
Czechoslovak Mathematical Journal

Baogen Xu; Wanting Sun; Shuchao Li; Chunhua Li
On the balanced domination of graphs

Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 4, 933–946

Persistent URL: http://dml.cz/dmlcz/149227

Terms of use:
© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149227
http://dml.cz


Czechoslovak Mathematical Journal, 71 (146) (2021), 933–946

ON THE BALANCED DOMINATION OF GRAPHS

Baogen Xu, Nanchang, Wanting Sun, Shuchao Li, Wuhan,

Chunhua Li, Nanchang

Received February 11, 2020. Published online October 11, 2021.

Abstract. Let G = (VG, EG) be a graph and let NG[v] denote the closed neighbourhood
of a vertex v in G. A function f : VG → {−1, 0, 1} is said to be a balanced dominating
function (BDF) of G if

∑

u∈NG[v]

f(u) = 0 holds for each vertex v ∈ VG. The balanced

domination number of G, denoted by γb(G), is defined as

γb(G) = max

{

∑

v∈VG

f(v) : f is a BDF of G

}

.

A graph G is called d-balanced if γb(G) = 0. The novel concept of balanced domination for
graphs is introduced. Some upper bounds on the balanced domination number are estab-
lished, in which one is the best possible bound and the rest are sharp, all the corresponding
extremal graphs are characterized; several classes of d-balanced graphs are determined.
Some open problems are proposed.

Keywords: domination number; balanced dominating function; balanced domination
number; d-balanced graph

MSC 2020 : 05C69, 05C70

1. Introduction

We denote G = (VG, EG) a finite simple graph with a vertex set VG and edge

set EG, without loops and multiple edges (for more background on graph theory and

for the notation not defined here we refer the reader to [1]). The order of G is the

number n = |VG| of its vertices and its size is the number |EG| of its edges.
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Given a graph G, its adjacency matrix A(G) is a 0-1 square matrix of order n

whose (i, j)-entry is 1 if and only if ij ∈ EG. For v ∈ VG, we define the open

neighbourhood and the closed neighbourhood of v as

NG(v) = {u : u ∈ VG, uv ∈ EG} and NG[v] = {v} ∪NG(v),

respectively. Let δ(G) be the minimum degree of G, whereas let ∆(G) be the max-

imum degree of G. A vertex of degree 1 is called a pendant vertex. Denote by c(G)

the cyclomatic number of G, that is c(G) = |EG| − |VG|+ ω(G), where ω(G) is the

number of connected components of G.

For a subset S ⊆ VG, let G[S] denote the subgraph of G induced by S. For

A,B ⊆ VG, let E(A,B) = {uv ∈ EG : u ∈ A, v ∈ B}.
Given a graph G, a subset D ⊆ VG is said to be a dominating set of G if NG(u)∩

D 6= ∅ for every vertex u ∈ VG \D. The domination number of G, written as γ(G),

is the smallest cardinality of a dominating set of G.

In recent years, the study of domination theory has attracted more and more

researchers’ attention. In 1995, Dunbar et al. in [5] first put forward and studied the

signed domination of graphs. Cockayne and Mynhardt in [3] generalized the signed

dominating function. Thus, many variations of domination concepts were introduced,

such as the minus domination (see [4]), the signed total domination (see [14]) and so

on. Some important results of this field were surveyed by Haynes, Hedetniemi and

Slater, see [6]. Xu in [9] proposed and studied the signed edge domination in graphs.

After that many concepts of the edge domination appeared, which include the signed

cycle domination (see [11]), the signed star domination (see [10]) and so on.

In this paper, we propose the concepts of the balanced dominating function and

balanced domination number of a graph. Let f : VG → R be a real valued function

defined on VG. Then, for a subset S ⊆ VG, we put f(S) :=
∑

v∈S

f(v).

Definition 1.1. Let G be a graph. A function f : VG → {−1, 0, 1} is said to be
a balanced dominating function (BDF) of G if f(NG[v]) = 0 holds for each vertex

v ∈ VG. The balanced domination number of G, written as γb(G), is defined as

γb(G) = max{f(VG) : f is a BDF of G}.

By Definition 1.1, we know that the constant function f = 0 is a BDF for any

graph G. Hence, γb(G) > 0 holds for any graph G. Obviously, if the function f is

a BDF of G, then −f is also a BDF of G. A balanced dominating function f of G is

maximum if f(VG) = γb(G). A graph G is said to be d-balanced if γb(G) = 0. Notice

that not all graphs are d-balanced. The tree depicted in Figure 1 is a nice example.

It is interesting and challenging to determine γb(G) of a graph G.
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Figure 1. A tree T with γb(T ) = 6.

Our paper is organized as follows. In Section 2, we give four sharp upper bounds on

the balanced domination number and some of the extremal graphs are characterized.

In Section 3, we determine some d-balanced graphs. In the last section, some open

problems are proposed.

Further on we need the following preliminary results.

Lemma 1.2 ([7]). Let G be a graph with n vertices. If δ(G) > 1, then γ(G) 6 1
2n.

Let G be a graph. The corona of G, denoted by G ◦ K1, is the graph obtained

from G by attaching exactly one pendant vertex to each vertex of G.

Lemma 1.3 ([12], [13]). Let G be a connected graph of order n. If δ(G) > 1,

then γ(G) = 1
2n if and only if G

∼= C4 or G is the corona of some connected graph

with 1
2n vertices.

Lemma 1.4 ([8]). Let G be a graph. If H is a subgraph of G, then c(H) 6 c(G).

In the whole context, for i ∈ {−1, 0, 1}, let

Ai = {v ∈ VG : f(v) = i}

and put r = |A0|, s = |A1| and t = |A−1|.

2. Some upper bounds on balanced domination numbers

In this section, we establish some sharp upper bounds on balanced domination

numbers of graphs. Some corresponding extremal graphs are identified.

Theorem 2.1. Let G be a graph with n vertices. Then

γb(G) 6 n+ 1−
√
1 + 4n.

The equality holds if and only if G is obtained by attaching exactly t pendant vertices

to each vertex in Kt.
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P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Clearly, n1 :=

s+ t 6 n and γb(G) = s− t = 2s− n1. Since γb(G) > 0, one has s > t.

For every vertex v ∈ A1, by Definition 1.1 we have f(NG[v]) = 0. Hence, v is

adjacent to at least one vertex in A−1. That is, |E(A1, A−1)| > s. Thus, there exists

a vertex u ∈ A−1 such that |NG[u] ∩ A1| > ⌈ s
t
⌉. Notice that f(NG[u]) = 0. Hence,

|NG[u] ∩ A1| = |NG[u] ∩ A−1|. Then

t = |A−1| > |NG[u] ∩ A−1| = |NG[u] ∩A1| >
⌈s

t

⌉

>
s

t
,

which implies that (n1 − s)2 = t2 > s. That is, s 6 n1 − 1
2 (
√
1 + 4n1 − 1). Hence,

(2.1) γb(G) = 2s− n1 6 n1 + 1−
√
1 + 4n1 6 n+ 1−

√
1 + 4n.

In what follows, we show the second part of our result.

Necessity. Let G be a graph with n vertices and γb(G) = n + 1 −
√
1 + 4n. In

view of the proof of (2.1), we may see that γb(G) = n + 1 −
√
1 + 4n if and only if

n = n1 and s = t2. That is, A0 = ∅ and t = 1
2 (
√
4n+ 1 − 1). Let u be an arbitrary

vertex in A−1. Notice that |NG[u] ∩ A1| = |NG[u] ∩ A−1| 6 |A−1| = t. Hence,

|E(A1, A−1)| =
∑

u∈A
−1

|NG[u] ∩A1| =
∑

u∈A
−1

|NG[u] ∩ A−1| 6 t2.

Together with |E(A1, A−1)| > |A1| = s = t2, we have

|E(A1, A−1)| = |A1| = t2 and |NG[u] ∩ A1| = |NG[u] ∩A−1| = |A−1| = t.

Hence, each vertex in A1 has exactly one neighbour in A−1 and any two vertices

in A−1 have no common neighbours in A1. Furthermore, G[A−1] = Kt. That is, G is

a graph obtained by attaching exactly t pendant vertices at each vertex of Kt.

Sufficiency. Let G be a graph obtained by attaching exactly t pendant vertices at

each vertex of Kt. Clearly, n = |VG| = t+ t2. Define a function f ′ on VG as

f ′(v) =

{

−1 if v ∈ Kt,

1 otherwise.

It is routine to check that f ′ is a BDF of G. Hence, γb(G) > f ′(VG) = t2 − t =

n+ 1−
√
1 + 4n. Together with (2.1), we have γb(G) = n+ 1−

√
1 + 4n. �

Theorem 2.2. Let G be an n-vertex graph with maximum degree ∆ and mini-

mum degree δ. Then,

(2.2) γb(G) 6
(∆− δ)n

2(δ + 1)
.

The equality holds if and only if G is ∆-regular.
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P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Then it is easy

to see that s + t 6 n and γb(G) = s − t. Since γb(G) > 0, one has s > t and thus

t 6 1
2n. By Definition 1.1, we have f(NG[v]) = 0 for each vertex v ∈ A1. Hence,

0 =
∑

v∈A1

f(NG[v]) =
∑

v∈A1

(|E({v}, A1)|+ 1− |E({v}, A−1)|)

= 2|EG[A1]|+ s− |E(A1, A−1)|.

That is, s = |E(A1, A−1)| − 2|EG[A1]|. Similarly, we have t = |E(A1, A−1)| −
2|EG[A

−1]|. Therefore,

(2.3) γb(G) = s− t = 2(|EG[A
−1]| − |EG[A1]|).

Note, also, that

∆t >
∑

v∈A
−1

dG(v) = |E(A0, A−1)|+ |E(A1, A−1)|+ 2|EG[A
−1]|

= |E(A0, A−1)|+ 4|EG[A
−1]|+ t

and

δs 6
∑

v∈A1

dG(v) = |E(A0, A1)|+ |E(A1, A−1)|+ 2|EG[A1]|

= |E(A0, A1)|+ 4|EG[A1]|+ s.

Then

|EG[A
−1]| 6

(∆− 1)t− |E(A0, A−1)|
4

and |EG[A1]| >
(δ − 1)s− |E(A0, A1)|

4
.

Recall that f(NG[v]) = 0 for each vertex v ∈ A0. Hence, |E(A0, A1)| = |E(A0, A−1)|.
In view of (2.3), we have

γb(G) = s− t = 2(|EG[A
−1]| − |EG[A1]|) 6

(∆− 1)t− (δ − 1)s

2
.

That is, s 6 (∆ + 1)t/(δ + 1). Together with t 6 1
2n, one has

γb(G) = s− t 6
(∆− δ)t

δ + 1
6

(∆− δ)n

2(δ + 1)
.

In what follows, we show the second part of our result.
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Necessity. Let G be a graph with n vertices and γb(G) = (∆− δ)n/2(δ + 1). In

view of the proof of (2.2), we may derive that γb(G) = (∆− δ)n/2(δ + 1) if and only

if at least one of the following conditions holds:

(a) ∆ = δ,

(b) s = t = 1
2n, each vertex in A1 is of degree δ and each vertex in A−1 is of

degree ∆.

If (a) holds, then we are done. Now, we assume δ 6= ∆. Hence, (b) holds and

thus A0 = ∅. Let v be an arbitrary vertex of A1. Since each vertex in A1 has

degree δ, we have |E({v}, A1)| + |E({v}, A−1)| = δ. Together with f(NG[v]) =

|E({v}, A1)|+1− |E({v}, A−1)| = 0, one has |E({v}, A−1)| = 1
2 (δ+1). By a similar

reasoning, we may show that |E({u}, A1)| = 1
2 (∆ + 1) for each vertex u ∈ A−1.

Therefore,

|E(A1, A−1)| =
∑

v∈A1

|E({v}, A−1)| = s
δ + 1

2

and

|E(A−1, A1)| =
∑

u∈A
−1

|E({u}, A1)| = t
∆+ 1

2
.

Notice that s = t. Then δ = ∆, a contradiction.

Sufficiency. It suffices to show the following claim.

Claim 2.3. Each k-regular graph G is d-balanced.

P r o o f of Claim 2.3. Let f be the maximum BDF of G, that is, f(VG) = γb(G).

Note that f(NG[v]) = 0 holds for every vertex v ∈ VG. Therefore,

(k + 1)f(VG) =
∑

v∈VG

f(NG[v]) = 0.

Hence, γb(G) = f(VG) = 0, i.e., G is d-balanced. �

In view of Claim 2.3, the sufficiency is obviously true. Theorem 2.2 is proved. �

Theorem 2.4. Let G be an n-vertex graph with the minimum degree δ > 1.

Then

(2.4) γb(G) 6 n− 2γ(G)

and the bound is tight.
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P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Let G1 = G[A0]

and I = {v ∈ A0 : dG1(v) = 0}. Notice that δ > 1 and f(NG[v]) = 0 for each vertex

v ∈ VG. Hence, each vertex in I is adjacent to at least one vertex in A−1. Let

G2 = G1 − I. Then δ(G2) > 1. By Lemma 1.2, one has γ(G2) 6 1
2 |VG2 | 6 1

2 |A0|.
Let D2 be the minimum dominating set of G2, i.e., |D2| = γ(G2) 6

1
2 |A0|.

Recall that f(NG[v]) = 0 for each vertex v ∈ A1. Then each vertex in A1 is

adjacent to at least one vertex in A−1. Hence, D2 ∪ A−1 is a dominating set of G,

which implies that γ(G) 6 |A−1|+ |D2| 6 |A−1|+ 1
2 |A0|. Therefore,

γb(G) = |A1| − |A−1| = n− 2|A−1| − |A0| 6 n− 2γ(G).

In order to show that the upper bound in (2.4) is the best possible, we construct

a class of graphs G such that γb(G) = |VG| − 2γ(G).

Let H be a graph and let G be a graph obtained from H by attaching exactly

1 + dH(v) pendant vertices to each vertex v ∈ VH . Clearly, |VG| = 2|VH | + 2|EH |
and γ(G) = |VH |. By (2.4), we have γb(G) 6 |VG| − 2γ(G) = 2|EH |. On the other
hand, we define a function f ′ on VG as

f ′(v) =

{

−1 if v ∈ VH ,

1 otherwise.

It is routine to check that f ′ is a BDF of G. Hence, γb(G) > f ′(VG) = |VG|−2|VH | =
2|EH |. Thus, γb(G) = |VG| − 2γ(G). �

The following result is an immediate consequence of (2.4) and Lemma 1.3.

Corollary 2.5. Let G be a graph. Then the corona of G is d-balanced.

Theorem 2.6. Let G be a connected graph with |VG| > 2. Then

(2.5) γb(G) 6
2|EG| − |VG|

2
.

The equality holds if and only ifG is obtained from a connected graphH by attaching

exactly dH(v) + 1 pendant vertices to each vertex v in VH .

P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G), and let

H = G[A−1]. Recall that r = |A0|. Obviously, s + t + r = |VG| and γb(G) = s − t.

Notice that f(NG[v]) = 0 for each vertex v ∈ VG. Hence, every vertex in A1 has at

least one neighbour in A−1, which implies that |E(A1, A−1)| > |A1|. Moreover,

0 =
∑

v∈A
−1

f(NG[v]) = |E(A1, A−1)| − |A−1| − 2|EH |.
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Therefore, |E(A1, A−1)| = |A−1| + 2|EH |. By Lemma 1.3, one has c(H) 6 c(G).

Notice that the cyclomatic number of G is c(G) = |EG| − |VG|+ 1. Then

|EH | = c(H) + |VH | − ω(H) 6 c(G) + t− ω(H) 6 |EG| − |VG|+ t.

Therefore,

s = |A1| 6 |E(A1, A−1)| = |A−1|+ 2|EH | 6 3t+ 2|EG| − 2|VG|.

Together with s = |VG| − r − t 6 |VG| − t, we have

2s 6 3t+ 2|EG| − 2|VG|+ |VG| − t = 2t− |VG|+ 2|EG|.

Hence, γb(G) = s− t 6 1
2 (2|EG| − |VG|).

In what follows, we show the second part of our result.

Necessity. Let G be a connected graph with |VG| > 2 and γb(G) = 1
2 (2|EG|−|VG|).

In view of the proof of (2.5), we know that γb(G) = 1
2 (2|EG|− |VG|) if and only if all

the following conditions hold:

(i) s = |VG| − t,

(ii) |A1| = |E(A1, A−1)|,
(iii) c(H) = c(G) and ω(H) = 1.

Let u be an arbitrary vertex of A1. By item (ii), we have |NG[u] ∩ A1| =

|NG[u] ∩ A−1| = 1. The item (i) implies that A0 = ∅. Therefore, u is a pendant
vertex of G.

Let w be an arbitrary vertex of A−1. Notice that f(NG[w]) = 0. Hence, w is

adjacent to exactly dH(w) + 1 vertices in A1. On the other hand, the item (iii)

implies that H is connected. Hence, G is the graph obtained from a connected

graph H by attaching exactly dH(w) + 1 pendant vertices to each vertex w ∈ VH .

Sufficiency. Assume that G is the graph obtained from a connected graph H

by attaching exactly dH(w) + 1 pendant vertices to each vertex w ∈ VH . Then,

|VG| = 2|VH |+2|EH | and |EG| = 3|EH |+ |VH |. According to the proof of the second
part of Theorem 2.4, we have γb(G) = 2|EH | = 1

2 (2|EG| − |VG|). �

3. d-balanced graphs

In this section, we determine some classes of d-balanced graphs.

Proposition 3.1. Let G be a graph. Then γb(G) ≡ 0 (mod 2).
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P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Let

G1 = G[A1 ∪ A−1].

For every vertex v ∈ VG1 , by Definition 1.1 we have f(NG[v]) = 0. It is routine to

check that

0 =
∑

v∈VG1

f(NG[v]) =
∑

v∈VG1

f(v) +
∑

uv∈EG1

(f(u) + f(v)).

Notice that 0 is even and f(u) + f(v) is even for each edge uv ∈ EG1 . Thus,

γb(G) =
∑

v∈VG1

f(v) is even. This completes the proof. �

Proposition 3.2. Let G be a graph. If ∆(G) 6 2 or ∆(G) = |VG| − 1, then G is

d-balanced.

P r o o f. Notice that a graph is d-balanced if and only if all of its components are

d-balanced. Hence, we assume that G is connected. Let f be the maximum BDF

of G, i.e., f(VG) = γb(G).

If ∆(G) = 0, then G ∼= K1. If ∆(G) = 1, then G ∼= K2. It is straightforward to

check that γb(K1) = γb(K2) = 0, as desired.

If ∆(G) = 2 and δ(G) = 1, then G ∼= Pn with n > 3. Notice that f(NG[v]) = 0 for

each vertex v ∈ VG. Therefore, each vertex in A1 (or A−1) is adjacent to exactly one

vertex in A−1 (or A1, respectively). Hence, |A1| = |A−1|, which implies that γb(G) =

|A1| − |A−1| = 0, i.e., G is d-balanced. If ∆(G) = δ(G) = 2, then G ∼= Cn and G is

2-regular. By Claim 2.3 (in the proof of Theorem 2.2), we have that G is d-balanced.

If ∆(G) = |VG| − 1, then assume without loss of generality that w is such a maxi-

mum degree vertex ofG. Thus, γb(G) = f(VG) = f(NG[w]) = 0, i.e., G is d-balanced.

�

A tree T is said to be a double star if T can be obtained from the disjoint union

K1,p∪K1,q by adding one edge to join the maximum degree vertices ofK1,p andK1,q.

We denote T by S(p, q).

Proposition 3.3. Let S(p, q) be a double star. Then S(p, q) is d-balanced if and

only if (p, q) 6= (2, 2). In addition, γb(S(2, 2)) = 2.

P r o o f. Let G = S(p, q). Assume, without loss of generality, that p > q and u1

(or u2) is the center of K1,p (or K1,q, respectively). If q = 0 or (p, q) = (1, 1), then

by Proposition 3.2, we obtain that G is d-balanced. So, in what follows, we assume

that q > 1 and p > 2.
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Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Notice that f(NG[v]) = 0

for every vertex v ∈ VG. By Definition 1.1, we have f(v) = −f(u1) for each vertex

v ∈ VK1,p \ {u1} and f(v) = −f(u2) for each vertex v ∈ VK1,q \ {u2}. Hence,

(3.1) f(NG[u1]) = (1−p)f(u1)+f(u2) = 0, f(NG[u2]) = (1−q)f(u2)+f(u1) = 0.

If f(u1) = 0, then by (3.1) one has f(u2) = 0. Therefore, f = 0 and so γb(G) =

f(VG) = 0. If f(u1) 6= 0, then it follows from (3.1) that p = q = 2 and f(u1) = f(u2)

(based on the fact that f(ui) ∈ {−1, 0, 1} for i = 1, 2). Thus, S(p, q) is d-balanced

unless (p, q) = (2, 2).

Note that

f(VS(2,2)) = f(u1)− 2f(u1) + f(u2)− 2f(u2) = −f(u1)− f(u2) 6 2.

We define a function f ′ on VS(2,2) satisfying that f
′(u1) = f ′(u2) = −1 and f ′(v) = 1

for v ∈ VS(2,2) \ {u1, u2}. It is routine to check that f ′ is a BDF of S(2, 2) and

f ′(VVS(2,2)
) = 2. Hence, γb(S(2, 2)) = 2.

This completes the proof. �

For any two disjoint graphs G and H , the join of G and H , denoted by G ∨ H ,

is obtained from the disjoint union G ∪ H by adding all edges between G and H .

The complete multipartite graph, denoted by Kn1,n2,...,nr
, is defined to be the join

n1K1 ∨ n2K1 ∨ . . . ∨ nrK1.

Proposition 3.4. If G is a complete multipartite graph, then G is d-balanced.

P r o o f. LetG = Kn1,n2,...,nr
be a complete r-partite graph and let V1∪V2∪. . .∪Vr

be a partition of VG with |Vi| = ni for 1 6 i 6 r. Let f be the maximum BDF of G,

i.e., f(VG) = γb(G). Notice that A−1 ∪ A0 6= ∅. Then choose w ∈ A−1 ∪ A0,

that is, f(w) 6 0. Without loss of generality, we may assume that w ∈ V1. If

|V1| = 1, then dG(w) = |VG| − 1. By Proposition 3.2, G is d-balanced. Now, we

assume that |V1| > 2. Let u be an arbitrary vertex in V1 and u 6= w. Notice that

f(NG[u]) = f(NG[w]) = 0. Thus,

f(u) = f(NG[u])− (f(NG[w])− f(w)) = f(w) 6 0.

Hence,

γb(G) = f(VG) = f(NG[w]) + f(V1 \ {w}) = f(V1 \ {w}) 6 0.

On the other hand, γb(G) > 0. Therefore, γb(G) = 0, i.e., G is d-balanced. �
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For any two disjoint graphs G and H , the Cartesian product of G and H , denoted

by G×H , is the graph defined as follows:

⊲ VG×H = {(u, v) : u ∈ VG, v ∈ VH},
⊲ (u, v) and (u′, v′) are adjacent if and only if u = u′ and vv′ ∈ EH or v = v′ and

uu′ ∈ EG.

Let Pn × P2 be the Cartesian product of Pn and P2 with the vertex set

{u1, . . . , un, v1, . . . , vn} and edge set {uiui+1, vivi+1 : 1 6 i 6 n − 1} ∪ {uivi :

1 6 i 6 n}. A graph G is said to be a generalized ladder graph if G can be obtained
from Pn × P2 by deleting arbitrary edges in {uivi : 2 6 i 6 n− 1}, see [2].

Proposition 3.5. If G is a generalized ladder graph with 2n vertices, then G is

d-balanced.

P r o o f. Let f be the maximum BDF of G, i.e., f(VG) = γb(G). Obviously,

γb(G) = s − t. If f(ui) + f(vi) = 0 for 1 6 i 6 n, then f(VG) = 0 and therefore

γb(G) = 0, as desired. So, in what follows, we may assume that there exists at least

one j (1 6 j 6 n) such that f(uj) + f(vj) 6= 0. Hence, f 6= 0. In order to show

that G is d-balanced, it suffices to show s = t. We begin with the following claim.

Claim 3.6. |NG(v) ∩A−1| = 1 for each vertex v ∈ A1.

P r o o f of Claim 3.6. Let v be an arbitrary vertex inA1. Notice that f(NG[v])=0

and dG(v) = 2 or 3. If dG(v) = 2, then |NG(v) ∩ A−1| = 1 and |NG(v) ∩ A0| = 1,

as desired. If dG(v) = 3, then either |NG(v) ∩ A−1| = 2 and |NG(v) ∩ A1| = 1, or

|NG(v) ∩ A−1| = 1 and |NG(v) ∩ A0| = 2.

Suppose to the contrary that there exists a vertex of degree 3, say ul (2 6 l 6

n − 1), in A1 such that |NG(ul) ∩ A−1| = 2 and |NG(ul) ∩ A1| = 1. Up to

isomorphism, we have (f(ul−1), f(ul+1), f(vl)) ∈ {(−1,−1, 1), (−1, 1,−1)}. If

(f(ul−1), f(ul+1), f(vl)) = (−1,−1, 1), then f(vl−1) = f(vl+1) = −1. That is,

f(ui) = f(vi) for i ∈ {l − 1, l, l + 1}. By the symmetry of ui and vi, it is rou-

tine to check that f(ui) = f(vi) for 1 6 i 6 n. In particular, f(u1) = f(v1)

and f(u2) = f(v2). Hence, f(NG[u1]) = 2f(u1) + f(u2) = 0. Notice that

f(v) ∈ {−1, 0, 1} for each vertex v ∈ VG. Therefore, f(u1) = f(u2) = 0. According

to the structure of the generalized ladder graph G, we have f = 0, a contradiction.

If (f(ul−1), f(ul+1), f(vl)) = (−1, 1,−1), then f(vl−1) = −f(vl+1) = 1 and

ul+1vl+1 ∈ EG. Notice that f(NG[v]) = 0 for each vertex v ∈ VG. Then,

{

0 = f(NG[ul−1]) = f(ul−1) + f(ul) + f(ul−2) + g(ul−1vl−1)f(vl−1),

0 = f(NG[vl−1]) = f(vl−1) + f(vl) + f(vl−2) + g(ul−1vl−1)f(ul−1),
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where g(ul−1vl−1) = 1 if ul−1vl−1 ∈ EG and 0 otherwise. According to the above two

equations, we get f(ul−2) + f(vl−2) = 0. Similarly, we obtain that f(ui) + f(vi) = 0

for each i = 1, 2, . . . , n, a contradiction. Hence, |NG(v) ∩ A−1| = 1 for each vertex

v ∈ A1. This completes the proof of Claim 3.6. �

By a similar reasoning like in the proof of Claim 3.6, we derive that |NG(v)∩A1| = 1

for each vertex v ∈ A−1. Thus, s = t and so γb(G) = 0, i.e., G is d-balanced. �

Proposition 3.7. The join graphs Pm∨Pn, Pm∨Cn and Cm∨Cn are d-balanced,

respectively.

P r o o f. If min{m,n} 6 3, then ∆(G) = m + n − 1 for G ∈ {Pm ∨ Pn, Pm ∨ Cn,

Cm ∨ Cn}. By Proposition 3.2, our desired results hold. So, in what follows, we
assume that min{m,n} > 4. Let f be the maximum BDF of G, i.e., f(VG) = γb(G).

We consider firstly that G ∼= Pm ∨ Pn. Assume that VPm
= {v1, v2, . . . , vm},

VPn
= {u1, u2, . . . , un}, f(VPm

) = k and f(VPn
) = l. Obviously, γb(G) = k + l.

Notice that f(NG[v]) = 0 for each vertex v ∈ VG. Hence, f(NG[v] ∩ VPm
) = −l for

each vertex v ∈ VPm
and f(NG[v] ∩ VPn

) = −k for each vertex v ∈ VPn
. That is,

(3.2) (A(Pm) + Im)x1 = −l1m and (A(Pn) + In)x2 = −k1n,

where x1 = (f(v1), f(v2), . . . , f(vm))T, x2 = (f(u1), f(u2), . . . , f(un))
T; Im and 1m

denote the identity matrix and the all-ones column vector of order m, respectively.

By solving (3.2), we have:

(a) f(v3p−q) = kq for 1 6 p 6 ⌈m
3 ⌉ and q ∈ {0, 1, 2} (1 6 3p − q 6 m), where

k1 + k2 = −l and k0 = 0,

(b) f(u3p−q) = lq for 1 6 p 6 ⌈n
3 ⌉ and q ∈ {0, 1, 2} (1 6 3p − q 6 n), where

l1 + l2 = −k and l0 = 0,

(c) f(vm−2) = 0 and f(un−2) = 0.

It is routine to check that f(VPm
) = −l⌈m

3 ⌉ = k and f(VPn
) = −k⌈n

3 ⌉ = l.

Therefore, l⌈m
3 ⌉⌈n

3 ⌉ = l. Note that min{m,n} > 4. Hence, l = 0 and k = 0. Thus,

γb(G) = 0. That is, Pm ∨ Pn is d-balanced.

Note that 3f(VCn
) = −nf(VPm

) if G ∼= Pm ∨ Cn, and 3f(VCn
) = −nf(VCm

) if

G ∼= Cm∨Cn. Then by a similar reasoning, we may show that Pm∨Cn and Cm∨Cn

are also d-balanced, which claims are omitted here.

This completes the proof. �

Remark 3.8. Note that not all join graphs are d-balanced. For example, con-

sider the two disjoint graphs G and H as shown in Figure 2.

Let f be the given labelling in Figure 2. Clearly, f(VG) = 5 and f(VH) = −3. For

every vertex v ∈ VG, f(NG[v]) = 3, and for every vertex v ∈ VH , f(NH [v]) = −5.
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Figure 2. Graphs G and H .

Hence, f is the BDF of G∨H. Therefore, γb(G∨H) > f(VG∨H) = f(VG)+ f(VH) =

2 > 0. That is, G ∨H is not d-balanced.

4. Some open problems

In this paper, we proposed a novel invariant “balanced domination” of graphs. We

determine some types of d-balanced graphs.

In fact, it is difficult to characterize all of the d-balanced graphs. In view of

Corollary 2.5, the corona of any tree is d-balanced. Clearly, Theorem 2.6 implies

that all trees with at most 5 vertices are d-balanced. However, Proposition 3.3

implies that not all trees are d-balanced. It is well known that a caterpillar is either

a K2 or a tree on at least 3 vertices such that deleting its leaves we obtain a path of

order at least 1. It is natural to pose the following problem:

Problem 4.1. How to characterize all d-balanced caterpillar graphs? Further-

more, how to characterize all d-balanced trees?

In view of Proposition 3.5, we know that Pm×P2 is d-balanced. Another attractive

question is posed as follows:
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Problem 4.2. How to determine the exact value of γb(Pm × Pn) for n > 2? Is

it true that Pm × Pn is d-balanced?

Problem 4.3. What about NP-completeness proof for determining whether

a given graph has a balanced dominating set or not?

We will study the above problems in the near future.
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