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On a class of variational problems

with linear growth and radial symmetry

Michael Bildhauer, Martin Fuchs

Abstract. We discuss variational problems on two-dimensional domains with en-
ergy densities of linear growth and with radially symmetric data.

The smoothness of generalized minimizers is established under rather weak
ellipticity assumptions. Further results concern the radial symmetry of solutions
as well as a precise description of their behavior near the boundary.

Keywords: linear growth problem; symmetric solutions in 2D; existence of solu-

tions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data

Classification: 49J45, 49N60

1. Introduction

Inspired by the fundamental work of M. Giaquinta, G. Modica and J. Souček

([17], [18]) we here discuss the particular minimization problem

(1.1) J [w] :=

∫

Ω

g(|∇w|) dx→ min in u0 +W 1,1
0 (Ω),

where Ω ⊂ R
2 is the annulus {x ∈ R

2 : ̺1 < |x| < ̺2} with radii 0 < ̺1 < ̺2 <∞.

The function u0 is radially symmetric, which means

(1.2) u0(x) = û0(|x|), mi = û0(̺i), i = 1, 2,

reflecting the fact that we want to minimize the functional J among functions

with constant values on the circles |xi| = ̺i, i = 1, 2. Moreover, we assume that

g(|∇u|) is of linear growth with respect to |∇u|.
The purpose of our note is threefold.

(1) We give a general regularity theory for the minimizing problem (1.1), (1.2).

In particular, we exclude the occurrence of an autonomous counterpart of the

famous singular example of M. Giaquinta, G. Modica and J. Souček, see [18],

see also the twodimensional variant given in [7]. Note that we establish the
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smoothness of solutions up to the boundary which essentially differs from the

attainment of the boundary data (compare (1.16)).

(2) We allow a wide range of ellipticity since we do not require a balancing

condition like

(1.3)
g′′(s)

g′′(t)
≤ C for all s ≥ 1 and t ∈

[ s

2
, 2s

]

,

which is a part of the main assumption in [4]. In fact, this condition is used for

the construction of barriers such that the attainment of boundary data can be

proved as in [4] supposing (1.9) of that paper.

We like to point out, that the construction of barriers, i.e. the balancing con-

dition in connection with (1.9) of [4], serves as the main tool in [4] for reducing

the problem to the analysis of an ordinary differential equation with an explicit

representation of the solution. For this reason we could not adapt these kind of ar-

guments to the proof of Theorem 1.1. Let us postpone a more detailed discussion

to Remark 3.1.

Since our arguments leading to the regularity of solutions do not incorporate

some detailed estimates concerning the first derivative of the energy density, we

also do not impose an analogue to (1.7) of Theorem 1.1 given in [14].

(3) Following [10], it is easily shown that boundary data are respected at least

for |x| = ̺2 which gives the uniqueness of solutions.

Moreover, the possible non-attainment of the boundary data in the radially

symmetric case has a complete interpretation.

Remark 1.1. Regardless of the fundamental difficulties sketched in Remark 3.1,

large parts of our note could be presented in a one-dimensional setting by exploit-

ing the radial symmetry of the problem under consideration.

While the main arguments could be translated following the same lines as in

two dimensions, we would be faced with the difficulty of finding precise citations.

For this reason and since the primal problem under consideration is given in

the two-dimensional setting, we like to keep this as the general framework.

Of course we first have to introduce the problem more precisely.

In what follows g : [0,∞) → [0,∞) is a function of class C2([0,∞)) satisfying

(with suitable constants a, A > 0, b, B ∈ R)

(1.4) at− b ≤ g(t) ≤ At+B for all t ≥ 0

as well as

(1.5) 0 = g(0) = g′(0).
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Let us require for the moment that we just have the inequality

(1.6) ν1(1 + t)−µ ≤ g′′(t) ≤ ν2(1 + t)−1, t ≥ 0,

for some exponent µ > 1, ν1, ν2 denoting positive constants. This type of µ-

elliptic integrand occurs as a special case of the densities discussed, for instance,

in [8] and a series of further papers.

Observe that the minimal surface case is included with the choice g(t) =√
1 + t2 − 1 leading to (1.6) with µ = 3. Other examples are (µ > 1, k > 1,

compare Section 4)

Φµ(t) := (µ− 1)

∫ t

0

∫ s

0

(1 + r)−µ dr ds,

=







t− 1

2− µ
(1 + t)2−µ − 1

µ− 2
if µ 6= 2,

t− ln(1 + t) if µ = 2,
(1.7)

g̃k(t) := (1 + tk)1/k − 1, t ≥ 0,(1.8)

where in the latter case we have (1.6) with µ = k+1. We also note that in recent

years the example from (1.8) becomes more and more popular and in some sense

serves as a model for strain-limiting elastic models with linear growth, see, for

instance, [3], [13], [11] and [12].

Associated to our density is the strictly convex integrand

G : R2 → [0,∞), G(p) := g(|p|), p ∈ R
2,

being of linear growth and satisfying the common condition of µ-ellipticity

(1.9) ν1(1 + |p|)−µ|q|2 ≤ D2G(p)(q, q) ≤ ν2(1 + |p|)−1|q|2.

In fact, (1.9) follows from the formula

(1.10) D2G(p)(q, q) =
1

p
g′(|p|)

[

|q|2 − (p · q)2
|p|2

]

+ g′′(|p|) (p · q)
2

|p|2

in combination with (1.6).

Let us return to our variational problem (1.1). As a matter of fact, the existence

of a solution in the subclass u0 + W 1,1
0 (Ω) of the non-reflexive Sobolev space

W 1,1(Ω), (see, e.g., [1] for a definition of the various Sobolev classes W k,p(Ω) and

their local variants) cannot be guaranteed. Therefore one has to pass to a suitable

relaxed version of (1.1). This approach to linear growth problems is nowadays

standard and outlined, for example, in the monographs [2], [21] and [19], [20].

A comprehensive survey of the topic including the historical background is also

presented in the more recent paper [5].
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A relaxed version of (1.1) is given by

(1.11)

K[w] :=

∫

Ω

G(∇aw) dx +

∫

Ω

G∞

( ∇sw

|∇sw|
)

d|∇sw|

+

∫

∂Ω

G∞

(

(u0 − w)N
)

dH1 → min in BV(Ω),

where N is the outward unit normal to ∂Ω, G∞ is the recession function of G,

and ∇aw, ∇sw denote the regular and the singular part of ∇w with respect to

the Lebesgue measure. For a definition of the space BV(Ω) we refer to [2] or [21].

From the convexity of G together with the linear growth condition we obtain

the boundedness of DG, moreover,

g′∞ := lim
t→∞

g′(t) = lim
t→∞

g(t)

t

exists in (0,∞) and the recession function is given by

G∞(p) = g′∞|p|, p ∈ R
2.

Thus (1.11) simply reads

(1.12)

K[w] =

∫

Ω

g(|∇aw|) dx + g′∞|∇sw|(Ω)

+ g′∞

∫

∂Ω

|u0 − w| dH1 → min in BV(Ω),

and clearly it holds

K[w] = J [w], whenever w ∈ u0 +W 1,1
0 (Ω).

We summarize some known results in the following proposition.

Proposition 1.1. Let the conditions (1.2), (1.4)–(1.6) hold for some exponent

µ > 1. Then we have:

(1) The functional K is lower semicontinuous with respect to convergence in

L1(Ω).

(2) Problem (1.12) admits at least one solution u ∈ BV(Ω).

(3) It holds that

inf
u0+W 1,1

0
(Ω)

J = inf
BV(Ω)

K.

(4) A function u ∈ BV(Ω) is K-minimizing if and only if u ∈ M, where

M := {v ∈ L1(Ω): v is a L1(Ω)-cluster point

of some J-minimizing sequence from u0 +W 1,1
0 (Ω)}.
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(5) Suppose that (1.12) admits a solution u ∈ BV(Ω) ∩ C1(Ω). Then any

solution v is of the form v = u + c for some c ∈ R. Moreover, it holds

u(x) = û(|x|).
(6) For any K-minimizer u we have

sup
Ω

|u| ≤ max{|m1|, |m2|}.

In fact, the proposition is based on classical results as the representation for-

mula of C. Goffman and J. Serrin in [22] and Reshetnyak’s continuity theorem

in [23]. We refer to [7], Appendix A, for a detailed discussion of (3) and (4) which

in particular leads to uniqueness Theorem A.9 stated there, hence to (5). Note

that a variant of the mentioned Theorem A.9 is also given in [6], Corollary 2.5.

Finally, the last claim is due to Corollary 1 of [9].

Remark 1.2. On account of particular relevance for our note let us shortly

recall one way to prove the radial symmetry of general minimizers. We start with

a suitable regularization uδ and immediately have this property for uδ. Then,

passing to the limit, the symmetry is carried over to any cluster point u∗. If

there exists any generalized solution which is of class C1, then uniqueness up

to a constant gives the radial symmetry of any generalized minimizer. In fact,

the reasoning of [7], Section 4.4, shows that C1 may even be replaced by partial

regularity.

Part (5) of Proposition 1.1 raises the first challenging question under which

conditions a regular solution u ∈ BV(Ω) ∩ C1(Ω) ⊂ W 1,1(Ω) exists which is

immediately leading to the second question, if this minimizer takes the boundary

values u0 thereby solving (1.1).

Roughly speaking, we have a positive answer to the first problem provided that

(1.13) µ < 3,

see, e.g., [7] or [5], and from the work [4] by L. Beck, M. Buĺıček and E. Maringová

we deduce that u = u0 on ∂Ω, if (1.13) is replaced by the requirement µ < 2 and

if the second inequality in (1.6) is replaced by the condition g′′(t) ≤ ν2(1 + t)−µ.

In the situation at hand we neither require any upper bound on the exponent µ

nor a balancing condition in the sense of (1.3) still giving a positive answer to the

existence of a smooth K-minimizer.

We just need the limitation (1.15) for the range of anisotropy admissible in

the behavior of g′′, which is quite similar to the superlinear analogue q < p + 2

in the case of anisotropic growth conditions (see [7] for an overview and a list of

references).

Let us now state our main results.
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Theorem 1.1. Suppose that µ ∈ (1,∞), let (1.2), (1.4), (1.5) hold and replace

(1.6) by the condition

(1.14) ν1(1 + t)−µ ≤ g′′(t) ≤ v2(1 + t)−µ, t ≥ 0,

for some exponent µ ∈ [1, µ] such that

(1.15) µ− µ < 2.

Then the relaxed problem (1.12) admits a solution

u ∈W 1,1(Ω) ∩ C0(Ω) ∩C1(Ω) ∩W 2,2
loc (Ω)

which in addition is of the form u(x) = û(|x|). Moreover, the solution is unique

up to additive constants.

Remark 1.3. (1) In the case µ, µ > 1 we deduce from (1.14) and (1.5) the

inequality

cΦµ(t) ≤ g(t) ≤ CΦµ(t)

with Φ... defined in (1.7), which means that (1.4) automatically holds.

(2) Note that in particular the one parameter family of energy densities given

in (1.8) and suitable generalizations are covered by our considerations.

(3) We may take any function ψ(t) satisfying for some constants c1, c2 ∈ R

c1(1 + t)−µ ≤ ψ(t) ≤ c2(1 + t)−µ, t ≥ 0,

and obtain a function

Ψ(t) =

∫ t

0

∫ s

0

ψ(r) dr ds

which clearly satisfies (1.14) but in general violates a balancing condition

like given in (1.8) of [4].

We do not know if the solution u takes the boundary values u0 for |x| = ̺1.

However, the following theorem yields a complete description of the boundary

behavior.

Theorem 1.2. The minimizer given in Theorem 1.1 in fact is the unique solution

of problem (1.12). Moreover, we have:

(1) The minimizer respects the boundary data for |x| = ̺2, hence it is the

solution of the minimizing problem

(1.16)

∫

Ω

g(|∇w|) dx + g′∞

∫

|x|=̺1

|w −m1| dH1 → min

w ∈ W 1,1(Ω), w = m2 on {|x| = ̺2}.
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(2) Suppose that m2 is fixed, abbreviate m = m1 and let um(x) = ûm(|x|)
denote the unique solution of (1.16).

Suppose without loss of generality that m < m2. Then we have

(a) for any ̺ ∈ (̺1, ̺2) it holds that ûm(̺) ≥ m;

(b) as a function depending on m, the quantity ûm(̺1) is a non-decreas-

ing function, i.e.

ζ1 < ζ2 ⇒ ûζ1(̺1) ≤ ûζ2(̺1).

As a corollary we obtain in particular:

Corollary 1.1. With the notation of Theorem 1.2 we suppose that there exists

m < m2 such that the boundary data are not attained for |x| = ̺1.

Then for any ζ ≤ m we have uζ ≡ um.

2. Proof of Theorem 1.1

We proceed by induction showing that the statements of the theorem hold

provided µ ∈ (1, k) for some k ≥ 2.

Let in the beginning k = 3. From (1.14) we immediately get (1.9) (recall (1.10))

and from Theorem 4.32 in [7] we deduce the existence of a unique (up to constants)

generalized minimizer u of class BV(Ω) ∩C1(Ω) ⊂W 1,1(Ω). Alternatively, we can

quote Theorem 4.16 from this reference observing that Assumption 4.11 trivially

holds for the situation at hand.

Proposition 1.1 (5), implies that u(x) = û(|x|) with û ∈ W 1,1(̺1, ̺2) ⊂
C0([̺1, ̺2]), see [15, Chapter 2], hence u ∈ C0(Ω). In order to show

(2.1) u ∈W 2,2
loc (Ω)

it is sufficient to prove uniform local W 2,2-bounds for the solutions uδ of the

regularized problem

Jδ[w] :=
δ

2

∫

Ω

|∇w|2 dx+

∫

Ω

g(|∇w|) dx→ min in u0 +W 1,2
0 (Ω).

To this purpose we just quote Lemma 4.19, i), in [7] choosing the exponent s so

large that the left hand side of the Caccioppoli inequality is bounded from below

by

α

∫

Ω

η2|∇2uδ|2 dx, α denoting a suitable uniform constant.

On the right hand side we observe Theorem 4.25 from [7], which gives the desired

uniform bound for uδ ∈W 2,2
loc (Ω) leading to (2.1).
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Suppose next that k ≥ 3 and that Theorem 1.1 is true for exponents µ ∈ (1, k).

We then claim the validity of Theorem 1.1 for

(2.2) µ ∈ [k, k + 1).

So let the density g satisfy (1.14) with exponent µ ∈ [1, µ] such that (1.15) is

true. We choose

(2.3) τ ∈ (µ− 2,min{k, µ})

and observe the inequalities

(2.4) τ < k, τ < µ, µ− τ < 2.

For δ ∈ (0, 1) we introduce the density

(2.5) gδ(t) := δΦτ (t) + g(t), t ≥ 0,

with function Φτ from (1.7). Moreover, we let

(2.6) Gδ(p) := gδ(|p|), p ∈ R
2.

Then it holds

g′′δ (t) = δ(τ − 1)(1 + t)−τ + g′′(t)

and the second inequality in (2.4) together with (1.14) shows

(2.7) c1(δ)(1 + t)−τ ≤ g′′δ (t) ≤ c2(δ)(1 + t)−τ

with constants ci(δ) > 0. Recalling the first inequality in (2.4) and observing

(2.7) our inductive hypothesis applies to the regularized problem

(2.8) Kδ[w] → min in BV(Ω),

where Kδ is defined according to (1.11) and (1.12) with G and g replaced by Gδ

and gδ, respectively. Let

(2.9) uδ ∈ W 1,1(Ω) ∩C0(Ω) ∩ C1(Ω) ∩W 2,2
loc (Ω)

denote the unique (up to constants) solution to (2.8) which additionally satisfies

uδ(x) = ûδ(|x|). The regularity properties of uδ stated in (2.9) are in turn

sufficient to derive the Caccioppoli inequality from Lemma 4.19, ii), in [7], i.e. it
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holds

(2.10)

∫

Ω

D2Gδ(∇uδ)(∂γ∇uδ,∂γ∇uδ)Γs
δη

2l dx

≤ c

∫

Ω

D2Gδ(∇uδ)(∇η,∇η)η2l−2 |∇uδ|2Γs
δ dx

for any s ≥ 0, l ∈ N and η ∈ C1
0 (Ω), 0 ≤ η ≤ 1, where we have abbreviated

Γδ := 1 + |∇uδ|2 and the sum is taken with respect to the index γ.

Letting η(x) = η̂(|x|) we set

p = û′δ(|x|)
x

|x| , q = η̂′(|x|) x|x| ,

and observe that we have in (1.10)

[

|q|2 − (p · q)2
|p|2

]

= 0.

This reduces (2.10) to the inequality

(2.11)

∫

Ω

g′′δ (|∇uδ|)|∇2uδ|2η2lΓs
δ dx ≤ c

∫

Ω

g′′δ (|∇uδ|)Γs+1
δ |∇η|2η2l−2 dx

with constant c > 0 not depending on δ. Applying (1.14) and recalling Defini-

tion 2.5 we arrive at (neglecting the δ-term on the left hand side of (2.11))

(2.12)

∫

Ω

η2l|∇2uδ|2Γs−µ/2
δ dx

≤ c

[

δ

∫

Ω

η2l−2|∇η|2Γs+1−τ/2
δ dx+

∫

Ω

η2l−2|∇η|2Γs+1−µ/2
δ dx

]

.

Next we choose ϕ := uδΓ
α/2
δ η2l as admissible (recall (2.9)) test function in the

Euler equation

(2.13) 0 =

∫

Ω

DGδ(∇uδ) · ∇ϕdx,

where η and l are as above and α ≥ 0 is some number to be fixed later. With

this choice (2.13) gives

(2.14)

∫

Ω

DGδ(∇uδ) · ∇uδΓα/2
δ η2l dx

= −
∫

Ω

DGδ(∇uδ) · ∇ηη2l−12luδΓ
α/2
δ dx

−
∫

Ω

DGδ(∇uδ) · ∇Γ
α/2
δ η2luδ dx =: T1 + T2.
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We have

DGδ(∇uδ) · ∇uδ = g′δ(t)t ≥ g′(t)t, t := |∇uδ|,
and from the first inequality in (1.14) we get

g′(t) ≥ c

∫ t

0

(1 + s)−µ ds ≥ c[1− (1 + t)1−µ]

and in conclusion

DGδ(∇uδ) · ∇uδ ≥ c[|∇uδ| − 1],

where as usual the value of c may vary from line to line. Therefore we get

(2.15) left hand side of (2.14) ≥ c

[
∫

Ω

Γ
(α+1)/2
δ η2l dx −

∫

Ω

η2lΓ
α/2
δ dx

]

.

For T1, T2 on the right hand side of (2.14) we use, see Proposition 1.1 (6)

sup
Ω

|uδ| ≤ max{|m1|, |m2|},

as well as the uniform boundedness of

DGδ(p) = g′δ(|p|)
p

|p| ,

which is immediate by the definition of gδ and the properties of g. We obtain

|T1| ≤ c

∫

Ω

|∇η|η2l−1Γ
α/2
δ dx,

|T2| ≤ c

∫

Ω

η2l|∇2uδ|Γ(α−1)/2
δ dx.

Returning to (2.14), using (2.15) and the inequalities for Ti, it is shown (c = c(l))

that

(2.16)

∫

Ω

η2lΓ
(α+1)/2
δ dx ≤ c

[
∫

Ω

η2lΓ
α/2
δ dx+

∫

Ω

|∇η|η2l−1Γ
α/2
δ dx

+

∫

Ω

η2l|∇2uδ|Γ(α−1)/2
δ dx

]

=: c[S1 + S2 + S3].
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To the quantities Si, i = 1, 2, 3, we apply Young’s inequality:

S1 ≤ ε

∫

Ω

η2lΓ
(α+1)/2
δ dx+ c(ε)

∫

Ω

η2lΓ
(α−1)/2
δ dx,

S2 ≤ ε

∫

Ω

η2lΓ
(α+1)/2
δ dx+ c(ε)

∫

Ω

η2l−2|∇η|2Γ(α−1)/2
δ dx,

S3 ≤ ε

∫

Ω

η2lΓ
(α+1)/2
δ dx+ c(ε)

∫

Ω

η2l|∇2uδ|2Γ(α−3)/2
δ dx.

For ε sufficiently small we obtain from (2.16)

(2.17)

∫

Ω

η2lΓ
(α+1)/2
δ dx

≤ c

[
∫

Ω

η2lΓ
(α−3)/2
δ |∇2uδ|2 dx+

∫

Ω

η2l−2[η2 + |∇η|2]Γ(α−1)/2
δ dx

]

.

In a final step we estimate

∫

Ω

η2l−2|∇η|2Γ(α−1)/2
δ dx =

∫

Ω

η2l−2Γ
(α+1)/4
δ |∇η|2Γ(α−3)/4

δ dx

≤ ε

∫

Ω

η4l−4Γ
(α+1)/2
δ dx+ c(ε)

∫

Ω

|∇η|4Γ(α−3)/2
δ dx

≤ ε

∫

Ω

η2lΓ
(α+1)/2
δ dx+ c(ε)

∫

Ω

|∇η|4Γ(α−3)/2
δ dx,

where we have used η4l−4 ≤ η2l, l ≥ 2, on account of 0 ≤ η ≤ 1. Clearly it holds

∫

Ω

η2lΓ
(α−1)/2
δ dx ≤ ε

∫

Ω

η2lΓ
(α+1)/2
δ dx+ c(ε)

∫

Ω

η2lΓ
(α−3)/2
δ dx,

and (2.17) implies

(2.18)

∫

Ω

η2lΓ
(α+1)/2
δ dx

≤ c

[
∫

Ω

η2lΓ
(α−3)/2
δ |∇2uδ|2 dx+

∫

Ω

[ |∇η|4 + η2l]Γ
(α−3)/2
δ dx

]

.

Let us choose α = 3 in (2.18) yielding

(2.19)

∫

Ω

η2lΓ2
δ dx ≤ c

[
∫

Ω

η2l|∇2uδ|2 dx+ c(η)

]

.
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On the right hand side of (2.19) we apply (2.12) for the choice s = µ/2 yielding

(2.20)

∫

Ω

η2lΓ2
δ dx ≤ c

[

δ

∫

Ω

η2l−2|∇η|2Γµ/2+1−τ/2
δ dx

+

∫

Ω

η2l−2|∇η|2Γµ/2+1−µ/2
δ dx+ c(η)

]

.

Moreover, (2.4) implies
µ

2
− τ

2
+ 1 < 2

and from (1.15) it follows
µ

2
− µ

2
+ 1 < 2,

thus we have to handle terms like
∫

Ω

η2l−2Γp
δ |∇η|2 dx

with exponent p ∈ (1, 2) on the right hand side of (2.20). Evidently it holds for l

sufficiently large
∫

Ω

η2l−2|∇η|2Γp
δ dx ≤ ε

∫

Ω

η2lΓ2
δ dx+ c(ε, η)

and therefore (2.20) implies

(2.21) |∇uδ| ∈ L4
loc(Ω) uniformly in δ.

Next we let α = 7 in (2.18) and s = 2 + µ/2 in (2.12). Taking into account

(2.21) a repetition of the preceeding calculations leads to |∇uδ| ∈ L8
loc(Ω) and by

iteration we find for any q <∞

(2.22) |∇uδ| ∈ Lq
loc(Ω) uniformly in δ.

With (2.22) we deduce from (2.12) with the choice s = µ/2 uniform higher

weak differentiability, i.e.

(2.23) uδ ∈W 2,2
loc (Ω) uniformly in δ.

From

K[uδ] ≤ Kδ[uδ] ≤ Kδ[u0] ≤ c(u0) <∞
together with

‖uδ‖L∞(Ω) ≤ max{|m1|, |m2|}
it follows

sup
0<δ<1

‖uδ‖W 1,1(Ω) <∞,
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hence there is a function u ∈ BV(Ω) such that

(2.24) uδ → u in L1(Ω)

at least for a subsequence. We claim that u is K-minimizing. Let v ∈ BV(Ω). By

Proposition 1.1 (1), and (2.24) it holds

K[u] ≤ lim
δ→0

K[uδ].

At the same time we have by the minimizing property of uδ

K[uδ] ≤ Kδ[uδ] ≤ Kδ[v] → K[v] as δ → 0,

which proves our claim. Obviously (2.24) implies the validity of (2.22) and (2.23)

for the function u. Moreover, the radial symmetry of uδ extends to u. Since,

by embedding, û ∈ W 2,2
loc (̺1, ̺2) implies u ∈ C1(Ω), the proof of Theorem 1.1 is

completed. �

3. Proof of Theorem 1.2 and Corollary 1.1

Proof of Theorem 1.2: Suppose that ũ is any given solution of (1.12). The

first part of Theorem 1.1 guarantees that ũ is sufficiently smooth such that any

solution of (1.12) is of the form ũ+ c, c ∈ R.

In order to show uniqueness together with claim (1), we distinguish four dif-

ferent cases which correspond to the different scenarios for the comparison with

a shifted function:

Case 1. The data are attained on the whole boundary ∂Ω.

Then, if ũ + c, c ∈ R, is a candidate for a possibly different minimizer, then

on account of

0 =

∫

∂Ω

|ũ− u0| dH1 =

∫

∂Ω

|ũ + c− u0| dH1 = |c|H1(∂Ω),

c = 0 is immediate, hence ũ is the unique solution. (Case 1 corresponds to [5,

Lemma 5.5].)

Case 2. Both for |x| = ̺1 and for |x| = ̺2 the solution ũ does not attain the

boundary data.

Following [10], we let for any w ∈ BV(Ω)

∂w+Ω := {x ∈ ∂Ω: w(x) > u0(x)},
∂w−Ω := {x ∈ ∂Ω: w(x) < u0(x)},
∂w0 Ω := {x ∈ ∂Ω: w(x) = u0(x)},
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and observe that Theorem 2.4 of this reference just needs the hypothesis of the

strict convexity of the linear growth energy density. Thus, Theorem 2.4 shows for

the solution ũ

(3.1) |H1(∂ũ+Ω)−H1(∂ũ−Ω)| ≤ H1(∂ũ0Ω).

Since the boundary data are completely ignored in the case under consideration,

we have

(3.2) H1(∂ũ0Ω) = 0 and in conclusion H1(∂ũ+Ω) = H1(∂ũ−Ω).

This, however, is not possible on account of

(3.3) |{|x| = ̺1}| < |{|x| = ̺2}|.

Case 3. The boundary data are attained for |x| = ̺1, they are not attained for

|x| = ̺2.

In this case

∂ũ0Ω = {|x| = ̺1}
gives a contradiction referring to (3.1) and (3.3).

Case 4. The boundary data are attained for |x| = ̺2, they are not attained for

|x| = ̺1.

This case is possible and in accordance with our claim

ũ = m2 on {|x| = ̺2} for any solution ũ of (1.12).

Since by Theorem 1.1 uniqueness up to additive constants holds true, we now

even have the uniqueness of solutions on account of the attainment of the data

for |x| = ̺2.

Next we prove our claim (2). In the following m2 is fixed and we suppose by

the first part of the theorem that for any solution under consideration we have

u(̺2) = u0(̺2) = m2 and without lost of generality m2 > m1 =: m.

In the case m2 < m1 the analogous arguments are obvious.

Let us define for any w ∈ BV(Ω) satisfying w = m2 for |x| = ̺2 and for any

real number ζ < m2 the energies

K0[w] :=

∫

Ω

g(|∇aw|) dx,

Kζ[w] :=

∫

Ω

g(|∇aw|) dx + g′∞|∇sw|(Ω) + g′∞

∫

|x|=̺1

|w − ζ| dH1.
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By the first part and by Theorem 1.1, the unique solution uζ(x) = ûζ(|x|) of the
minimizing problem

Kζ [w] → min in BV(Ω)

in particular is of class W 1,1(Ω), hence

(3.4) Kζ[uζ ] =

∫

Ω

g(|∇uζ |) dx+ g′∞

∫

|x|=̺1

|uζ − ζ| dH1

and Kζ[w] takes the form (3.4) whenever w ∈ W 1,1(Ω).

Establishing our claim (a) we suppose by contradiction that there exists ̺ ∈
(̺1, ̺2) such that ûζ(̺) < ζ.

Then the continuity of uζ yields a real number ˆ̺∈ (̺, ̺2) such that ûζ(ˆ̺) = ζ

and the choice

wζ(x) :=

{

uζ(x) for |x| ∈ (ˆ̺, ̺2),

ζ for |x| ∈ (̺1, ˆ̺]

immediately contradicts the minimality of uζ .

In order to prove claim (b) we suppose that there exist real numbers

(3.5) ζ1 < ζ2 and ûζ2(̺1) = ζ
(+)
2 < ζ

(+)
1 = ûζ1(̺1).

Part (a) shows that in this case we have

(3.6) ζ1 < ζ2 ≤ ζ
(+)
2 < ζ

(+)
1 < m2

which guarantees the positive sign of the penalty terms below.

Note that, given two real numbers ξ, κ such that m2 ≥ ξ ≥ κ, part (a) also

implies the representation formula

(3.7)

Kξ[uξ] = K0[uξ] + g′∞

∫

|x|=̺1

|uξ − ξ| dHn−1

= K0[uξ] + g′∞2π̺1(ûξ(̺1)− ξ)

= K0[uξ] + g′∞2π̺1(ûξ(̺1)− κ)− g′∞2π̺1(ξ − κ)

= Kκ[uξ]− g′∞2π̺1(ξ − κ).

Now we proceed by observing

(3.8)

Kζ1 [uζ1 ] = K0[uζ1 ] + g′∞2π̺1(ζ
(+)
1 − ζ1)

= K0[uζ1 ] + g′∞2π̺1(ζ
(+)
1 − ζ2) + g′∞2π̺1(ζ2 − ζ1)

≥ Kζ2 [uζ2 ] + g′∞2π̺1(ζ2 − ζ1)

= Kζ1 [uζ2 ],
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where we recall (3.6) for the discussion of the absolute values in the penalty term.

Moreover, the inequality

K0[uζ1 ] + g′∞2π̺1(ζ
(+)
1 − ζ2) = Kζ2 [uζ1 ] ≥ Kζ2 [uζ2 ]

follows from the minimality of uζ2 and the last equality in (3.8) is due to (3.7).

Finally we observe that inequality (3.8) would give uζ1 = uζ2 by uniqueness of

minimizers which contradicts the hypothesis (3.5), i.e. we have a contradiction to

ζ
(+)
2 < ζ

(+)
1 , and the proof of Theorem 1.2 is complete. �

Proof of Corollary 1.1: Using the notation of Theorem 1.1 we first recall

two facts that are already established above:

(1) û ∈W 1,1(̺1, ̺2) ∩ C1(̺1, ̺2);

(2) û(̺2) = m2.

For the reader’s convenience we sketch some general observations on the Euler

equation which can also be found in [4]:

Given a test function η ∈ C∞
0 (Ω) we have

(3.9)

∫

Ω

g′(|∇u|)
|∇u| ∇u · ∇η dx = 0.

Inserting

∇u = û′(|x|) x|x| ,

and choosing η(x) = η̂(|x|) we obtain

(3.10) 0 =

∫

Ω

g′(|û′|) û
′(|x|)

|û′(|x|)| η̂
′(|x|) dx = 2π

∫ ̺2

̺1

g′(|û′|) û
′

|û′| η̂
′r dr.

Note that on account of (1.5) the expression g′(t)/t is well defined in the limit

t→ 0.

Using (3.10), Du Bois–Reymond’s lemma as variant of the fundamental lemma

implies the existence of a real number λ ∈ R such that

(3.11) g′(|û′|) û
′

|û′| =
λ

r
.

If û 6≡ 0, then zeroes of û are excluded by (3.11) and supposing without loss

of generality m1 < m2 we have û′ > 0 and (3.11) reduces to

(3.12) g′(û′(r)) =
λ

r
for all r ∈ (̺1, ̺2).
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By assumption g is a strictly convex function, i.e. g′ is a strictly increasing

function and we have that

g′ : (0,∞) → (0, g′∞) is one-to-one,

hence we obtain from (3.12)

(3.13) 0 < û′(r) = (g′)−1
(λ

r

)

for all r ∈ (̺1, ̺2).

Note the validity of (3.12) for all r ∈ (̺1, ̺2) and in conclusion the possible values

of λ are given by

(3.14) 0 < λ ≤ ̺1g
′
∞.

Finally we consider the possible range for realizing boundary data:

∆m(λ) := u(̺2)− u(̺1) =

∫ ̺2

̺1

(g′)−1
(λ

r

)

dr,

where we note that ∆m(λ) → 0 as λ→ 0.

Now, on account of (3.14), for any ̺1 < ˆ̺ < ̺2 the function (g′)−1(λ/r) is

bounded in (ˆ̺, ̺2] with a constant not depending on λ, hence a critical behavior

may just be expected at ̺1 in the limit λ→ ̺1g
′
∞.

Summarizing these observation we obtain that, if

lim
λ→̺1g′

∞

∫ ̺2

̺1

(g′)−1
(λ

r

)

dr = ∞,

then ∆m(λ) takes any value in (0,∞) and for all m1 < m2 ∈ R problem (1.12)

admits a solution taking the boundary data.

If

lim
λ→̺1g′

∞

∫ ̺2

̺1

(g′)−1
(λ

r

)

dr =: ∆m∞ <∞,

then a solution taking the boundary data exists if and only if m2 −m1 < ∆m∞.

At this point we note that, given ζ1 < ζ2 such that ûζ1(̺1) = ûζ2(̺1), the

arguments yielding monotonicity imply ûζ1 ≡ ûζ2 (compare (3.5) and (3.6) in the

case ζ
(+)
2 ≤ ζ

(+)
1 ).

Let us finally suppose that ζ1 < ζ2 < m2 −∆m∞ for some real number ζ. By

the above considerations we have

ûζ1(̺1) = ûζ2(̺1) = m2 −∆m∞,

and the limit number m2 −∆m∞ serves as the boundary datum for ûζ1 as well

as for ûζ2 , which immediately gives the corollary. �
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Remark 3.1. Having (3.13) in mind, one may try to attack the problem via

this explicit representation of the derivative of the solution. However, recall that

(3.13) is derived by supposing the solution to be sufficiently regular. We also recall

that the Giaquinta–Modica–Souček example of [18] is based on a contradiction to

the assumption of Sobolev regularity.

Hence, the first step on the way towards the use of explicit solutions should be

the construction of a suitable regularization.

In order to illustrate the main difficulty, let us concentrate on the minimal

surface energy with standard quadratic regularization as a model case, i.e. we

consider for fixed δ > 0

g(t) =
√

1 + t2, gδ(t) = g(t) +
δ

2
t2, g′δ(t) =

t√
1 + t2

+ δt, t ≥ 0.

Exactly as in (3.13) we derive (ûδ denoting the smooth solution of the regularized

problem)

û′δ(r) = (g′δ)
−1

(λ

r

)

with one-to-one function (g′δ)
−1 : (0,∞) → (0,∞).

Note that we have the analogue of (3.12) again on (̺1, ̺2) but in contrast to

(3.14) any positive constant λδ provides a suitable choice.

Let us abbreviate for the moment (rδ ∈ (̺1, ̺2) fixed)

τδ = û′δ(rδ) > 0, yδ =
λδ
rδ

> 0, i.e. by (3.12) yδ =
τδ

√

1 + τ2δ
+ δτδ,

hence we obtain

(3.15) τ2δ (1− y2δ ) = y2δ −
[

2δτ2δ

√

1 + τ2δ + δ2τ2δ (1 + τ2δ )
]

.

Note that the left hand side of (3.15) proves the right hand side of (3.15) to be

positive whenever yδ < 1 and to be negative whenever yδ > 1.

We estimate the zeroes with some asymptotic considerations (which can be

validated by simple numerical experiments) and observe for small δ

(3.16) yδ = 1 ⇒ τδ ∼ δ−1/3.

We summarize that, if for any δ > 0 there exists some rδ ∈ (̺1, ̺2) such that

λδ = rδ, then by (3.16) the regularizing sequence is not uniformly Lipschitz.

If we would have an initial condition like

(3.17) û′δ(̺1) = c, c denoting a positive constant not depending on δ
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for the ODE under consideration, then we would obtain the desired estimate

λδ < ̺1 on account of

λδ
̺1

= g′δ
(

û′δ(̺1)
)

=
c√

1 + c2
+ δc < 1

by choosing δ sufficiently small.

An estimate in the spirit of (3.17) in fact is the main result of [4], see (4.5),

and established by the construction of barrier functions.

This is in accordance with the examples given in the next section. The first

examples are explicitely solved with parameter λ < ̺1, hence û′(̺1) remains

bounded. In the third example λ has to pass to the limit ̺1 if m2−m1 approaches

(and crosses) the finite value ∆m∞.

It remains an open question, whether, for instance, a refined regularization

process could eliminate the problems sketched above.

Concerning these remarks and the following examples we finally like to refer

to the classical paper [16] by R. Finn in the minimal surface case.

4. Examples

We finally sketch three characteristic examples by presenting explicit solutions.

To this purpose we recall the one parameter family given in (1.7) (now denoted

by gµ)

gµ(t) :=







t− 1

2− µ
(1 + t)2−µ − 1

µ− 2
if µ 6= 2,

t− ln(1 + t) if µ = 2.

Note that g′µ∞
= 1 for any µ > 1.

With this choice of gµ, the Euler equation (3.13) reads as

(4.1) û′ =
[ r

r − λ

]1/(µ−1)

− 1.

We note that the condition (1.9) of [4] motivates to consider examples choosing

1 < µ < 2, µ = 2, µ > 3, respectively.

(1) Suppose that µ = 3/2, i.e. 1 < µ < 2. Then

û(r) = 2λ ln(r − λ)− λ2

r − λ
+ c, c ∈ R,

provides an exact solution. With the notation from above we have

∆m(λ) :=
[

2λ ln(̺2 − λ)− λ2

̺2 − λ

]

−
[

2λ ln(̺1 − λ) − λ2

̺1 − λ

]

.
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We see that in this case we have

∆m(λ) → ∞ as λ→ ̺1,

and with the right choice of the free parameters λ, c we obtain a smooth

solution to (1.12) taking the boundary data.

(2) Consider the limit case µ = 2. We then have

û(r) = λ ln(r − λ) + c

and as above we find for any given boundary data a solution realizing this

data.

(3) In the case µ = 3 we find as solution of the Euler equation

û(r) =
√

r2 − rλ − t+
λ

2
ln
[2r − λ+ 2

√
r2 − rλ

2
+ c

]

.

Now we note that

∆m∞ <∞,

hence that boundary data cannot be attained if ∆m∞ < m2 −m1.
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