)(zm)| → ∞. For each m, by (k − j)-fold iteration integration

along the line segment [z1, zm] we have

f (j)(zm) = f (j)(z1) + f (j+1)(z1)(zm − z1)

+ . . .+
1

(k − j − 1)
f (k−1)(z1)(zm − z1)

k−j−1

+

∫ zm

z1

. . .

∫ y

z1

f (k)(x) dxdy . . . dt;

and by an elementary triangle inequality estimate we obtain

(2.5) |f (j)(zm)| 6 |f (j)(z1)|+ |f (j+1)(z1)||(zm − z1)|

+ . . .+
1

(k − j − 1)
|f (k−1)(z1)||(zm − z1)|

k−j−1

+
1

(k − j)
|f (k)(zm)||(zm − z1)|

k−j .

From (2.5) and taking account that when m → ∞, f (k)(zm) → ∞, zm → z0, we

obtain
∣

∣

∣

f (j)(zm)

f (k)(zm)

∣

∣

∣
6 M, M > 0.

�

Lemma 2.6. Let f be an analytic function in C \ {z0}. Let a > 1
2 and

G =
{

z : |arg(z0 − z)| <
π

2a

}

.

Suppose that lim sup
z→ς

|f(z)| 6 M for all ς ∈ ∂G, whereM is a fixed constant. Suppose

further that there exist constants K, b < a such that

|f(z)| 6 K exp
1

rb
as r → 0,

where r = |z0 − z| and z ∈ G. Then, |f(z)| 6 M for all z ∈ G.

P r o o f. The change of variable w = 1/(z0 − z)maps G ontoH = {w : |arg(w)| <

π/(2a)} and the function g(w) = f(z) is an entire function on w ∈ C and we have

|arg(z0 − z)| = π/(2a) ⇔ |arg(w)| = π/(2a) and lim sup
w→ξ

|g(w)| = lim sup
z→ς

|f(z)| 6 M

for all ξ ∈ ∂H. Further, we have

|g(w)| = |f(z)| 6 K exp
1

rb
= K expRb as R → ∞,

where R = |w| = 1/r. Then, by Phragmen-Lindelöf theorem we get |g(w)| 6 M for

all w ∈ H. Therefore, |f(z)| 6 M for all z ∈ G. �
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Lemma 2.7. If f is analytic function in C\{z0} such that for any µ > 0, we have

|f(z0 − reiθ)| 6 rµ as r → 0

then
∫ r

0
|f(z0 − teiθ)| dt converges and for every α > 0, we have

∫ r

0

|f(z0 − teiθ)| dt 6 rα as r → 0.

P r o o f. It is easy to show that
∫ r

0 |f(z0 − teiθ)| dt converges; and we have

∫ r

0

|f(z0 − teiθ)| dt 6

∫ r

0

tµ dt =
rµ+1

µ+ 1
.

Let α > 0. By taking µ+ 1 > α, we have

∫ r

0

|f(z0 − teiθ)| dt 6
rµ+1

µ+ 1
6 rα as r → 0.

�

Lemma 2.8. Let f be an analytic function in C \ {z0}. The two following asser-

tions are equivalent:

(i) for any µ > 0, |f(z0 − reiθ)| 6 rµ as r → 0,

(ii) for any α > 0, lim
r→0

|f(z0 − reiθ)|/rα = 0.

P r o o f. (ii) ⇒ (i). Suppose that for any α > 0, lim
r→0

|f(z0 − reiθ)|/rα = 0.

For any α > 0 and ε > 0, there exists δ > 0 such that for 0 < r < δ we have

|f(z0 − reiθ)| 6 εrα. By taking ε = 1 we get the assertion (i).

(i) ⇒ (ii). Suppose that for any µ > 0, |f(z0 − reiθ)| 6 rµ as r → 0. Let α > 0.

We have
|f(z0 − reiθ)|

rα
6

rµ

rα
.

By taking µ > α, we obtain

lim
r→0

|f(z0 − reiθ)|

rα
= 0.

�
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Lemma 2.9. If f is analytic function in C \ {z0} such that

|f(z0 − teiθ)| 6 exp
(

−
λ

tα

)

,

where α > 0, λ > 0, then
∫ r

0 |f(z0 − teiθ)| dt converges and we have

∫ r

0

|f(z0 − teiθ)| dt 6 exp
(

−
λ

rα

)

as r → 0.

P r o o f. It is easy to show that
∫ r

0 |f(z0 − teiθ)| dt converges; and we have

∫ r

0

|f(z0 − teiθ)| dt 6

∫ r

0

exp
(

−
λ

rα

)

dt 6 exp
(

−
λ

rα

)

∫ r

0

dt

6 r exp
(

−
λ

rα

)

6 exp
(

−
λ

rα

)

as r → 0.

�

3. Proof of theorems

P r o o f of Theorem 1.1. Suppose that f 6≡ 0 is a solution of (1.9) of finite order

σ(f, z0) = σ < ∞. By Lemma 2.3, for any given ε > 0 there exists a set E ⊂ (0, 1)

that has finite logarithmic measure such that for all r = |z0− z| ∈ (0, 1)\E, we have

(3.1)
∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6

1

rj(σ+2+ε)
, j = 1, . . . , k.

From (1.9) we can write

(3.2) 1 6
1

|A0(z)|

∣

∣

∣

f (k)

f

∣

∣

∣
+

|Ak−1(z)|

|A0(z)|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+

|A1(z)|

|A0(z)|

∣

∣

∣

f ′

f

∣

∣

∣
.

By the assumption (1.8), for r ∈ F and any fixed µ > 0, we have

(3.3) lim
r→0

|Aj(z)|

|A0(z)|rµ
= 0, j = 1, . . . , k

and

(3.4) lim
r→0

1

|A0(z)|rµ
= 0.

Using (3.1), (3.3) and (3.4) in (3.2), a contradiction follows as r → 0 with r =

|z0 − z| ∈ F \ E. �
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P r o o f of Theorem 1.2. Suppose that f 6≡ 0 is a solution of (1.9) with σn(f, z0) =

σn < ∞, n > 1. If n = 1 we have (3.1) and if n > 2, by Lemma 2.3, for any given

ε > 0 there exists a set E ⊂ (0, 1) that has finite logarithmic measure such that for

all r = |z0 − z| ∈ (0, 1) \ E, we have

(3.5)
∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6

(

expn−1

1

rσn+ε

)j

, j = 1, . . . , k.

By the assumption (1.11), for r ∈ F, we have

(3.6) lim
r→0

|Aj(z)|

|A0(z)|
expn

λ

rµ
= 0, j = 1, . . . , k

and

(3.7) lim
r→0

1

|A0(z)|
expn

λ

rµ
= 0.

Using (3.1) or (3.5), (3.6) and (3.7) in (3.2), a contradiction follows as r → 0 on γ

with r = |z0 − z| ∈ F \ E. So, σn(f, z0) = ∞ for n > 1. Now, by Lemma 2.1, and

since σn(f, z0) = ∞, we have

(3.8)
∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣
6 A

(1

r
Tz0(αr, f)

)2k

, j = 1, . . . , k.

By the assumption (1.11), for ε1 > 0, ε2 > 0, we have

(3.9)
|Aj(z)|

|A0(z)|
6

ε1
expn(λ/r

µ)
, j = 1, . . . , k

and

(3.10)
1

|A0(z)|
6

ε2
expn(λ/r

µ)

as r → 0 on γ with r = |z0 − z| ∈ F. Using (3.8)–(3.10) in (3.2), we obtain, for

r = |z0 − z| ∈ F \ E,

(3.11) 1 6
M

expn(λ/r
µ)

(1

r
Tz0(αr, f)

)2k

,

whereM > 0 is a real constant. SetR = αr.We signal here that E is of finite logarith-

mic measure if and only if αE is of finite logarithmic measure. So, from (3.11), we get

(3.12) expn
λαµ

Rµ
6 M

(α

R
Tz0(r, f)

)2k

, R ∈ F \ E.

From (3.12) we obtain

σn+1(f, z0) = lim sup
r→0

log+n+1 Tz0(r, f)

− logR
> µ.

�
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P r o o f of Theorem 1.3. First, we have to prove that f(z) is bounded in S(ε),

for ε > 0 small enough and for that we prove that f (s)(z) is also bounded in S(ε).

From Lemma 2.4 and Lemma 2.2, it follows that there exists a set E ⊂ [0, 2π) that

has linear measure zero, such that for all j ∈ {s+ 1, . . . , k}

(3.13)
∣

∣

∣

f (j)(z)

f (s)(z)

∣

∣

∣
6

1

r(j−s)(σ+2+ε)
,

where arg(z0 − z) ∈ I(0) \ E and r = |z0 − z| ∈ Γθ. If we suppose that f
(s)(z) is

unbounded on some ray arg(z0 − z) = ϕ ∈ I(0) \E, then by Lemma 2.5 there exists

an infinite sequence of points zm = z0− rmeiϕ, m = 1, 2, . . . , with rm → 0, such that

f (k)(zm) → ∞ and

(3.14)
∣

∣

∣

f (q)(zm)

f (s)(zm)

∣

∣

∣
6 M1,

where M1 > 0, q ∈ {0, 1, . . . , s− 1} and m large enough. From (1.9) we can write

1 6
1

|As(z)|

∣

∣

∣

f (k)

f (s)

∣

∣

∣
+

|Ak−1(z)|

|As(z)|

∣

∣

∣

f (k−1)

f (s)

∣

∣

∣
+ . . .+

|As+1(z)|

|As(z)|

∣

∣

∣

f (s+1)

f (s)

∣

∣

∣
(3.15)

+
|As−1(z)|

|As(z)|

∣

∣

∣

f (s−1)

f (s)

∣

∣

∣
+ . . .+

|A0(z)|

|As(z)|

∣

∣

∣

f

f (s)

∣

∣

∣
.

Combining now (1.13), (3.13)–(3.15) and letting m → ∞ we obtain a contradiction.

Therefore, f (s)(z) remains bounded on all rays arg(z0 − z) = ϕ ∈ I(0) \ E. By

Lemma 2.6, we conclude that f (s)(z) is bounded, say |f (s)(z)| 6 M2, in the whole

sector S(12ε) for ε > 0 small enough.

By integrating s times along the line segment [z1, z] in S(12ε), we have

f(z) = f(z1) + f ′(z1)(z − z1) + . . .+
1

(s− 1)!
f (s−1)(z1)(z − z1)

s−1

+

∫ z

z1

. . .

∫ z

z1

f (s)(t) dt . . . dt;

and by an elementary triangle inequality estimate, we obtain

|f(z)| 6 |f(z1)|+ |f ′(z1)||z−z1|+ . . .+
1

(s− 1)!
|f (s−1)(z1)||z−z1|

s−1+
1

(s)!
M |z−z1|

s

and therefore, as z → z0, we get

(3.16) |f(z)| 6 M3
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for a certain constantM3 > 0. Now, we begin to prove (1.15) for m = s. Using (1.9),

we can write

|f (s)(z)| 6 |f |
( 1

|As(z)|

∣

∣

∣

f (k)

f

∣

∣

∣
+

|Ak−1(z)|

|As(z)|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+

|As+1(z)|

|As(z)|

∣

∣

∣

f (s+1)

f

∣

∣

∣
(3.17)

+
|As−1(z)|

|As(z)|

∣

∣

∣

f (s−1)

f

∣

∣

∣
+ . . .+

|A1(z)|

|As(z)|

∣

∣

∣

f ′

f

∣

∣

∣
+

|A0(z)|

|As(z)|

)

.

By the assumption (1.13), for any µ > 0, for every j ∈ {0, 1, . . . , s−1, s+1, . . . , k−1}

and for ε > 0, there exists δ such that for |z0 − z| < δ we have

|Aj(z)|

|As(z)|
6 ε|z0 − z|µ,(3.18)

1

|As(z)|
6 ε|z0 − z|µ,(3.19)

where arg(z0−z) = θ ∈ I(0) and |z0−z| = r ∈ Γθ. Substituting (3.13), (3.16), (3.18)

and (3.19) into (3.17), we obtain that for any µ > 0, we have

|f (s)(z)| 6 M4
|z0 − z|µ

rk(σ+2+ε)
as r → 0.

We conclude that for any fixed α > 0

(3.20) lim
z→z0

|f (s)(z)|

rα
= 0,

with r = |z0 − z| ∈ Γθ and arg(z0 − z) = ϕ ∈ I(12ε) \ E.

Proof of equation (1.15) for m > s. Consider z = z0 − reiθ ∈ S(ε) and C(z) the

circle centered at z of radius ̺ small enough such that C(z) is contained in S(12ε),

we may take ̺ = r sin(12ε). By the Cauchy formula applied to the function f (s)(z)

we have

(3.21) f (m)(z) =
(m− s)!

2π

∫

C(z)

f (s)(ζ)

(z − ζ)m−s+1
dζ,

and using (3.20), we get

|f (m)(z)| 6
(m− s)!

2π

∫ 2π

0

|z0 − z|µ

̺m−s+1
̺ dθ 6

(m− s)!

sinm−s(12ε)

|z0 − z|µ

rm−s
.

We conclude that, for any fixed α > 0 and z ∈ S(ε) with r = |z0 − z| ∈ Γθ, we have

lim
z→z0

|f (m)(z)|

|z0 − z|α
= 0.
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Until now, we have proved the second assertion for m > s. We start to prove the

first assertion for j = s− 1. Set

as =

∫ ∞

0

f (s)(z0 − teiθ)eiθ dt.

By (3.20), it is easy to see that
∫∞

0 f (s)(z0 − teiθ)eiθ dt converges. Moreover, as is

independent of θ, because by (3.20), the integral of f (s)(ζ) over the arc z0 − reiθ,

θ ∈ (ϕ, ϕ) ⊂ I(12ε), we get

∣

∣

∣

∣

∫ ϕ

ϕ

f (s)(z0 − reiθ)ireiθ dθ

∣

∣

∣

∣

6 Mrα+1|ϕ− ϕ| → 0, r → 0, M > 0.

Define now bs−1 = f (s−1)(∞) + as, and suppose that bs−1 6= 0. Let z = z0 − reiθ be

an arbitrary point in S(ε). Then, since

f (s−1)(z)− bs−1 =

∫ z

∞

f (s)(ζ) dζ −

∫ ∞

0

f (s)(z0 − teiθ)eiθ dt,

we may apply (3.20) and Lemma 2.7, and we get

(3.22) |f (s−1)(z)− bs−1| =

∣

∣

∣

∣

∫ z

∞

f (s)(ζ) dζ −

∫ ∞

0

f (s)(z0 − teiθ)eiθ dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

r

f (s)(z0 − teiθ)eiθ dt+

∫ 0

∞

f (s)(z0 − teiθ)eiθ dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

r

f (s)(z0 − teiθ)eiθ dt

∣

∣

∣

∣

6

∫ r

0

|f (s)(z0 − teiθ)| dt 6 rµ as r → 0

for any µ > 0 and z ∈ S(ε) with r = |z0−z| ∈ Γθ. By Lemma 2.8, we have completed

the proof in the case bs−1 6= 0. If bs−1 = 0, we define as−1 =
∫∞

0
f (s−1)(z0−teiθ)eiθ dt

and bs−2 = f (s−2)(∞)+as−1 and by applying Lemma 2.7 with (3.22) we obtain that,

for every fixed µ > 0,

|f (s−2)(z)− bs−2| 6 rµ as r → 0

for z ∈ S(ε) with r = |z0 − z| ∈ Γθ. By the same method, if bs−1 = bs−2 = . . . =

bj+1 = 0 and bj 6= 0, j ∈ {0, . . . , s− 1}, then for any fixed µ > 0

|f (j)(z)− bj | 6 rµ as r → 0,

and

(3.23) |f (m)(z)| 6 rµ as r → 0 for all m > j + 1
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for z ∈ S(ε) with r = |z0 − z| ∈ Γθ. Now it remains to show that the case bs−1 =

bs−2 = . . . = b0 = 0 is not possible. In this case, we have, for any fixed µ > 0

(3.24) |f (m)(z)| 6 rµ as r → 0

for z ∈ S(ε) with r = |z0 − z| ∈ Γθ, for every m > 0 and any µ > 0, there exists

r0(µ,m) > 0 such that if |z0 − z| = r < r0 then |f (m)(z)| 6 |z0 − z|µ. Now we take

z ∈ S(ε) such that r = |z0 − z| < r1 = min
m=0,...,s

r0(µ,m); we remark here that if z is

fixed then (3.24) is valid for only some µ > 0 and not for all µ > 0. From (1.9) we

can write

(3.25)
|f (s)(z)|

|f(z)|
6

1

|As(z)|

∣

∣

∣

f (k)

f

∣

∣

∣
+

|Ak−1(z)|

|As(z)|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+

|As+1(z)|

|As(z)|

∣

∣

∣

f (s+1)

f

∣

∣

∣

+
|As−1(z)|

|As(z)|

∣

∣

∣

f (s−1)

f

∣

∣

∣
+ . . .+

|A1(z)|

|As(z)|

∣

∣

∣

f ′

f

∣

∣

∣
+

|A0(z)|

|As(z)|
,

and by using (1.13) and Lemma 2.2 in (3.25), we obtain

(3.26)
|f (s)(z)|

|f(z)|
6 |z0 − z|µ,

and by (3.24) for m = 0 in (3.25), we get

(3.27) |f (s)(z)| 6 |z0 − z|2µ

for |z0 − z| < r1 and arg(z0 − z) ∈ I(ε) \ E, hence in S(ε + 1
2ε) by Lemma 2.6.

Repeating the reasoning of (3.22)–(3.24) with (3.27), we obtain

|f(z)| 6 |z0 − z|2µ,

and by combining with (3.26), we get

|f (s)(z)| 6 |z0 − z|3µ,

in S(ε+ 1
2ε+

1
22 ε). Inductively, by the same reasoning, after (T − 1) steps, we obtain

(3.28) |f (s)(z)| 6 |z0 − z|Tµ

in

S
(

ε+
ε

2
+

ε

22
+ . . .+

ε

2T−1

)

= S
(

2ε
(

1−
1

2T−1

))

with |z0 − z| < r1. Thus, we have proved, in this special case bs−1 = bs−2 = . . . =

b0 = 0, that (3.28) is valid in S(2ε) for all T ∈ N, provided |z0 − z| < r1. Fix

now a finite line segment L ⊂ S(2ε) with |z0 − z| < min(1, r1). By taking T → ∞

in (3.28), f (s)(z) vanishes identically on such a line segment. Therefore, f must be

a polynomial. Since f is analytic in C − {z0}, f has to be a constant. It is easy to

see that the only constant solution of (1.9) is f ≡ 0, a contradiction. �
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P r o o f of Theorem 1.4. We will use the same method of the proof of Theo-

rem 1.3. The assumption (1.17) implies that for any ε > 0 there exists δ > 0 such

that for r = |z0 − z| < δ, we have

|Aj(z)|

|As(z)|
6 ε exp

(

−
λ

rα

)

,(3.29)

1

|As(z)|
6 ε exp

(

−
λ

rα

)

.(3.30)

By the same steps (3.13)–(3.15) with (3.29) and (3.30), we can prove that f (s)(z) is

bounded in S(ε), say

|f (s)(z)| 6 M1,

in the whole sector S(12ε) for some ε > 0 small enough. As above, we can prove also

that

|f(z)| 6 M2.

By using (3.29)–(3.30) in (3.17), for r = |z0−z| ∈ Γθ and arg(z0−z) = ϕ ∈ I(12ε)\E,

we get

|f (s)(z)| 6 exp
−λ+ τ

rα
,

where 0 < τ < λ. For m > s, as above, by (3.21) we obtain

|f (m)(z)| 6 exp
−λ+ τ

rα

for all z ∈ S(ε) with r = |z0 − z| ∈ Γθ, 0 < τ < λ. Puting as and bs−1 as above and

by Lemma 2.9, we get

|f (s−1)(z)− bs−1| 6 exp
−λ+ τ

rα

as r = |z0 − z| → 0, where 0 < τ < λ. By the same method used in the proof of

Theorem 1.3, we can prove the impossibility of the case bs−1 = bs−2 = . . . = b0 = 0.

�
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