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Abstract. We study compressible isentropic Navier-Stokes-Poisson equations in R3. With
some appropriate assumptions on the density, velocity and potential, we show that the
classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-
Poisson equations with attractive forcing will blow up in finite time. The proof is based on
a contradiction argument, which relies on proving the conservation of total mass and total
momentum.
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1. Introduction

This paper is concerned with Cauchy problems for the compressible unipolar isen-

tropic Navier-Stokes-Poisson equation in R
3:

(1.1)























̺t + div(̺u) = 0,

(̺u)t + div(̺u⊗ u) +∇P (̺) = µ∆u+ (µ+ λ)∇ div u+ a̺∇Φ,

−∆Φ = ̺, x ∈ R
3, t > 0,

̺(0, x) = ̺0(x), u(0, x) = u0(x).

The unknown functions ̺, u and Φ denote the density, velocity field and potential

of underlying force, respectively, and P is the pressure, which admits the form

(1.2) P (̺) = ̺γ ,

where γ > 1 represents the adiabatic constant in the isentropic regime.
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The symbols µ and λ denote the coefficient of viscosity and the second coefficient

of viscosity, respectively, which satisfy

(1.3) µ > 0, λ+
2µ

3
> 0.

The coefficient a in (1.1)2 can be used to describe the property of the forcing, thus,

it is repulsive if a > 0 and attractive if a < 0, and we focus on the latter one in this

paper.

If a = 0, then system (1.1)1, (1.1)2 and (1.1)4 is called compressible Navier-

Stokes equations, and there are many blow-up results. The first result is due to Xin

(see [12]), in which he proved that smooth solutions for the compressible Navier-

Stokes equations for nonbarotropic flows in the absence of heat conduction in any

space dimension will blow up in finite time, under the assumption the initial data

have compact support. And this result was generalized by Cho and Jin (see [1])

to fluids with positive heat conductivity. Without compact supported initial data

assumption, but with the assumption that the data decrease rapidly when approach-

ing the infinity, Rozanova in [10] could also prove finite time blow-up for n > 3

(n denotes the space dimension) and γ > 2n/(n+ 2). Xin and Yan in [13] showed

that any classical solution to the compressible Navier-Stokes system without heat

conductivity will blow up in finite time, if the initial density has local vacuum in

a bounded region. Lai in [8] established a blow-up result for the classical solution

of the compressible isentropic Navier-Stokes system by assuming that the gradient

of velocity satisfies some decay constraint and the initial total momentum does not

vanish. Jiu in [7] studied the full compressible Navier-Stokes system and compress-

ible Navier-Stokes system with constant viscosity or degenerate viscosity in any space

dimension, and a blow-up result for smooth solution was established. Let us mention

that he does not have to assume that the initial data should have compact support or

that there is vacuum in bounded regions. However, there is some limitation for the

adiabatic constant, which can be removed by [11]. For more detailed introduction

about the blow-up result for the compressible Navier-Stokes system, we refer to [2]

and [3].

Remark 1.1. We remark that there are many finite blow-up results for all other

kinds of fluid models, see [4], [5], [6], [9] and so on.

In the present work we are devoted to proving a blow-up for the classical solution

of the compressible isentropic Navier-Stokes-Poisson equations in R
3 under some

constraint on the density, gradient of velocity and initial momentum. We borrow the

idea of Lai (see [8]) to establish the finite time blow-up result.
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Definition 1.1. Let T > 0. We say (̺(t, x), u(t, x),Φ(t, x)) is a classical solution

to the compressible isentropic Navier-Stokes-Poisson system (1.1) over [0, T ) × R
3

if ̺ ∈ C1([0, T ) × R
3), u ∈ C1([0, T ), C2(R3)), and Φ ∈ C1([0, T ), C2(R3)) satisfy

system (1.1) pointwise over [0, T )× R
3.

Our main result reads:

Theorem 1.1. Let (µ, λ) satisfy (1.3) and a < 0. Assume that ̺,
∑

β61

|∂βu|, and
∑

β62

|∂βΦ| decay to 0 when |x| → ∞ and (̺, u) satisfy

(1.4)

∫

R3

̺(t, x) dx < ∞,

∫

R3

|∇u(t, x)| dx < ∞, t > 0.

For the initial data, we assume that

(1.5) ̺0(x) ∈ L1(R3) ∩ Lγ(R3),
√

̺0(x)u0(x) ∈ L2(R3), Φ0(x) ∈ Ḣ1(R3),

and the initial total momentum does not vanish,

(1.6)

∣

∣

∣

∣

∫

R3

̺0(x)u0(x) dx

∣

∣

∣

∣

6= 0.

Then the classical solution of (1.1) will blow up in finite time.

2. Preliminaries

Before demonstrating the proof of our main result, we give four preliminary lem-

mas.

Lemma 2.1 (Energy estimate). Let a < 0. Assuming (̺, u,Φ) are classical solu-

tions of system (1.1) as stated in Theorem 1.1, then it holds for t ∈ (0, T ∗)

(2.1) E(t) + µ

∫ t

0

∫

R3

|∇u|2 dxds+ (µ+ λ)

∫ t

0

∫

R3

| div u|2 dxds

=
1

2

∫

R3

̺0(x)|u0(x)|2 dx+
1

γ − 1

∫

R3

̺γ0 (x) dx− a

2

∫

R3

|∇Φ(0, x)|2 dx,

where

(2.2) E(t) =
1

2

∫

R3

̺|u|2 dx+
1

γ − 1

∫

R3

̺γ dx− a

2

∫

R3

|∇Φ|2 dx

denotes the total energy and T ∗ is the maximum existing time for the solution.
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P r o o f. Multiplying (1.1)2 by u,

(2.3) (̺u)t ·u+div(̺u⊗u) ·u+∇P (̺) ·u = µ∆u ·u+(µ+λ)∇ div u ·u+a̺∇Φ ·u.

By using (1.1)1 we have

(2.4) (̺u)t · u = − div(̺u)|u|2 + ̺ut · u.

Hence, we deduce that

div(̺u⊗ u) · u = div(̺u)|u|2 + 1

2
̺u · ∇u2.

Further,

(2.5) (̺u)t · u+ div(̺u⊗ u) · u =
1

2
̺∂tu

2 +
1

2
̺u · ∇u2 =

d

dt

1

2
̺|u|2 + 1

2
div(̺u|u|2).

From (1.1)1 and (1.2) one has

(2.6) ∇P (̺) · u = ∇(̺γ) · u = γ̺γ−1∇̺ · u =
γ

γ − 1
∇(̺γ−1) · (̺u)

=
γ

γ − 1
div(̺γu)− γ

γ − 1
̺γ−1 div(̺u)

=
γ

γ − 1
div(̺γu) +

γ

γ − 1
̺γ−1̺t =

γ

γ − 1
div(̺γu) +

d

dt

̺γ

γ − 1
.

By integration by parts we come to

(2.7) µ∆u·u+(µ+λ)∇ div u·u = µ div(∇uu)−µ|∇u|2+div(div uu)−(µ+λ)| div u|2.

From (1.1)3 we have

(2.8) a̺∇Φ · u = a div(̺Φu)− aΦdiv(̺u) = a div(̺Φu) + aΦ̺t

= a div(̺Φu)− aΦ∆Φt = a div(̺Φu)− a div(Φ∇Φt) +
d

dt

a

2
|∇Φ|2.

By combing (2.3)–(2.8) and integrating over R3, we get

(2.9)
d

dt

∫

R3

1

2
̺|u|2 dx+

d

dt

∫

R3

̺γ

γ − 1
dx− d

dt

∫

R3

a

2
|Φ|2 dx

= −
∫

R3

µ|u|2 dx− (µ+ λ)

∫

R3

| div u|2 dx.

Integrating this over [0, T ] yields

(2.10) E(T ) + µ

∫ T

0

∫

R3

|∇u|2 dxdt+ (µ+ λ)

∫ T

0

∫

R3

| div u|2 dxdt

=
1

2

∫

R3

̺0(x)|u0(x)|2 dx+
1

γ − 1

∫

R3

̺γ0(x) dx− a

2

∫

R3

|∇Φ(0, x)|2 dx

and the proof of Lemma 2.1 is finished. �
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Lemma 2.2. Let f(x) be a continuous and nonnegative function. If

∫ ∞

0

f(x) dx < ∞,

then there exists a sequence xn → ∞ such that

(2.11) f(xn) → 0.

P r o o f. Since
∫∞

0 f(x) dx < ∞, then for any integer n > 0, there exists a constant

M(n) > 0 such that if A1, A2 > M(n), then we have

∫ A2

A1

f(x) dx <
1

n
.

In particular, we may choose A1 = n+M(n) and A2 = 2n+M(n) to get

(2.12)

∫ 2n+M(n)

n+M(n)

f(x) <
1

n
.

By the mean value theorem for integrals, we get a number xn ∈ [n+M(n), 2n+M(n)]

such that

(2.13) 0 6 f(xn) <
1

n2
,

which in turn leads to xn → ∞ (n → ∞) and

(2.14) f(xn) → 0,

and we finish the proof of Lemma 2.2. �

Next we give two lemmas stating the conservation of the total mass and momen-

tum, respectively.

Lemma 2.3 (Conservation of mass). Let (µ, λ) satisfy (1.3), then for system (1.1)

we have

(2.15)

∫

R3

̺(t, x) dx =

∫

R3

̺0(x) dx, t > 0.
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P r o o f. Let BR represent a ball in R
3 centered at the origin with radius R.

Integrating (1.1)1 over BR, we have

(2.16)

∫

|x|6R

̺t(t, x) dx = −
∫

|x|6R

div(̺u) dx.

Integrating this over [0, t] yields

(2.17)

∣

∣

∣

∣

∫

|x|6R

̺(t, x)− ̺0(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫

|x|6R

div(̺u) dxdt

∣

∣

∣

∣

.

Noting that

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

div(̺u) dx

∣

∣

∣

∣

dR =

∫ ∞

0

∣

∣

∣

∣

∫

|x|=R

̺u · x
R

dx

∣

∣

∣

∣

dR,

the Hölder inequality implies

∫ ∞

0

∣

∣

∣

∣

∫

|x|=R

̺u dx

∣

∣

∣

∣

dR 6

∫ ∞

0

(
∫

|x|=R

(√
̺
)2

dx

)1/2(∫

|x|=R

(√
̺
)2
u2 dx

)1/2

dR,

which means

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

div(̺u) dx

∣

∣

∣

∣

dR 6
∥

∥

√
̺
∥

∥

L2(R3)

∥

∥

√
̺u

∥

∥

L2(R3)

and
∫ t

0

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

div(̺u) dx

∣

∣

∣

∣

dR dt 6 t
∥

∥

√
̺
∥

∥

L2(R3)

∥

∥

√
̺u

∥

∥

L2(R3)
.

Thus
∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

̺(t, x)− ̺0(x) dx

∣

∣

∣

∣

dR 6 t
∥

∥

√
̺
∥

∥

L2

∥

∥

√
̺u

∥

∥

L2

and hence, by Lemma 2.2, there exists a sequence Rn → ∞ such that

lim
n→∞

∫

|x|6Rn

(̺(t, x) − ̺0(x)) dx = 0.

The proof of Lemma 2.3 is finished. �

Lemma 2.4 (Conservation of momentum). Let (µ, λ) satisfy (1.3), then for sys-

tem (1.1) we have

(2.18)

∫

R3

̺(t, x)u(t, x) dx =

∫

R3

̺0(x)u0(x) dx, t > 0.
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P r o o f. The proof is parallel to that of the mass conservation. Integrating (1.1)2
over BR, we have

(2.19)

∫

|x|6R

(̺u)t dx+

∫

|x|6R

div(̺u⊗ u) dx+

∫

|x|6R

∇P (̺) dx

= µ

∫

|x|6R

∆u dx+ (µ+ λ)

∫

|x|6R

∇ div u dx+ a

∫

|x|6R

̺∇Φdx.

Note that
∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

div(̺u⊗ u) dx

∣

∣

∣

∣

dR 6

∫ ∞

0

∣

∣

∣

∣

∫

|x|=R

̺|u|2 dx
∣

∣

∣

∣

dR 6 ‖̺|u|2‖L1(R3),(2.20)

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

∇P (̺) dx

∣

∣

∣

∣

dR 6 ‖P‖L1(R3),(2.21)

∫ ∞

0

∣

∣

∣

∣

µ

∫

|x|6R

∆u dx+ (µ+ λ)

∫

|x|6R

∇ div u dx

∣

∣

∣

∣

dR(2.22)

6

∫ ∞

0

(λ+ 2µ)

∣

∣

∣

∣

∫

|x|=R

∇u dx

∣

∣

∣

∣

dR 6 (λ+ 2µ)‖∇u‖L1(R3),

Particularly, for (1.1)3 we have

a

∫

|x|6R

̺∇Φdx = −a

∫

|x|6R

∆Φ∇Φdx

and hence

(2.23) a

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

̺∇Φdx

∣

∣

∣

∣

dR 6 − a

∫ ∞

0

∫

|x|6R

̺|∇Φ| dxdR

= − a

∫ ∞

0

∫

|x|6R

∆Φ|∇Φ|2 dxdR

= − Ca

∫ ∞

0

∫

|x|=R

|∇Φ| dσ dR

6 C‖∇Φ‖2L2(R3).

Therefore, by combining (2.20)–(2.23) and integrating (2.19) over [0, t], we get

(2.24)

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

̺(t, x)u(t, x) − ̺0(x)u0(x) dx

∣

∣

∣

∣

dR

6 t‖̺|u|2‖L1(R3) + t‖P‖L1(R3) + t(λ+ 2µ)‖∇u‖L1(R3) + t‖∇Φ‖2L2(R3).

Then for a fixed t > 0, (2.1) yields

∫ ∞

0

∣

∣

∣

∣

∫

|x|6R

̺(t, x)u(t, x) − ̺0(x)u0(x) dx

∣

∣

∣

∣

dR < ∞,
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which implies by combining with Lemma 2.2 that there exists a sequence Rn → ∞
such that

lim
n→∞

∫

|x|6Rn

(̺(t, x)u(t, x) − ̺0(x)u0(x)) dx = 0.

Lemma 2.4 follows. �

3. The proof of Theorem 1.1

Now we are going to prove Theorem 1.1. We first consider the case 1 < γ < 6
5 .

Note that for 0 < α < 1, it holds

̺u = (̺1/2u)αu1−α̺(2−α)/2.

Integrating this over R3 yields

∫

R3

̺u dx =

∫

R3

(̺1/2u)αu1−α̺(2−α)/2 dx.

The Hölder inequality implies

(3.1)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

6

(
∫

R3

(√
̺u

)2
dx

)α/2(∫

R3

u6 dx

)(1−α)/6(∫

R3

̺γ dx

)(2−α)/2γ

=
∥

∥

√
̺u

∥

∥

α

L2(R3)
‖u‖1−α

L6(R3)‖̺‖
(2−α)/2
Lγ(R3) .

We use the Gagliardo-Nirenberg-Sobolev inequality

‖u‖Lp∗(Rn) 6 C‖Du‖Lp(Rn),

where 1/p∗ = 1/p− 1/n, p∗ > p. Taking p = 2, n = 3 we have

‖u‖1−α
L6(R3) 6 C‖∇u‖1−α

L2(R3)

and hence

(3.2)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

6 C
∥

∥

√
̺u

∥

∥

α

L2(R3)

∥

∥∇u
∥

∥

1−α

L2(R3)
‖̺‖(2−α)/2

Lγ(R3) ,

where C > 0 denotes a positive constant which may have different values from line

to line.

We now come to the case γ > 6
5 . Obviously we have

(3.3)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

6

(
∫

R3

|̺|6/5 dx
)5/6(∫

R3

|u|6 dx
)1/6

= ‖̺‖L6/5(R3)‖u‖L6(R3).
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By the interpolation inequality one has

‖̺‖L6/5(R3) 6 ‖̺‖(5γ/6−1)/(γ−1)
L1(R3) ‖̺‖γ/(6(γ−1))

Lγ(R3)

and we then conclude that

(3.4)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

6 C‖̺‖(5γ/6−1)/(γ−1)
L1(R3) ‖̺‖γ/(6(γ−1))

Lγ(R3) ‖∇u‖L2(R3).

From (3.2) and (3.4) we obtain

(3.5) ‖∇u‖1−α
L2(R3) >

1

C
∥

∥

√
̺u

∥

∥

α

L2(R3)
‖̺‖(2−α)/2

Lγ(R3)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

> 0

and

(3.6) ‖∇u‖L2(R3) >
1

C‖̺‖(5γ/6−1)/(γ−1)
L1(R3) ‖̺‖γ/(6(γ−1))

Lγ(R3)

∣

∣

∣

∣

∫

R3

̺u dx

∣

∣

∣

∣

> 0,

respectively, which means by the energy estimate (2.1) that

(3.7) ‖∇u‖2L2(R3) > C0 > 0,

where C0 denotes a positive constant depending on

1

2

∫

R3

̺0(x)|u0(x)|2 dx+
1

γ − 1

∫

R3

̺γ0 (x) dx− a

2

∫

R3

|∇Φ0(x)|2 dx

and
∫

R3

̺0u0 dx.

We then conclude from the energy estimate (2.1) that

E(t) + C0µt 6
1

2

∫

R3

̺0(x)|u0(x)|2 dx+
1

γ − 1

∫

R3

̺γ0 (x) dx− a

2

∫

R3

|∇Φ0(x)|2 dx,

which implies that there exists T ∗ > 0 such that E(T ∗) = 0, which contradicts the

mass and momentum conservation, and we finish the proof of Theorem 1.1.
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