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Unified computational approach to nilpotent algebra
classification problems

Shirali Kadyrov, Farukh Mashurov

Abstract. In this article, we provide an algorithm with Wolfram Math-
ematica code that gives a unified computational power in classification of
finite dimensional nilpotent algebras using Skjelbred-Sund method. To il-
lustrate the code, we obtain new finite dimensional Moufang algebras.

1 Introduction
Let A be a finite dimensional algebra over the filed of complex numbers C equipped
with a bilinear product denoted by x · y. Given a variety defined over certain poly-
nomial identities, one of the classical research problems is to classify, up to isomor-
phism, all algebras within the variety with fixed dimension. Varieties of associative,
alternative, Lie, Novikov, Jordan, assosymmetric, Leibniz, Zinbiel, and Tortkara
algebras are some of the most studied varieties, see e.g. [1],[2],[6],[8],[15],[17] and
references therein. As described in the next section, classification involves several
steps each requiring to symbolically solve systems of polynomial equations. Com-
putational effort depends on many variables including the dimension of the variety,
bilinear product, and number of identities and it may be required to solve system
of more than n3 polynomial equations with n2 unknowns, where n is the fixed
dimension of the variety. Obviously, the computations could become cumbersome
even when the dimension is as little as 2, see e.g. [9]. As such, in part many authors
rely on computer assisted classifications.

Our goal in this article is to provide a unified algorithm with a code written in
Wolfram Mathematica to ease the computation aspects of the classification problem
for nilpotent algebras and illustrate it with a new classification result. It is unified

2010 MSC: 17A30, 68W30
Key words: Algebra, Skjelbred-Sund classification, finite dimensional nilpotent algebra, Wol-

fram Mathematica, symbolic solver, algorithm
Affiliation:

Sh. Kadyrov – Suleyman Demirel University, Kaskelen, Kazakhstan
E-mail: shirali.kadyrov@sdu.edu.kz

F. Mashurov – Institute of Mathematics and Mathematical Modeling, Almaty and
Suleyman Demirel University, Kaskelen, Kazakhstan
E-mail: f.mashurov@gmail.com



216 Shirali Kadyrov, Farukh Mashurov

in the sense that a minimal effort is required to run the code, namely define the
bilinear product and polynomial identities for the kind of algebraic variety being
studied. Moreover, most of the computational steps are taken care of by the code
as opposed to the previous works. Another significance of the current work is
that it focuses on explaining the algorithms and the details of the full source code
while the previous works were concentrated on algebraic classification with little
attention to coding. The code is successfully tested on several previously obtained
classification results. Moreover, it was used to classify assosymmetric algebras of
dimension 4 in [13] and one generated assosymmetric algebras of dimension 5 and
6 in [19]. We illustrate our code and obtain new 4-dimensional Moufang algebra.

In the next section, we provide the background for steps needed to apply well-
known Skjelbred-Sund classification method together with the algorithms that we
follow in writing the code. In the follow up section § 3 we provide new results
to illustrate our unified symbolic computational approach. The original code by
the authors is provided open access through [14]. Finally in § 4 we conclude with
possible future research directions.

2 Skjelbred-Sund classification method
Skjelbred-Sund classification method is one of the classical methods to classify finite
dimensional nilpotent algebras which goes back to [21], where used central exten-
sions of less than 6-dimensional Lie algebras to describe nilpotent 6-dimensional
Lie algebras. More recently, [12] used Skjelbred-Sund in classification of all non-
Lie central extensions of all 4-dimensional Malcev algebras and [10] in classification
of five-dimensional nilpotent Jordan algebras. For various results where the same
method was used for algebraic classification of finite dimensional nilpotent algebras
from different varieties we refer to [7], [11], [16], and references therein.

For an excellent exposition of the method we refer to [10] and [12]. Here, we
simply review some important notions used in the classification.

We let A denote an n dimensional algebra in certain variety L defined by set of
polynomial identities and V be a vector space over C. We define Z2

L(A, V ) as the
set of bilinear forms θ : A ×A −→ V satisfying all identities in the variety L. That
is, Z2

L(A, V ) is the set of closed bilinear forms, also known as cocycles. For a linear
map f from A to V, we define a map δf : A× A −→ V given by δf(x, y) = f(xy).
It is easy to see that δf ∈ Z2

L(A, V ). Therefore,

B2
L (A, V ) := {θ = δf |f ∈ Hom (A, V )}

is a subspace of Z2
L(A, V ). The elements of B2

L (A, V ) are called coboundaries. The
second cohomolgy space is define as

H2
L (A, V ) := Z2

L(A, V )
/
B2

L (A, V ) .

We let Aut(A) denote the automorphism group of A and take φ ∈ Aut(A). If
we define an action of Aut(A) on Z2

L(A, V ) via φθ(x, y) = θ(φ(x), φ(y)) for every
θ ∈ Z2

L(A, V ), then necessarily φθ ∈ Z2
L(A, V ). That is, Aut(A) acts on Z2

L(A, V ).
Furthermore, φθ ∈ B2

L(A, V ) if and only if θ ∈ B2
L(A, V ), so that Aut(A) also acts

on H2
L(A, V ).
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We let V be a vector space of dimension m and θ ∈ Z2
L(A, V ). With a multipli-

cation “·Aθ” on Aθ := A⊕ V given by

(x+ v1) ·Aθ (y + v2) = x · y + θ(x, y) for all x, y ∈ A and v1, v2 ∈ V,

Aθ becomes an algebra in the variety L, called m-dimensional central extension of
A by vector space V.

Let {e1, e2, . . . , em} be a basis for V. Then, any θ ∈ Z2
L(A, V ) can be uniquely

written as θ(x, y) =
∑s
i=1 θi(x, y)ei, for some θi ∈ Z2

L(A,C). The set Ann(θ) :=
{x ∈ A : θ(x,A) + θ(A, x) = 0} is called the annihilator of θ. The annihilator of an
algebra A is defined as the ideal Ann(A) = {x ∈ A : xA + Ax = 0}.

We know that every finite-dimensional nilpotent algebra is a central extension
of some nilpotent algebra of lower dimension, see e.g. [12]. Therefore, to classify all
nilpotent algebras of a fixed dimension in variety L, all we need is to classify cocycles
of nilpotent algebras A of lower dimension with condition Ann(A) ∩ Ann(θ) = 0
and central extensions that appear from them (see Lemma 5 in [12]).

Let Gm(H2
L(A,C)) be the set of all m−dimensional subspaces of H2

L(A,C). We
define

Tm(A) = {W := 〈[θ1], [θ2], . . . , [θm]〉 ∈ Gm(H2
L(A,C)) : ∩mi=1Ann(θi)∩Ann(A) = 0}.

We define action of Aut(A) on Tm(A) via φW = 〈[φθ1], [φθ2], . . . , [φθm〉 for
φ ∈ Aut(A) and W ∈ Tm(A). The set Orb(W ) is the orbit of W ∈ Tm(A) under
automorphism group of A.

Definition 1. Let A be an algebra and I be a subspace of Ann(A). If A = A0⊕ I
then I is called an annihilator component of A.

Assume that a vector space V has dimension m. For a given algebra A in
variety L, we let E(A, V ) be the set of all non-split central extensions of A by V,
where a non-split central extension is central extension of A without annihilator
components.

Theorem 1 (see [12]). There is a one-to-one correspondence between the set of
Aut(A)-orbits on Tm(A) and the set of isomorphism classes of E(A, V ).

Finally, we have the following steps to construct from the algebra A of dimension
n −m all non-split algebras in L of dimension n with m-dimensional annihilator.
We need to determine the following sets for given algebra A :

1. Compute base for Z2
L(A,C);

2. Compute base for B2
L(A,C) and H2

L(A,C);

3. Compute Aut(A);

4. Compute base for Ann(A) and Ann(A) ∩Ann(θ);

5. Compute Aut(A)-orbits on Tm(A);
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6. Construct the algebra in the variety L associated with a representative of
each orbit.

We now describe algorithms to handle steps from 1 to 4. The remaining two
steps are worked out by hand.

Let A be an algebra with basis {ei : i = 1, 2, . . . , n}. We use the following
notations: ∆i,j is the bilinear form ∆i,j : A× A −→ C such that

∆i,j(el, ek) = δilδjk. (1)

The set {∆i,j : 1 ≤ i, j ≤ n} is the basis of Z2
L(A,C). Every θ ∈ Z2

L(A,C) can be
uniquely written as θ =

∑n
1≤i,j≤n λi,j∆i,j where λi,j ∈ C.

Now, we give algorithms to compute the above mentioned steps. The first
algorithm shows how to compute Z2

L(A,C) given the dimension, the product rule,
and the polynomial identities. It amounts to defining the symbolic equations and
call the symbolic solver from the relevant programming language.

Algorithm 1: Algorithm to compute the basis for the Z2
L(A,C)

Input: Dimension of your algebra: n, Bilinear product rule: pr(·, ·),
Identities: {Iden1, . . . , Idenm}.

Define a symbolic basis for algebra A: {e1, . . . , en}
Define symbolic cocycles, a bilinear function: θ(·, ·) =

∑n
i,j λi,j∆i,j(·, ·) Let

k be the number of variables used in the Identities.
Define the system of symbolic nkm nonlinear equations:
for (i1, . . . , ik) ∈ {1, . . . , n}k do
for j=1:m do

Define an eq[i1, . . . , ik, j] that is obtained by applying θ to Idenj
when e[i1], . . . , e[ik] are substituted.

Use built in ‘solve’ function to solve the system {eq}.
Output: Basis for Z2

L(A,C): Z2A

The next algorithm uses outcomes of Algorithm 1 together with the same inputs.
In this case we aim to compute bases forB2

L(A,C) andH2
L(A,C). It does not require

any tricks to obtain a basis for B2
L(A,C) but simply write them down manually from

the given polynomial identities. In terms of coding this means to ask the program-
ming language to read coefficients of polynomial expressions. As for the second
part, we recall that B2

L(A,C) ⊂ Z2
L(A,C) and H2

L (A, V ) = Z2
L(A, V )

/
B2

L (A, V ).
Thus, the problem of finding a basis for H2

L(A,C) is equivalent to completing the
basis of Z2

L(A,C) given the basis of B2
L(A,C).
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Algorithm 2: Algorithm to compute the bases for B2
L(A,C) andH2

L(A,C)

Input: Dimension of your algebra: n, Bilinear product rule: pr(·, ·),
Identities: {Iden1, . . . , Idenm}, Basis for Z2(A,C) : {z1, . . . , zk}

From pr(·, ·) obtain a basis for B2(A) : B2A = {b1, . . . , bs}
Define empty set H2A := {};
for i=1:k do
if zi 6∈ span(B2A) then

Add zi to H2A;
Add zi to B2A;

Output: Basis for B2
L(A,C) and H2

L(A,C): B2A, H2A

Computing the Aut(A), Algorithm 3, is one of the main steps in the above
described method and the one with large computational cost. We may represent
an automorphism with an n×n invertible square matrix that respects the bilinear
product rule. This requires to define symbolic matrix and define system of symbolic
equations and finally call the solve function.

Algorithm 3: Algorithm to find the automorphism group

Input: Dimension of your algebra: n, Bilinear product rule: pr(·, ·)
Define matrix GAutn×n; Define homomorphism function
F [{x, y}] = pr[F [x], F [y]]− F [pr[x, y]];

Define mapping of basis by F [ei] =
∑n
j=1 λi,jej ;

for i,j; n do
Substitute basis to F [{ei, ej}] and define by Eq

end
Use ”solve” to find is set of solutions λij and define by Solution;
Obtained solutions substitute to matrix GAut, that is
for i=1; Length[Solutions] do

Mat[i]=GAut/.Solution[[i]]
end
Define set Automorphism={};
if Det[Mat[i]]!=0 then

Add to Automorphism
end
Output: Matrix forms of Automorphism group : Automorhism

The next three algorithms are allocated for step 4 to compute annihilators. The
Algorithm 4 computes the action of the automorphism group on H2

L(A,C) and uses
outcomes of Algorithm 2 and Algorithm 3. Action of automorphism group defined
by φT ∗M ∗ φ where φ ∈ Aut(A) and M is matrix form of H2

L(A,C).
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Algorithm 4: Algorithm of action of the automorphism group on
H2

L(A,C)

Input: Automorphism group of algebra, basis of H2
L(A,C).

for i=1; Length[Automorphism] do
ActAut[i]=Transpose[Automorphism[[i]]].MatrixFormH2.Automorphism[[i]]

end
Output: Action of automorphism group on H2

L(A,C): ActAut[i]

Next algorithm uses Algorithm 4 to compute bases for Ann(A). Again one
needs to define the system of polynomial equations and call the solver.

Algorithm 5: Finding basis of annihilator.
Input: Multiplication of basis elements
Define linear combinations of basis elements of algebra by
SumElemOFAnn;

Define empty set by ProdSumElemOFAnn;
for i=1; dim do

pr[SumElemOFAnn, e[i]] == 0 add to ProdSumElemOFAnn;
pr[e[i], SumElemOFAnn] == 0 add to ProdSumElemOFAnn;

end
Solve ProdSumElemOFAnn after obtained solution put to
SumElemOFAnn;
Output: Basis of Annihilator: SpanAnn.

Finally, the last algorithm below uses outcome of Algorithm 5 and gives condi-
tions of Ann(A) ∩Ann(θ) = 0 :

Algorithm 6: Intersection condition of Ann(A) and Ann(θ) :

Input: A is n dimensional algebra, basis of Ann(A) and basis of H2
L(A,C)

Define the following :
Linear combinations of basis elements of Ann(A) by SpanAnn1.
Define ∆i,j as in (1);
OpenBraket[x , y ] := x[y];
ConditionOfAnnAndTheta = {};
for j;n+1 do
for i;Length[H2] do

Sum[αiOpenBraket[H2[[i]]],{SpanAnn1[[1]], e[j]}]==0 add to
ConditionOfAnnAndTheta;

Sum[αiOpenBraket[H2[[i]]],{e[j],SpanAnn1[[1]]}]==0 add to
ConditionOfAnnAndTheta;

end
end
Output: Condition of Ann(A)∩Ann(θ) = 0 : ConditionOfAnnAndTheta .
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3 Application: classification of four dimensional nilpotent Mo-
ufang algebras.

To illustrate the code we now obtain new 4-dimensional algebra for the variety of
Moufang algerba. For the detailed previous study on Moufang algebras see in [18],
[20] and here we adopt the definition given by [22].

An algebra M is called Moufang algebra if it satisfies the following polynomial
identities:

(x, y, z) = −(z, y, x),
((xy)z)t+ ((zy)x)t = x(y(zt)) + z(y(xt)),
t(x(yz) + z(yx)) = ((tx)y)z + ((tz)y)x,

(xy)(tz) + (zy)(tx) = (x(yt))z + (z(yt))x,

(2)

where (x, y, z) = (xy)z − x(yz).
Firstly, we need to give for the code some information about Moufang algebra

in the following form:
We first input the number of identities denoted by n. In our case we set

n = 4 ;

The multiplication of basis elements defined by pr[∗, ∗]. The identities defined
such functions Ident[i][{x , y , z , ...}], where i ∈ {1, .., n} and first product should
be written with capital “Pr”. Given identities should be in homogeneous multi-
linear form. Also, we denote the length of monomials in identities by LengthOf-
Monomial[i] where i ∈ {1, .., n}. Since, we consider Moufang algebra we input the
identities (2) in the following form

Ident [ 1 ] [ { x , y , z } ] :=
Pr [ pr [ x , y ] , z ]−Pr [ x , pr [ y , z ] ]+ Pr [ pr [ z , y ] , x]−Pr [ z , pr [ y , x ] ]

LengthOfMonomial [ 1 ] = 3 ;

Ident [ 2 ] [ { x , y , z , t } ] :=
Pr [ pr [ pr [ x , y ] , z ] , t ]−Pr [ x , pr [ y , pr [ z , t ] ] ] +

Pr [ pr [ pr [ z , y ] , x ] , t ]−Pr [ z , pr [ y , pr [ x , t ] ] ]
LengthOfMonomial [ 2 ] = 4 ;

Ident [ 3 ] [ { x , y , z , t } ] :=
Pr [ pr [ pr [ t , x ] , y ] , z ]−Pr [ t , pr [ x , pr [ y , z ] ] ] +

Pr [ pr [ pr [ t , z ] , y ] , x]−Pr [ t , pr [ z , pr [ y , x ] ] ]
LengthOfMonomial [ 3 ] = 4 ;

Ident [ 4 ] [ { x , y , z , t } ] :=
Pr [ pr [ x , y ] , pr [ t , z ] ]+ Pr [ pr [ z , y ] , pr [ t , x ]]−

Pr [ pr [ x , pr [ y , t ] ] , z ]−Pr [ pr [ z , pr [ y , t ] ] , x ]
LengthOfMonomial [ 4 ] = 4 ;

3.1 Choosing three dimensional Moufang algebras from the literature
As mentioned before, various three dimensional nilpotent algebra classifications
were considered in [4] including Moufang algebras. For our purposes, we need to
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extract the three dimensional algebras from this article.
To this end, we need to input dimension of algebra, in the code it is given as

dim. So,

dim =3;

Next step, we input multiplication table of algebra in the form pr[e[i], e[j]] = e[k]
where i, j ∈ {1, .., n}. If for some i, j the product pr[e[i], e[j]] = 0 then drop it. For
instance,

pr [ e [ 1 ] , e [ 1 ] ] : = e [ 2 ] ;
pr [ e [ 1 ] , e [ 2 ] ] : = e [ 3 ] ;
pr [ e [ 2 ] , e [ 1 ] ] : = e [ 3 ] ;

Now the code has all the information that it needs. Next we select from [17]
all two dimensional Moufang algebras and from [4] three dimensional nilpotent
Moufang algebras by using the following code:

ChangeTopr [ x ] := x / .{Pr−>pr}
Unident ={};
Do [ Unident=

Union [ Unident ,
Expand [ ChangeTopr [Map[ Ident [ i ] ,

Tuples [ bas i s , LengthOfMonomial [ i ] ] ] ] ] ] , { i , 1 , n } ]
I f [ Unident == {0} ,
Pr int [ Grid [{Text@

Sty l e [# ,” TableHeader ”]&/@{”The i d e n t i t i e s hold t rue . ”}} ,
Frame −> Al l ] ] ,

Pr int [ Grid [{Text@
Sty l e [# ,” TableHeader ”]&/@{”The i d e n t i t i e s do not hold . ”}} ,

Frame −> Al l ] ] ]

As result we have all 2-dimensional Moufang algebras:

M2
01 A3 : e1e1 = e2;

M2
02 D2(0, 0) : e1e1 = e1;

M2
03 D2(1, 1) : e1e1 = e2, e1e2 = e2, e2e1 = e2;

M2
04 E1(0, 0, 0, 0) : e1e1 = e1, e2e2 = e2;

M2
05 E5(0) : e1e1 = e1, e1e2 = e1, e2e1 = e2, e2e2 = e2;

M2
06 E5(1) : e1e1 = e1, e1e2 = e2, e2e1 = e1, e2e2 = e2;

Remark. It follows from Theorem 3.3 in [17] that any nontrivial 2-dimensional
Moufang algebra is isomorphic to one of the M2

0i algebras, where i ∈ {1, . . . 6}.
Moreover, from [17] we have: the variety of 2-dimensional Moufang algebras has
the following irreducible components defined by the algebras: M2

04, M
2
05 and M2

06.

Also, we get 3-dimensional nilpotent Moufang algebras:
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M3
01 : e1e1 = e2, e1e2 = e3, e2e1 = e3;

M3
02 : e1e1 = e2;

M3
03 : e1e2 = e3, e2e1 = e3;

M3
04 : e1e2 = e3, e2e1 = −e3;

M3
05(λ) : e1e1 = λe3, e2e1 = e3 e2e2 = e3;

3.2 Second cohomology of three dimensional nilpotent Moufang algebras.
Here, we apply our code constructed by Algorithm 1 and Algorithm 2 to obtain
Z2
L(A,C), B2

L(A,C), and H2
L(A,C).

M Z2 (M, C) B2(M, C) H2(M, C)

M3
01

〈 ∆1,1,∆1,2 + ∆2,1,

∆1,3 + ∆2,2 + ∆3,1

〉 〈
∆1,1,∆1,2 + ∆2,1

〉 〈
[∆1,3] + [∆2,2] + [∆3,1]

〉
M3

02

〈 ∆1,1,∆1,3,

∆1,2 + ∆2,1,∆3,1,

∆2,3 + ∆3,2,∆3,3

〉 〈
∆11

〉 〈 [∆1,3], [∆1,2] + [∆2,1],

[∆3,1], [∆2,3] + [∆3,2], [∆3,3]

〉

M3
03

〈 ∆1,1,∆1,2,∆2,1,

∆2,2,∆1,3 + ∆3,1,

∆2,3 + ∆3,2

〉 〈
∆1,2 + ∆2,1

〉 〈 [∆1,1], [∆2,1], [∆2,2],

[∆1,3] + [∆3,1], [∆2,3] + [∆3,2]

〉

M3
04

〈 ∆1,1,∆1,2,∆2,1,

∆2,2,∆1,3 − ∆3,1,

∆2,3 − ∆3,2

〉 〈
∆1,2 − ∆2,1

〉 〈 [∆1,1], [∆1,2], [∆2,2],

[∆1,3] − [∆3,1], [∆2,3] − [∆3,2]

〉
M3

05(α)
〈

∆1,1,∆1,2,∆2,1,∆2,2

〉 〈
λ∆1,1 + ∆2,1 + ∆2,2

〉 〈
[∆1,1], [∆1,2], [∆2,2]

〉

We see from the above table that the second cohomology spaces and auto-
morphism groups of M3

01,M
3
02,M

3
03,M

3
04, and M3

05(λ) algebras coincide with the
algebras J301, J

3∗
01, J

3∗
02, J

3∗
03, and J3∗04 in [5] respectively. As such, it is clear that these

algebras have the same central extensions. In other words, our calculations are
expected to produce the same four dimensional algebras, see Table 1. Indeed, that
is what we will get next which in particular gives us an opportunity to verify our
code.

3.3 Computation of central extensions of M3
01.

The next part is computing Aut(M3
01). This part constructed by Algorithm 3 and

we get the automorphism group Aut(M3
01) denoted by the set “Automorphism” in

the code. In our particular case, we get the following output: λ1,1 0 0
λ2,1 λ21,1 0
λ3,1 2λ1,1λ2,1 λ31,1

 ,

By Algorithm 4 the action of φ ∈ Aut(M3
01) on the subspace [θ] = α1([∆1,3] +

[∆2,2] + [∆3,1]) gives the following table:

M Aut(M) Matrix form of H2(M, C) Action of automorphism Where α∗
i ’s

group on H2(M, C) are equal:

M3
01


λ1,1 0 0

λ2,1 λ2
1,1 0

λ3,1 2λ1,1λ2,1 λ3
1,1


 0 0 α1

0 α1 0
α1 0 0

  β1 β2 α∗
1

β2 α∗
1 0

α∗
1 0 0

 α∗
1 = α1λ

4
1,1

Also, one of the steps of the construction a non-split algebra is computing basis
of annihilator and conditions required forAnn([θ])∩Ann(M3

01) = 0. By Algorithm 5
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our code gives output SpanAnn which is the set of basis elements for Ann(M3
01).

And by Algorithm 6 our code computes the conditions for Ann([θ])∩Ann(M3
01) =

0. That is, any element in u ∈ Ann(M3
01) can be expressed by λ3e3 where λ3 ∈ C

and it is defined in the code by SpanAnn1. Also, every [θ] ∈ H2(MC) is linear
combinations of α1([∆1,3]+[∆2,2]+[∆3,1]). Note that ∆i,j is function defined as (1).
We just check if u = λ3e3 ∈ SpanAnn1, when the following conditions θ(ej , u) = 0
and θ(u, ej) = 0 hold, where j ∈ {1, . . . n}. So, we get the following output:

Ann(M3
01) Condition of Ann([θ]) ∩Ann(M3

01)
{e3} α1λ3 = 0

All of the above calculations are performed within seconds by using our code.
At this stage, we need to obtain different orbits by hand. Since, we are interested
in Ann([θ])∩Ann(M3

01) = 0 we see that from above table that this holds whenever
α1 6= 0. If we take λ1,1 = 1

4
√
α1

we get 〈[∆1,3] + [∆2,2] + [∆3,1]〉, which finally leads

to new 4-dimensional nilpotent Moufang algebra from M3
01 :

M4
01 e1e1 = e2 e1e2 = e3 e1e3 = e4 e2e1 = e3 e2e2 = e4 e3e1 = e4

4 Conclusion
In this article, we explained a unified approach to produce new nilpotent algebras
which is one of the active research area in algebra. In part, we use the function
“solve”, the built in symbolic solver of Wolfram Mathematica, in handling the sys-
tem of polynomial equations. This is the main function that takes most of the
compilation time. The codes written by the authors in other software including
Matlab and Python gave worse results in terms of the running time and in some
cases failing to provide any solutions. It is no doubt that solving system of sym-
bolic nonlinear equations is not an easy task even for such advanced programming
language. However, one may dig into the “solve” function and may improve to
provide faster results for the kind of problems considered here.

Acknowledgments.
First author acknowledges the support by a grant from the Ministry of Education
and Science of the Republic of Kazakhstan within the framework of the Project
“AP08051987”. Second author acknowledges the support by a grant from the Min-
istry of Education and Science of the Republic of Kazakhstan within the framework
of the Project “AP09259551”. The authors are grateful to I. Kaygorodov for his
essential comments.

Appendix A.

Table 1: The list of obtained 4-dimensional nilpotent Moufang al-
gebras.

M Multiplication table
M4

01 : e1e1 = e2 e1e2 = e3 e1e3 = e4 e2e1 = e3
Continued on next page
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Table 1 – continued from previous page
M Multiplication table

e2e2 = e4 e3e1 = e4
M4

02 : e1e1 = e2 e2e3 = e4 e3e2 = e4 e3e1 = e4
M4

03 : e1e1 = e2 e1e2 = e4 e2e1 = e4 e3e1 = e4
e3e3 = e4

M4
04 : e1e1 = e2 e1e2 = e4 e2e1 = e4 e3e1 = e4

M4
05 : e1e1 = e2 e2e3 = e4 e3e2 = e4

M4
06 : e1e1 = e2 e1e2 = e4 e2e1 = e4 e3e3 = e4

M4
07 : e1e2 = e3 e1e3 = e4 e2e1 = e3 + e4 e2e3 = e4

e3e1 = e4 e3e2 = e4
M4

08 : e1e2 = e3 e1e3 = e4 e2e1 = e3 + e4 e2e2 = e4
e3e1 = e4

M4
09 : e1e2 = e3 e1e3 = e4 e2e1 = e3 + e4 e3e1 = e4

M4
10 : e1e2 = e3 e1e3 = e4 e2e1 = e3 e2e3 = e4

e3e1 = e4 e3e2 = e4
M4

11 : e1e2 = e3 e1e3 = e4 e2e1 = e3 e3e1 = e4
M4

12 : e1e2 = e3 e1e3 = e4 e2e1 = e3 e2e2 = e4
e3e1 = e4

M4
13 : e1e2 = e3 e1e3 = e4 e2e1 = −e3 e3e1 = −e4

M4
14 : e1e1 = e4 e1e2 = e3 e1e3 = e4 e2e1 = −e3

e3e1 = −e4
M4

15 : e1e2 = e3 e1e3 = e4 e2e1 = −e3 + e4 e3e1 = −e4
M4

16 : e1e2 = e3 e1e3 = e4 e2e1 = −e3 e2e2 = e4
e3e1 = −e4

M4
17 : e1e1 = e4 e1e2 = e3 e1e3 = e4 e2e1 = −e3

e2e2 = e4 e3e1 = −e4
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