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Abstract. We characterize the unit group of semisimple group algebras FqG of some

non-metabelian groups, where Fy is a field with ¢ = plc elements for p prime and a positive
integer k. In particular, we consider all 6 non-metabelian groups of order 48, the only
non-metabelian group ((C3 x C3) x C3) x Ca of order 54, and 7 non-metabelian groups of
order 72. This completes the study of unit groups of semisimple group algebras for groups
upto order 72.

Keywords: unit group; finite field; Wedderburn decomposition
MSC 2020: 16U60, 20C05

1. INTRODUCTION

Let F, denote a finite field with ¢ = p* elements for an odd prime p, G a finite
group and let F,G be the group algebra. We refer to [18] for elementary definitions
and results related to the group algebras and [2], [17] for the abelian group algebras.
One of the most important research problems in the theory of group algebras is the
determination of their unit groups, which are very important from the application
point of view; for instance, in the exploration of Lie properties of group algebras,
the isomorphism problem etc., see [1]. Hurley in [7] suggested the construction of
convolutional codes from units in group algebra as an important application of units.

Considering some of the existing literature, we refer to [3], [6], [13], [15] for the
unit group U(FG) of dihedral groups G and [5], [6], [9], [12], [14], [15], [19]-]21]
for some non abelian groups other than the dihedral groups. The unit group of
finite semisimple group algebras of metabelian groups (groups in which there exists
a normal subgroup N of G such that both N and G/N are abelian) has been well
studied. From [16], it can be seen that all groups up to order 23 are metabelian.
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The only non-metabelian groups of order 24 are Sy and SL(2,3), and their unit
group algebras have been discussed in [9], [12]. Further, [16] also implies that there
are non-metabelian groups of order 48, 54, 60 and 72. It can be verified that Ay is
the only non-metabelian group of order 60 and the unit group of its group algebra,
i.e. U(F4A5) can be easily deduced from [14] for p > 5.

The main motive of this paper is to characterize the unit groups of I,G, where first
we consider G to be a non-metabelian group of order 48. There are 6 such groups up
to isomorphism. After that we consider the only non-metabelian group of order 54.
Finally, we consider all the non-metabelian groups of order 72. In all, we cover the
unit groups of 14 semisimple group algebras of non-metabelian groups. The rest of
the paper is organized in the following manner: we recall all the basic definitions and
results to be used later on in Section 2. Our main results for the characterization of
the unit groups are presented in the third, fourth and fifth sections. Some remarks
are discussed in the last section.

2. PRELIMINARIES

Let e denote the exponent of G, ( be a primitive eth root of unity and F be an
arbitrary finite field. On the lines of [4], we define

Ir = {n: ¢ — (" is an automorphism of F(¢) over F}.

Since, the Galois group Gal(F(¢),F) is a cyclic group and for any 7 € Gal(F((), F),
there exists a positive integer s which is invertible modulo e such that 7(¢) = ¢°.
In other words, Ir is a subgroup of the multiplicative group Z}. For any p-regular
element g € G, i.e. an element whose order is not divisible by p, let the sum of
all conjugates of g be denoted by 7,4, and the cyclotomic F-class of v, be denoted
by S(v4) = {vgn: n € Ir}. The cardinality of S(v,) and the number of cyclotomic
F-classes will be incorporated later on for the characterization of the unit groups.
Now, we recall the following two results related to the cyclotomic F-classes.

Theorem 2.1 ([4]). The number of simple components of FG/J(FG) and the
number of cyclotomic F-classes in G are equal.

Theorem 2.2 ([4]). Let j be the number of cyclotomic F-classes in G. If K,
1 < i < j, are the simple components of center of FG/J(FG) and S;, 1 < i < j, are
the cyclotomic F-classes in G, then |S;| = [K; : F] for each i after suitable ordering
of the indices.
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For determining the structure of the unit group U(FG), we need Wedderburn
decomposition of the group algebra FG. In other words, we want to determine the
simple components of FG. Based on the existing literature, we can always claim
that F is one of the simple components in the decomposition of FG/J(FG). The
simple proof is given here for completeness.

Lemma 2.1. Let A; and As denote the finite dimensional algebras over F. Fur-
ther, let Ay be semisimple and g be an onto map between A; and As, then we must
have A1/J(A1) = A3z + Ay, where Aj is some semisimple F-algebra.

Proof. From [8], we have J(A;) C Ker(g). This means there exists an F-algebra
homomorphism g¢; from A;/.J(A1) to Az which is also onto. In other words, we have
g1: A1/J(A1) — As defined by g1(a + J(A41)) = g(a), a € Ay. As Ay/J(4;) is
semisimple, there exists an ideal I of A;/J(A1) such that Ay/J(A1) = ker(gy) & I.
Our claim is that I = A,. To prove this, note that any element a € A;/J(A4;)
can be uniquely written as @ = a; + a2, where a; € ker(g1), as € I. So, define
g2: A1/J(A1) = ker(g1) ® Az by ga(a) = (a1, g1(az)). Since ker(gy) is a semisimple
algebra over [, the result holds. O

The above lemma concludes that [ is one of the simple components of FG, provided
J(FG) = 0. Now we characterize the set Ir defined in the beginning of this section.

Theorem 2.3 ([11]). Let F be a finite field with prime power order q. If e is
such that ged(e, q) = 1, ¢ is the primitive eth root of unity and |q| is the order of q
modulo e, then Iy = {1,q,¢%,...,q!7"1}.

The next two results are Propositions 3.6.11 and 3.6.7, respectively, from [18] and
are quite useful in our work.

Theorem 2.4. If RG is a semisimple group algebra, then RG = R(G/G’) &
A(G,G"), where G' is the commutator subgroup of G, R(G/G") is the sum of all
commutative simple components of RG, and A(G,G") is the sum of all others.

Theorem 2.5. Let RG be a semisimple group algebra and H be a normal sub-
group of G. Then RG = R(G/H)® A(G, H), where A(G, H) is the left ideal of RG
generated by the set {h —1: h € H}.
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3. UNIT GROUP OF F,G FOR NON-METABELIAN GROUPS OF ORDER 48

The main objective of this section is to characterize the unit groups of F,G,
where G is a non-metabelian group of order 48. Up to isomorphism, there are 6 non-
metabelian groups of order 48, namely Gy = Cy - Sy, Go = GL(2,3), G3 = A4 x Cy,
Gy = Cy x SL(2,3), G5 = ((Cy x C3) x C3) x C3 and Gg = Cy x Sy. Here Cy - Sy
represents the non-split extension of Sy by C2. We consider each of these groups one
by one and discuss the unit groups of their respective group algebras along with the
WD’s in the subsequent subsections (here WD means Wedderburn decomposition

and from now onwards we use this notation).

3.1. The group G; = C5 - S4. Group G has the following presentation:

—1 1 1 1 1 -1_-1

x hwrt w2
1

(x,y, z,w,t | 22t 27 ezt w2y e gy w0 ,
y3,t_lx_ltx,tQ,z_ly_lzyw_lz_l,w_ly_ wyt_lz_l,

t_ly_lty,w_lz_lwzt_l, th_l,t_lz_ltz,t_lw_ltw,th_1>.
Also GG; has 8 conjugacy classes as shown in the table below.

z t Tz yw zYZ
42 8 6 8

rep | 1
order of rep | 1

where rep means representative of conjugacy class. From the above discussion, clearly
the exponent of Gy is 24. Also G} = SL(2,3). Next, we give the unit group of F,G;
when p > 3.

Theorem 3.1. The unit group of F,G1, for ¢ = p*, p > 3 where F, is a finite
field having q = p* elements is as follows:

(1) for k even or p* € {1,7,17,23} mod 24 with k odd
U(FyG1) = (F})? @ GLa(Fy)® ® GL3(Fy)* ® GL4(F,),
(2) for p* € {5,11,13,19} mod 24 with k odd

U(FoG1) = (F})? @© GLy(Fq) ® GL3(Fy)* ® GL4(Fy) ® GLa(Fg2).
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Proof. Since F,G; is semisimple, we have

t—1

(3.1) FoGi1 = Fo @ M, (F,).

r=1

First assume that k is even which means for any prime p > 3, we have p* = 1 mod 24.
This means |S(v,)| = 1 for each g € G1 as Ir = {1}. Hence, (3.1), Theorems 2.1
and 2.2 imply that

7
(3.2) FoGi1 = Fo @D M, (F,).

r=1

Using Theorem 2.4 with G} = SL(2,3) in (3.2), we reach

6 6
(3.3) FoG1 = F2EP M, (F,), where n, > 2 with 46 =Y n?.
r=1

r=1

The above gives the only possibility (2,2,2,3,3,4) for the possible values of n,’s and
therefore, (3.3) implies that

(3.4) FoG1 = F2 @ Ma(Fy)® @ M3(Fq)? & My(F,).

It is straight-forward to deduce the unit group from WD. Now we consider that k is
odd. We shall discuss this case in two parts:
(1) p* € {1,7,17,23} mod 24,
(2) p* € {5,11,13,19} mod 24.

Case (1): For p* € {1,7,17,23} mod 24, it can be verified that |S(v,)| = 1 for
each g € G1. This means WD is given by (3.4).

Case (2): For p* € {5,11,13,19} mod 24, we can verify that S(y,) = {y,}
for each representative of the conjugacy classes except zz, for which S(v,.) =
{S(V22), S(Vay=)}. Therefore, (3.1) and Theorems 2.1 and 2.2 imply that F,G; =

5
F, @ M, (Fq) ® My, (F,2). Using Theorem 2.4 in this to obtain (after suitable re-
r=1

arrangement of indexes)
4 4
(35)  FyGr = F2ED Mn, (Fy) ® Mny(Fpe), ny >2 with 46 = " n? + 2n2.
r=1 r=1

The above gives us two possibilities, namely (2,2,2,4,3) and (2,3,3,4,2) for the
possible values of n,.’s. However, we need to discard one of these possibilities. For
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that, consider the normal subgroup H; = (t) = Cs of Gy with G1/H; = S4. From [9],
we know that

(3.6) FgSs = F2 @ Ma(Fg) & Ms(F,)*.

Therefore, (3.5), (3.6) and Theorem 2.5 imply that (2, 3, 3, 4, 2) is the only possibility
for n,’s. O

3.2. The group G2 = GL(2,3). Group G3 has the following presentation:

1 1 1 1 1 1 1

—1,.— -1,-1,3
Wt Twrw” 2 L, y°,
1

(x,y, z,w,t | 22 z e zat w2y T e yay T
1,1

t_la:_ltx,t_lz_ltz,z_ly_lzyw_ 1 ,w_ly_ wyt_lz_l,

t Uy, w e et w?t T T e e, w62,
Further, G5 has 8 conjugacy classes, as shown in the table below.

z t Tz yw zYZ
42 8 6 8

rep | 1
order of rep | 1

From the above discussion, clearly the exponent of Go is 24. Also G, = SL(2,3).

Theorem 3.2. The unit group of F,Gs, for ¢ = p*, p > 3 where [, is a finite
field having q = p* elements is as follows:

(1) for k even or p* € {1,11,17,19} mod 24 with k odd
U(FyG2) = (F})? @ GLa(Fy)® ® GL3(F4)* ® GL4(F,),
(2) for p* € {5,7,13,23} mod 24 with k odd

U(FyG2) = (F})? © GLa(Fy) @ GL3(Fg)* ® GLy(Fy) ® GLo(Fy2).
Proof. See Theorem 3.2 in [10]. O

3.3. The group G3 = A4 x Cy. Group Gj3 has the following presentation:

1 -1 1

<x7yazawat | ny— ) % x 2372'_179_1

1 1,2

z twzt tw~ Y7,
1

a:_lyx,w_
tileltxtflwfl, zilyflzy, wily* wy, tilyflty, 23,

w T hwzt T T e ez T w? T w T w2,
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Further, G3 has 10 conjugacy classes, as shown in the table below.

rep | 1
1

Y woTY TW Yz Yw TYw
order of rep | 2 2

T Y z
4232 4 4 6 2 4

From the above discussion, clearly the exponent of G3 is 12. Also G§ = A, and

G3/Gé =~ (4.

Theorem 3.3. The unit group U(F,G3) of F,Gs, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is as follows:

(1) for any p and k even or p¥ € {1,5} mod 12 with k odd
U(FGs) = (Fy)* ® GLa(Fy)* ® GL(Fy)*,
(2) for p* € {7,11} mod 12 with k odd

U(FqGs) = (F})? @ Flo © GLa(Fy)® @ GL3(F4)* & GLs(Fge).

Proof. Since F,G3 is semisimple, we have

t—1

(3.7) FoGs = Fo @ M, (F,).

r=1

k=

First assume that k is even, which means that for any prime p > 3, we have p
1 mod12. This means |S(v,)| = 1 for each g € G3 as Ir = {1}. Hence, (3.7),
Theorems 2.1 and 2.2 imply that

9
(3.8) FyGs = Fy @ M, (F,).
r=1
Using Theorem 2.4 with G4 = A4 and G3/G5 = C4 in (3.8), we reach
6 6
(3.9) FoGs = Fy @D My, (Fy), where n, >2 with 44 = "n?.
r=1 r=1

The above gives us the only possibility (2,2, 3,3, 3,3) for the possible values of n,’s.
Therefore, we have

(3.10) FoGs = Fi @ Ma(Fg)? & Ms(Fg)*.
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Now we consider that k is odd. We shall discuss this case into three parts:
(1) p* =1 mod12.

(2) p* = £1 mod 3 and p* = —1 mod 4.

(3) p* = —1 mod 3 and p* = 1 mod 4.

Case (1): p* =1 mod 12. In this case WD is given by (3.10).

Case (2): p* = +1 mod 3 and p* = —1 mod 4 which means p* € {7,11} mod 12.
This means Iy = {1,7} or {1,11} and accordingly we can verify that for both the
cases, |S(v4)| = 1 for each representative g of conjugacy classes except the one’s
having order 4. For representatives of order 4, we have S(vz) = {7z, Yay }» S(Yaw) =
{Yzws Yoyw ;- Therefore, (3.7) and Theorems 2.1, 2.2 imply that

5 7
(3.11) FoGs = Fo @D M, (Fy) P M, (Fpe).
r=6

r=1

Since G5 = Ay with G3/G5 = C4, we have F,Cy = [F ® Fy @ Fgp2. This with (3.11)
and Theorem 2.5 implies that F,Gs = F2 & F 2®Mn (Fq) ® My (Fg2), ny > 2

with 44 = Z nZ + 2nZ, which further implies that the possible choices of n,’s are

(3,3,3,3, 2) (2 2,3,3,3). For uniqueness, consider the normal subgroup Hs = (y)
of G5 having order 2 with G3/Hs = S4. Using (3.6) and Theorem 2.5, we conclude
that (2,2,3,3,3) is the required choice.

Case (3): p* = —1 mod3 and p* = 1 mod 4 which means p* = 5 mod 12. This
means Ir = {1,5} and accordingly we can verify that WD in this case is given
by (3.10). O

3.4. The group G4 = Cy x SL(2,3). Group G4 has the following presentation:

(x,y,z,w,t | 2% 2z e 2w,y ey, w e e, T e e,
2y gt B e gt ¢y

2w et e e, th_l,t_lw_ltw,t2>.
Further, G4 has 14 conjugacy classes, as shown in the table below.

z t zy xz xt y? yt xy® ayt y iz Y’z
42 6 4 2 3 6 6 6 6 6

rep | 1 zy
order of rep| 123

From the above discussion, clearly the exponent of G4 is 12. Also G} = Qg and

G4/Gl = Cg
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Theorem 3.4. The unit group U(F,G4) of F Gy, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is as follows:

(1) for any p and k even or p* € {1,7} mod 12 with k odd
U(FyGa) = (F})° ® GLa(Fy)° ® GL3(Fy)?,
(2) for p* € {5,11} mod 12 with k odd

U(FyGa) = (F;)? @ (Fl2)? & GLa(Fy)* ® GLa(Fy2) & GL3(Fp2).

Proof. Since F,G4 is semisimple, we have

t—1
(3.12) FoGa = Fo @ M, (F

r=1

First assume that & is even, which means for any prime p > 3, we have p* = 1 mod 12.
This means |S(7y,)| = 1 for each g € G4. Hence, (3.12), Theorems 2.1 and 2.2 imply
that

13
(3.13) FoGa = Fo @ M, (F,).

r=1
Usmg Theorem 2.4 with G = Qg and G4/G Cs in (3.13), we reach to F,G4 &
[F6 @ M, (F,), where n, > 2, with 42 = Z n2. This gives the only possibility
(2, 27 2, 2,2,2,3,3) for the possible values of nr ’s. Therefore, we have

(3.14) FoGa = o ® My(Fy)® @& Ms(F,)*.

Now we consider that £ is odd.

Case (1): p* =1 mod3 and p* = 1 mod4 or p*¥ = 1 mod3 and p* = —1 mod 4
which means p* = 1,7 mod 12. It can be seen that for these possibilities, |S(v,)| = 1
for each g € G4. Therefore, WD is given by (3.14).

Case (2): p* = —1 mod 3 and p* = 4+1 mod 4 which means p* € {5,11} mod 12.
This means that Ir = {1,5} or {1,11} and accordingly we can verify that for both
the cases

S('Vy) = {'Vyv'Yy?}v S('Ya:y) = {'Ya:ya’Y;cy2}7
S(yyt) = {'Vyta'yyzz}v S(Vayt) = {'nyta'nyZ.z}a
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and S(7v,) = {74} for the remaining representatives g of the conjugacy classes. There-
fore, (3.12) and Theorems 2.1, 2.2 imply that

5 9

(3.15) FyGa = Fo @D M, (Fy) @ M, (Fpe2).

r=1 r=6
Since G} = Qg with G4/G) = Cg, we have F CG =F, @ [F @ [F2 This with (3.15)
and Theorem 2.5 leads to FoGy = F2 & [F22 @Mn (F )@Mn( 2), ny > 2 with

42 Z nZ + 2 Z nZ, which further 1mphes that the p0s51b1e choices of n,’s

are (2,2,3,3,2,2), (2,2,2,2,2,3). For uniqueness, consider the normal subgroup

H, = (at) of G4 having order 2 with G4/Hy = SL(2,3). Using Theorem 3.1

from [12] and Theorem 2.5, we conclude that (2,2,2,2,2,3) is the required choice.
O

3.5. The group G5 = ((Cy x C3) x C2) x C3. Group G5 has the following
presentation:
(x,y, z,w,t | 22t 2 e e,y e iy, w e  we, t e e

z_ly_lzyt_lw_lz_l, y3, w_ly_lwyt_lz_l, lf_ly_lty,

2wyt T T e e w0t T T e  w, £2).
Further, G5 has 14 conjugacy classes, as shown in the table below.

z vt 2y xz «xt y2 yt xy2 xyt y2,z nyZ
4 212 2 4 3 6 12 12 6 12

rep | 1
order of rep | 1

From the above discussion, clearly the exponent of G5 is 12. Also, Gt = Qs and
G5/Gg =~ (Cg.

Theorem 3.5. The unit group U(F,G5) of F,Gs5, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is as follows:

(1) for any p and k even or p* = 1 mod 12 with k odd
U(F,Gs) = (F)° © GLa(F,)° © GLa(F,)?
(2) for p¥ =7 mod 12 with k odd
U(FqGs) = (F})° @ GL3(Fg)* ® GLa(Fy2)?,
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(3) for p* =5 mod 12 with k odd
U(FyGs) = (F;)? @ (F}»)? @ GLy(Fy)* & GL3(Fy)® & GLa(Fp2)?,
(4) for p* = 11 mod 12 with k odd

U(F,Gs) = (F})? & (F»)* @ GLs(Fy)? & GLa(Fg2)*.

Proof. Since F,G5 is semisimple, we have

t—1
(3.16) FoGs = Fo @ M, (F,)

r=1

First assume that k is even, which means that for any prime p > 3, we have p*F =
1 mod12. This means |S(y,)| = 1 for each g € G5. Hence, (3.16), Theorems 2.1
and 2.2 imply that

13
(3.17) FoGs = Fo @ M, (F,).
r=1

Proceeding similarly as in Theorem 3.4, we get the WD exactly similar to (3.14).
Now we consider that k is odd.
Case (1): p* =1 mod 3 and p* = 1 mod 4. In this case WD is given by (3.14).
Case (2): p* = 1 mod3 and p* = —1 mod4 which means that p* = 7 mod 12.
This means that Ir = {1, 7} and accordingly we can verify that for this case

S(Ve) = {Vas Yat } S(Yay) = {Vays Vayt }»
S('Yzyﬁ) = {7zy2a%cy22}a S(’Yg) = {’79}

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and
Theorems 2.1, 2.2 imply that

7 10
(3.18) FoGs = Fo @ M, (Fy) P M, (Fy2)
r=8

r=1

Since Gf = Qs with G5/GE = Cg, we have F CG & 2. This with (3.18) and

Theorem 2 5 implies that F,G5 = [F6 @ M, (Fq) @ My, (Fpe), n, > 2 with 42 =

E nZ+2 E n?, which further implies that the poss1ble ch01ces of n,’s are (3,3,2,2,2),
r=1 r=3
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(2,2,2,2,3). For uniqueness, consider the normal subgroup Hs = (z,t) of G5 having
order 4 with G5/Hs = A4. From [19] and Theorem 2.5, we conclude that (3,3, 2,2, 2)
is the required choice.

Case (3): p*¥ = —1 mod 3 and p* = 1 mod4 which means p¥ = 5 mod 12. This
means [r = {1,5} and accordingly we can verify that

S('Yy) = {'vi'7y2}v S('Y:cy) = {'yxya’nyQ}a
S(’sz) = {’szv 'Yy%}a S('nyt) = {'Y;cytv 'Yzy2z}7
and S(7y,4) = {74} for the remaining representatives g of the conjugacy classes. There-
fore, (3.17) and Theorems 2.1, 2.2 imply that

5 9

(3.19) FyGs = Fo @D M, (Fy) @ M, (Fpe2).

r=1 r=6
Since G = Qs with G5/G% = Cg, we have F CG = [F2 &) [F2 This with Theorem 2.5
and (3. 19) implies that F,Gs = F2 @ F2, EB M, (F,) EB M, (Fpz), n, > 2 with
42 = En + Zan, which further 1mphes that the poss1ble choices of n,’s are

(2,2, 3, 3, 2,2), (2, 2, 2,2,2,3). For uniqueness, again consider the normal subgroup
Hs = (x,t) of G5. With the same approach used in Case (2), we conclude that
(2,2,3,3,2,2) is the required choice.

Case (4): p* = —1 mod 3 and p* = —1 mod 4, which means p* = 11 mod 12. This
means [r = {1,11} and accordingly we can verify that

S('Vy) = {'Vya'VyQ}a S(%ﬂy) = {'nyv%cy%}v S('sz) = {'szv')/y%}v
S(’Yﬂcyt) = {’nyt,%»y?}, S(ve) = {7V Vat } S('Yg) = {'Yg}

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and
Theorems 2.1, 2.2 imply that

3 9
(3.20) FoGs = Fo @D M, (Fy) P M, (Fpe).
r=1 r=4
Since G% = Qs with G5/Gf = Cs, we have F C’6 = [F2 &) [F2 This with Theorem 2.5
and (3. 20) 1mphes that F,Gs = F2 @ [F2 @ M, (Fq) @ My, (Fgpe), n, > 2 with
42 = Zn + 2an, which further 1mphes that the poss1ble choices of n,’s are

(3,3, 2, 27 2), (2, 27 2, 2,3). For uniqueness, again consider the normal subgroup Hs =
(x,t) of G5. With the same approach used in Case (2), we conclude that (3,3, 2,2, 2)
is the required choice. ([

440



3.6. The group Gg = Cs x S4. Group Gg has the following presentation:

1,.—1

<x’y7z7w7t|x2ﬂzi xz szil’yil

1 1,2

z  wat tw” Y7,
1

xilyx, w

wy, t 'y ty,

2wz wzt T e e e zw T w? T w T w82

tileltxtflwfl, zflyflzy, wily*

Group Gg has 10 conjugacy classes as shown in the table below.

rep | 1 z
order of rep| 1 2

Y w TY TW YZ Yw TYw
2 2

z
3 2 4 6 2 4
From the above discussion, clearly the exponent of Gg is 12. Also, Gy = A, and

GG/G/G =~ C2 X CQ.

Theorem 3.6. The unit group U(F,Gg) of F,Gs, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is isomorphic to (F})* & GLy(F4)* & GL3(Fg)*.

t—1
Proof. Since F,G¢ is semisimple, we have F,Gg = F, @ M, (F,). First as-
r=1

sume that k is even, which means that for any prime p > 3, we have p* = 1 mod 12.
This means that [S(vy)| =1 for each g € G as Ir = {1}. As G = A4 and Gg/Gj; =
Cy x Cy, WD in this case follows on similar lines to Theorem 3.3, i.e. it is given
by (3.10). Now we consider that k is odd, which means p* € {1,5,7,11} mod 12.
Here, we can verify that for all of these possibilities, |S(y4)| = 1 for each representa-
tive g of conjugacy classes. Therefore, WD is given by (3.10). (]

4. UNIT GROUP OF ;G FOR NON-METABELIAN GROUP OF ORDER 54

In this section, we discuss the WD of F,G, where G is a non-metabelian group of
order 54. There are 15 groups of order 54 up to isomorphism, but among these the
only non-metabelian group is G = ((C5 x C3) x C3) x Cy and it can be represented
via four generators x, y, z, w as

2 _—-1,.-1

R P T

1 —-1,.—1 3
2w o r Twr,y o,

1

v yxy”

-1, -1 —1

2y g wy T 1p—t 3.

wy,z3,w_ 27wz, w

Further, it can be seen that G has 10 conjugacy classes shown in the table below.

w rw yz w? zw? yz
3

6 3 3 6 3

rep ez y 2
order ofrep| 12 33

Theorem 4.1. The unit group U(F,G) of F,G, for ¢ = p*, p > 3 where [, is a
finite field having q = p* elements is as follows:
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(1) for p =1 mod6 and k is any positive integer or p = 5 mod 6 and k is odd
U(FqG) = (F;)?* x GLa(F)* x GL3(Fy)",
(2) for p=>5mod6 and k is odd:

U(FyG) = (F;)? x GLy(Fg)* x GL3(Fy2)?.

Proof. As the group algebra F,G is semisimple, we have

t—1

(4.1) FoG = Fy @D M, (F,).

r=1

Since p is an odd prime, we have the following two cases:

Case (1): p =1 mod6 and k is any positive integer or p = 5 mod 6 and k is an
even integer. Then, clearly ¢ = p* = 1 mod 6. This means |S(v,)| = 1 for each g € G
as Ir = {1}. Hence, (4.1), Theorems 2.1 and 2.2 imply that

9 9
(4.2) FoG = Fy @ M, (Fy) with 53 = n?.

r=1

Further, it can be verified that G’ is isomorphic to (C3 x C3) x C3. This means
F,(G/G") = F, @ F,. Hence, Theorem 2.4 and (4.2) imply that the only possible
values of n,’s satisfying (4.2) are (1,2,2,2,2,3,3,3,3).

Case (2): p = 5mod6 and k is an odd positive integer. Then, clearly ¢ =
p¥ = —1 = 5 mod 6. This means Iy = {—1,1} and accordingly S(v,) = {v,} for
each representative ¢ except when ¢ = w,w?, zw, zw?. For these cases, we have

S(Yw) = {Vws Vw2 }y SYaw) = {%w,%w2}~ Therefore, this with (4.1), Theorems 2.1
and 2.2 implies that F,G = F @M ( )@M ( 2). Incorporating Theorem 2.4
as in Case (1) to obtain F,G = [F2 @ Mn ( ) @ My, (F,2), where n, > 2 with

En + 2(n2 + n2). This glves the 3 ch01ces (3,3,3,3,2,2), (2,2,3,3,2,3),

(2,2, 2:"2713’ 3) for n,’s and for uniqueness we need to discard 2 choices. Consider the
normal subgroup H = (w) of G having order 3. It can be verified that K = G/H =
(C3 x C3) x Cy. To obtain the WD of F,G, we need to find the WD of F,K. Rep-
resentation of K is (v,y,2 | 22,z Yo7 tewe =y o tyzy 1, y3, 22, 27y Ly, wd).

Further, K has 6 conjugacy classes shown in the table below.

rep |exyzyzy22
orderofrep| 1233 3 3
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For p = 5 mod 6, it can be verified that S(vx) = {7x} for each representative k of the
conjugacy classes of K. Therefore, employ the fact that K’ is isomorphic to C3 x C3,

4 4
we have FoK = F2 @ M, (F,), where n, > 2 with 16 = Y nZ. This means that
r=1 r=1
F,K = F2 ® My(F,)*. Finally, Theorem 2.5 implies that we remain with the only
choice (2,2,2,2,3,3). O

5. U(F,G) FOR NON-METABELIAN GROUPS OF ORDER 72

The main objective of this section is to characterize the unit group of F,G,
where G is a non-metabelian group of order 72. Up to isomorphism, there are 7
non-metabelian groups of order 72 from which 5, namely G; = (C3 x Ay) x Cq,
G2 = C3 x84, G3 = (S5 x S3) x Cq, G4 = C5 x SL(2,3), G5 = (C5 x C3) x Qg have
exponent 12 and rest 2, namely Gg = Qg X Cg and G7 = ((C3 x C) x Cy) x Co have
exponent 36.

5.1. The group G; = (C5 x A4) x C3. Group G; has the following presentation:

1,.—1

(x,y,z,w,t | 22 2z e awe ™ty ! !

x_lwa:t_lw_l,

1

v yxy”

3 _—1,—1 -1, —
2 Y TRy, w Ty

)w_
t_lx_ltxt_lw_l,y3,z wyt_lw_l,

1

Ty yw T w e we, T e T e, w? T w T w2,

Further, G; has 9 conjugacy classes, as shown in the table below.

rep | 1
1

Y w oTw yz 2w Y’z
order of rep | 3 2

T Yy z
2332 4 3 6 3

From the above discussion, clearly the exponent of Gy is 12. Also, G} = C3 X Ay.

Theorem 5.1. The unit group U(F,G1) of F,G1, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is isomorphic to

(F2)? x GLy(Fg)* x GL3(F4)* x GLg(Fy).

Proof. Since F,G; is semisimple, we have

t—1

(5.1) FoGi1 = Fo @ M, (F,).

r=1
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First assume that k is even, which means that for an odd prime p, we have p* =
1 mod12. This means |S(yq4)| = 1 for each g € G1. Hence, (5.1), Theorems 2.1
and 2.2 imply that

8
(5.2) FoGi1 = Fo @D M, (F,).

r=1
Using Theorem 2.4 with G} =2 C3 x A4 in (5.2), we see that

7 7
(5.3) FoG1 = F2EP M, (F,), where n, >2 with 70 = n?.

r=1 r=1

The above gives us three possibilities (2, 2,2, 2,2,5,5), (2,2,2,2,3,3,6), and
(3,3,3,3,3, 3,4) for the possible values of n,’s and for uniqueness we need to dis-
card 2 choices. Consider the normal subgroup H; = (z) of G; having order 3. It can
be verified that K = G1/H; = S4. Therefore, (3.6), (5.3) and Theorem 2.5 imply that

(5.4) FoG1 = F2 ® Ma(Fg)* & M3(Fq)* & Mg(F,).

Now we consider that k is odd. We shall discuss this case in three parts:
(1) p* =1 mod 12,

(2) p* =1 mod3 and p* = —1 mod 4,

(3) p* = —1 mod3 and p* = £1 mod 4.

Case (1): p* =1 mod 12. In this case, WD is given by (5.4).

Case (2): p* = 1 mod3 and p* = —1 mod 4 which means p* = 7 mod 12. This
means Ir = {1,7} and accordingly |S(~,)| = 1 for each g € G;. Therefore, WD is
given by (5.4).

Case (3): p* = —1 mod3 and p* = +1 mod4 which means p* = 5 mod 12 or
p¥ = 11 mod 12. This means Iy = {1,5} or Ir = {1,11} and accordingly |S(y,)| = 1
for each g € G;. Therefore, WD is given by (5.4). O

5.2. The group G5 = C5 x Sy. Group G2 has the following presentation:

(x,y,z,w,t | 22 2z e zaz ™y ey, w e T b wat T w Y

3 1

2y T ey w Ty

t_lx_lta:t_lw_l,y3,z wy,t_ly_lty,

wlz ezt 7w T e T T w? T T e, £2).
Further, G5 has 15 conjugacy classes, as shown in the table below.
2

w xy rw y? yz yw xy® zyw ¥z y*w zyiw
2 6 4 3 3 6 6 12 3 6 12

rep |1a:y
3

z
order of rep | 1 2 3
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From the above discussion, clearly the exponent of G is 12. Also, G = A4 and
G2/GY = Cs.

Theorem 5.2. The unit group U(F,G2) of F,G2, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is as follows:

(1) for any p and k even or k odd with p =1 mod 3 and p = +1 mod 4,
U(FyGa) = (F;)° © GL2(F,)® ® GLs(F,)°,
(2) for k odd and p = —1 mod3 and p = £1 mod 4,

U(FyG2) = (F;)? @ (F}»)? @ GLy(F,) @ GL3(F)? @ GLa(Fy2) & GL3(Fy2)*.

Proof. Since F,G> is semisimple, we have

t—1

(5.5) FoG2 = Fo @ M, (F

r=1

Now as in Theorem 5.1 for k even, we have p* = 1 mod 12 which means |.S ('yg)| = 1for
each g € G5. Hence, (5.5), Theorems 2.1 and 2.2 imply that F,G2 = [, @ M, (F,).
Using Theorem 2.4 with G5 = A4 in this to obtain F,Gy = F5 @Mn ( q), where

» = 2 with 66 = in% This gives us the only possibility (2,2,2,3 3,3,3,3,3).

r=1
Therefore, we have

(5.6) FoGa = F & My (Fy)® & Ms(F,)°.

Now we consider that k& is odd. We shall discuss this in same manner as in Theo-
rem 5.1.

Case (1): p* =1 mod 12. In this case WD is given by (5.6).

Case (2): p* =1 mod3 and p* = —1 mod 4, which means p* = 7 mod 12. This
means [r = {1,7} and accordingly we can verify that |S(y,)| = 1 for each g € Gs.
Therefore, WD is given by (5.6).

Case (3): p¥ = —1 mod3 and p*¥ = £1 mod4 which means p¥ = 5 mod 12 or
p¥ = 11 mod 12. This means Iy = {1,5} or Iy = {1,11} and accordingly we have

S(vy) = {1 Va2 b S(Vzy) = {Vays Yoy s S(Vyw) = {Vyw, V2w )
S('nyw) = {'Yzywa%cwa}v S('YyZ) = {'sza')’y%} S('Yg) = {'Vg}
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for the remaining representatives g of conjugacy classes. Therefore, (5.6), Theo-
rems 2.1 and 2.2 imply that

4
(5.7) FoGa = Fo @D M, (Fy) P M, (Fpe).
r=1 r=5
For Ir = {1,5} or Ir = {1, 11}, it is easy to see that F,Cs = [Fﬁ@[Fgg. This, with (5.7)
and Theorem 2.4, implies that

6

3
(5.8) FoGa2 = Fp ® Foo @ M, (Fy) D M, (Fg2),
r=1 r=4

3 6
where n, > 2 with 66 = Zn% + Zan
r=1 r=4

The above gives us two possibilities (2, 3, 3,2, 3,3) and (2,2, 2, 3, 3, 3), but we need to
discard one of these. For that, consider the normal subgroup Hy = (y) of G5 having
order 3. Observe that Go/Hs = S4. Therefore, (3.6), (5.8) and Theorem 2.5 imply
that (2,3, 3,2,3,3) is the only choice. O

5.3. The group G3 = (S5 x S3) x C2. Group G3 has the following presentation:
(x,y,z,w,t | 22 2z e e,y

-1, -1 2 .2 -1 —
2y yyL,z,w Ty

1 1 1 1

W xT
1

x_lya:z_ wa:w_l,t_lx_ltx,

wyt_lw_z, t_ly_ltyt_Qw_l,

wlz wzw ™ T e et wd T T w, £3).
Further, G3 has 9 conjugacy classes, as shown in the table below.

rep | 1 =z
order of rep| 1 2

Y w zy bt yw wt
2 3

z
23 4 6 6 3

Clearly the exponent of G is 12 and we can verify that G5 = (C3 x C5) x Co with
Gg/Gg =~ C2 X CQ.
Theorem 5.3. The unit group U(F,G3) of F,Gs, for ¢ = p*, p > 3 where F, is
a finite field having q = p* elements is isomorphic to (F})* & GLa(F,) & GL4(Fy)*.
Proof. Since F,G3 is semisimple, we have

t—1

(5.9) FoGs = Fo @ M, (F,).

r=1
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Now as in Theorem 5.1 for k even, we have p¥ = 1 mod 12 which means |S(v,)| =1
5
for each g € G. Hence, (5.9), Theorems 2.1, 2.2 imply that F,G3 = F; @ M,, (F,),
5 r=1

where n, > 2 with 68 = >_n2. This gives us two possibilities, namely (2,4, 4,4, 4)
r=1
and (3,3,3,4,5), but we need one. For that, consider the normal subgroup

Hs = (w,t) of G5 having order 9. Observe that H3 = C5 x C3 and G3/H3z = Ds.
It can be clearly seen that WD of F,Dsg has no term of the form M;s(F,) because
of the dimension constraint. Therefore, Theorem 2.5 implies that (2,4,4,4,4) is the
only choice we have and hence

(5.10) FoGs = Fy & Ma(Fq) & My(Fg)*.

Now we consider that k is odd which means that p* € {1,5,7,11} mod 12. For all
of these possibilities, we can easily see that |[S(,)| =1 for all g € G35 and therefore,
WD is given by (5.10). O

5.4. The group G4 = C5 x SL(2,3). Group G4 has the following presentation:

! 1x*1yx,w*1x*1thflz*1,

1

(x,y,z,w,t | 23 2z e L eat w27ty

Yy tzy, wly T wy, Ty ey, 2w

wlz  wet T T e e wt T T T  w, 12).

tileltx,y?’,z*

Further, G4 has 21 conjugacy classes, as shown in the two tables below.

2

rep 1l zy z t @ zy xt y2 yz yt x2y 2%z
orderofrep| 1 3 3 42 3 3 6 3 12 6 3 6
rep xy? zyt y?z vt 2%y? 2Pyzr oyt 2lylz

order of rep 3 6 12 6 3 6 6 6

From the above discussion, the exponent of G4 is 12. Also, verify that G} = Qs and
G4/G£1 = Cg X 03.

Theorem 5.4. The unit group U(F,G4) of F,Gy, for ¢ = p*, p > 3 where F, is
a finite field having ¢ = p* elements is as follows:

(1) for any p and k even or k odd with p =1 mod3 and p = +1 mod4,
U(FyGa) = (F})° @ GLa(Fy)? ® GL3(F,)?,
(2) for k odd and p = —1 mod3 and p = £1 mod 4,

U(FGa) = F} @ (Fi2)* ® GLa(Fy) ® GLs(Fy) ® GLa(Fy2)* @ GL3(F,2).
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Proof. Since F,G4 is semisimple, we have

t—1
(5.11) FyGa = Fy @ M, (F

r=1

20
Now as in Theorem 5.1 for k even, we get F,G4 = F, @ M,,.(Fg). Using Theorem 2.4

with G' & (Js in above to obtain F,G4 = [Fg @ M, (Fy), where n, > 2 with
63 = Zn This gives us the only possibility (2, 2, 27 2,2,2,2,22.3,3,3). Therefore,

r=1
we have

(5.12) FoGa 2 F) @ My(F,)? & Ms(F,)>.

Now we consider that k is odd.

Case (1): p* =1 mod 12. In this case WD is given by (5.12).

Case (2): p* = 1 mod3 and p* = —1 mod 4 which means p* = 7 mod 12. This
means that Ir = {1, 7} and accordingly |S(v,4)| = 1 for each g € G4. Therefore, WD
is given by (5.12).

Case (3): p* = —1 mod3 and p* = +1 mod4 which means p* = 5 mod 12 or
p¥ =11 mod 12. This means that Iy = {1,5} or Iz = {1,11} and accordingly we have

S(Vz) = {Ver Va2 } S(yy) ={ ya'sz};

S(vay) = {Vey: Ye22ts S(at) = {Vat, Va2 1,

S(y yZ) = {'szfYy z} ( t) = {'Yyt7'7y2t}
S(Va2y) = {Va2ys Va2t S(vaye) = {Vayts Va2y2: 1}
S(Vazyz) = {Va2yzs Va2t }s  S(v9) = {79}

for the remaining representatives g of the conjugacy classes. Therefore, (5.11),
Theorems 2.1 and 2.2 imply that

2 11
(5.13) FyGa = Fo @D M, (Fy) @ M, (Fpe2).
r=1 r=3

For Ir = {1,5} or Ir = {1,11}, it is easy to see that F (03 xC3) =F, & [Fflz. This,
7
with (5.13) and Theorem 2.4, implies that F,G4 = F, @[F4 @ M, (Fq) @ M, (F.)
r=3
with 63 = Z nZ+2 an, n, > 2, which gives us the only p0851b111ty (2,3,2,2,2,2,3).
r=1 =3
]
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5.5. The group G5 = (C5 x C3) X Qs. Group G5 has the following presentation:
(x,y,z,w,t | 22271 27 e ey~

2y eyt w Ty

1 1 1 —2

x_lwmt_Q,t_la:_lta:t_lw ,

y_ltylf_Qw_Q, 22,

a:_lyxz_ , W

1 _Q,t_l

wyt_lw

wlz hwzw ™t e et Bt T  w, £3).
Further, G5 has 6 conjugacy classes, as shown in the table below.

rep |

1 =z Ty
order of rep | 1 4

z w
2 3 4

Y
4

Clearly the exponent of G5 is 12 and we can verify that Gf = (C5 x C5) x Cy with
G5/Gg = CQ X CQ.

Theorem 5.5. The unit group U(F,G5) of F,Gs, for g = p*, p > 3 where [, is a
finite field having q = p* elements and is isomorphic to (F})* & GLy(F,) ® GLs(F,).

Proof. Since F,G5 is semisimple, we have

t—1

(5.14) F,Gs = F, @Mm([m.

r=1

Now as in Theorem 5.1 for k even, we have p* = 1 mod 12, which means |S(v,)| = 1
for each ¢ € Gs. Hence, (5.14), Theorems 2.1, and 2.2 imply that F,G5 =

2 2
Fy @ M,, (F,), where n, > 2 with 68 = 3 n2. The above gives the only pos-
r=1 r=1

sibil;ty namely (2,8) and therefore, the required WD is
(5.15) FoGs = F @ My(F,) @ Ms(F,).

Now we consider that k is odd. We have p¥ € {1,5,7,11} mod 12. For all these
possibilities, it can be verified that |S(v,)| = 1 for each g € G5. Therefore, WD is
given by (5.15). O

Now we characterize the unit group of F,G, where G is a non-metabelian group
of order 72 and exponent 36.

5.6. The group Gg = Qs x Cy. Group Gg has the following presentation:

(x,y, z,w,t | 23y~ 27 e eat ™! Lo tyz, w e twat 27t

1

2y
tle eyt 2y T gy w T oyt y T ey, 2%

w2z et T e wt T T hw  w, £2).
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Further, Gg has 21 conjugacy classes, as shown in the tables below.

2

2 Yy xt y2 yz yt xzy Tz

rep 1l xzy 2zt x
orderofrep| 1 9 3 42 9 9 18 3 12 6 9 18
rep zy? xyt vz vt 2%y? 2Pyr oyt 2?yz
order of rep 9 18 12 6 9 18 18 18

Clearly the exponent of Gg is 36. Also verify that G = Qg and G¢/Gjg = Cy.

Theorem 5.6. The unit group U(F,Gs) of the group algebra F,Gg, for ¢ = p*,

p > 3 where [, is a finite field having q = p* elements is as follows:

(1) for p* =1 mod 36 or p* = 19 mod 36,
U(FyGo) = (F})” & GLa(Fy)” & GL3(Fy)”,
(2) for p* € {5,11,23,29} mod 36,

U(FGs) = FL @ Fla @ Fio @ GLo(Fy) ® GL3(F,)
® GLy(Fp2) © GLs(Fy2) ® GLa(Fye),

(3) for p* = 17 mod 36 or p* = 35 mod 36,

U(F,Ge) 2 F: @ (Fia)* @ GL2(Fy) ® GL3(Fy) ® GLa(F2)* ® GL3(F2),
q q

(4) for p* € {7,13,25,31} mod 36,

U(F,Ge) = (F;)? @ (Fis)® & GLa(Fy)® ® GL3(Fg)® & GLa(Fy2)?.

Proof. As[F,Gg is semisimple, we have

t—1

(5.16) FoGs = Fo @D M, (F,).

r=1

Since p is an odd prime, we have p* € {1,5,7,11,13,17, 19,23, 25,29, 31, 35} mod 36.
We discuss each of the above mentioned possibilities one by one in the following

cases.
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Case (1): p* =1 mod 36 or p* = 19 mod 36. In this case, we have |S(v,)| =1 for
each g € G¢ as I[F = {1} or Ir = {1,19}. Hence, (5.16), Theorems 2.1 and 2.2 imply

that F,Gs = F, @ M, (Fy). Using Theorem 2.4 with G¢/G§ = Cy, we find

12 12
(5.17) FoGos = F) P M, (F,), where n, > 2 with 63 = n?.
r=1

r=1

The above gives the only possibility (2,2,2,2,2,2,2,2,2,3,3,3) for the possible values
of n,’s. Therefore, (5.17) implies

(5.18) FoGe = F) & M (Fy)® & Ms(F,)®.

Case (2): p* = 5mod36 or p* = 29 mod36. For both possibilities, we have
Ir = {1,5,13,17,25,29} and accordingly

S(¥2) = {Vas Ya2ys Vay?> Yoy Va2 Ya2y2 }y
S(Vat) = {Vats Va2yz> Yayts Vay22> Vay2t Va2z )
S(y y) =1 y77y2}7

S(vyz) = {1z 122}

S(vyt) = {vyts Y2t}

S(vg) =1{vg}

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1
and 2.2 imply that

2 5 7

(5.19) FGo = Fo @) My, (F,) @D Mo, (F2) @D My, (Fio).

r=1 r=3 r=6
Since Gg /G = Cy, it can be easily seen that F,Cy = [Fq@[F 2@ Fg. This, with (5.19)
and Theorem 2.4, implies that F,Ge = F, @ Fpe @ Fye @M (F )@M ( 2) B
My, (F,). Comparing dimensions on both the 51des to obtain 63 = Enr +
2 24: n? + 6n, n, > 2, which gives the only possibility (2, 3,2, 3,2). -
T=03ase (3): p* = 11 mod 36 or p* = 23 mod36. For both possibilities, we have

Ir = {1,11,13,23,25,35}. Further, we can verify that this case is exactly similar to
Case (2).
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Case (4): p* = 17 mod 36 or p* = 35 mod36. For these possibilities, we have
Ir = {1,17} or Ir = {1, 35}, respectively, and accordingly

S(Vz) = {Vas Ya2y2 }s S(vy) = {12
(’Yﬁcy = {’Yﬁcyv')/ﬁy}v S(Vat) = {'Yxt7'7z2y2z}v
= {'sza’}/yzz}

Va2 zalygcyzt}v

o}

( yt {’Vytalyyzt}a S(’szz

) )
) (Yat)
S(va2) = {Va2s Yee s S(vy2)
) = )
S(Yayt) = {Vayts Va2y= 1} S(7g)

{r
{n

for remaining g. Therefore, (5.16), Theorems 2.1 and 2.2 imply that

2 11
(5.20) FoGs = Fo @D M, (Fy) P M, (Fy2)
r=3

r=1
Also Gg /G = Cy, which means F,Cy = [Fq@[F32. This, with (5.20) and Theorem 2.4,
2 7
implies that F,Gs = F; & [F42 @ M, (Fq) @ M, (F,2). Applying the dimension
formula to this to obtain 63 = Z n2+2 E n? > 2, which gives the only possibility
(2.3,2.2,2,2,3). !

Case (5): p* = 7mod36 or p* = 31 mod36. For both possibilities, we have
Ir = {1,7,13,19,25,31} and accordingly

S(’}/x) = {73?7 VYay?s 7:81/}7 S(VIQ) = {7125 Y2y ’YIQyQ}a
S(’th) = {’7xt77zyt77xy2t}a S(szz) = {szzalygczyza’ygczyzz}v and S(Vg) = {79}

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1
and 2.2 imply that

8 12
(5.21) FoGs = Fo @D M, (Fy) P M, (Fy2)
r=1 r=9
Also Gg/G§ = Cy, which means F,Cy = [Fg e [Fgg. This, with (5.21) and The-

6 8
orem 2.4, implies that F,Gs = F3 @ [F33 @D M, (F;) @ My, (F,s). Applying the
r=1 r=T7

6 8
dimension formula in the above to obtain 63 = >> n2+3 Y n?2 > 2, which gives
r=1 r="7

two possibilities, namely (2,2,2,3,3,3,2,2) and (2,2,2,2,2,2,2,3) but we need to
discard one of these. For that, consider the normal subgroup Hg = (y) of Gg having
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order 3. Observe that G¢/Hg = SL(2,3), and from [11], we know that the WD of
F,Ge¢/Hg contains Ma(F,) as well as M3(F,). Therefore, (2,2,2,3,3,3,2,2) is the
only possibility for n,.’s.

Case (6): p* =13 mod 36 or p¥ = 25 mod 36. For both the possibilities, we have
Ir = {1,13,25} and one can verify that this case is similar to Case (5). O

5.7. The group G7 = ((Cy x C3) x Cg) x Co. Group G7 has the following
presentation:

(x,y, z,w,t | 22, 2z e eae ™y e iy Ty T w e et T Y

t_lm_ltmt_lw_l, 23, y32_2, z_ly_lzy, w_ly_lwyt_lw_l7
Ty yw w e e, T e e, w? T T w2,

Further, G7 has 9 conjugacy classes, as shown in the table below.
w zw Yy 2w yz?
2 4 9 6 9

rep | 1
1

Ty z
order of rep| 293

Clearly the exponent of G7 is 36, and we can verify that G% 2 (C2 x Cs) x Cg with
Gr/GL = Cy

Theorem 5.7. The unit group U(F,G7) of F,Gr, for ¢ = p*, p > 3 where [, is
a finite field having q = p* elements is as follows:

(1) for p* € {1,17,19,35} mod 36
U(F,Gr) = (F))? @ GLo(Fy)' ® GLa(F,)* © GLo(F,),
(2) p* € {5,7,11,13,23, 25,29, 31} mod 36,

U(F,Gr) = (F;)? @® GLy(Fq) ® GL3(Fq)* ® GL6(Fy) ® GLa(Fya).

Proof. Since F,G7 is semisimple, we have

t—1

(5.22) F,Gr = F, @Mm([m.

r=1

Now, we proceed in a similar manner as in Theorem 5.6.
Case (1): p* = 1 mod36 or p* = 19 mod 36. In this case, we have |S(v,)| = 1
for each g € G7 as Ir = {1} or Ir = {1,19}. Hence, (5.22), Theorems 2.1 and 2.2
8
imply that F,G7 = F,@ M, (F,). Using Theorem 2.4 with G7/G% = C in this
r=1 7 7
to obtain F,G7 =2 F, @ F, @ M, (Fq), with 70 = E n?, n,. > 2. This gives 3

possibilities (2,2,2,2,2,5, 5) (2 2,2,2,3,3,6) and (3, 3 3 3,3,3,4) for the possible
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values of n,’s and we need to discard two. For that, consider the normal subgroup
H; = (z) of G7 having order 3. Observe that G7/H7 =S4 and therefore, using (3.6)
and Theorem 2.5, we conclude that (2,2,2,2,3,3,6) is the only possibility.

Case (2): p* =5 mod 36 or p¥ = 29 mod 36. For both possibilities, we have If =
{1,5,13,17,25,29} and accordingly S(vy) = {7y 12 Y22} S(vg) = {7y} for the
remaining representatives g of conjugacy classes. Hence, (5.22), Theorems 2.1 and 2.2

imply that F,Gr = F @Mn (Fq) ® Mg(Fys). Since G7/G% = C5, Theorem 2.4
further leads to =t

4
(5.23)  F,Gr = [FQ@MM ) ® Ms(Fgs), with 70 =Y n?+3n2, n, >2.

r=1

The above gives us three possibilities, namely (2,2,5,5,2), (2,3,3,6,2), (3,3,3,4,3).
Now, again consider the normal subgroup H; of G7. Therefore, (5.23) and Theo-
rem 2.5 imply that (2,3, 3,6,2) is the only choice we have.

Case (3): p¥ = 11 mod 36 or p¥ = 23 mod 36. For both possibilities, we have
Ir = {1,11,13,23,25,35}. Further, we can verify that this case is exactly similar to
Case (2).

Case (4): p¥ = 17 mod 36 or p¥ = 35 mod 36. For both possibilities, we have
Ir = {1,17} or Ir = {1, 35}, respectively, and accordingly this case is exactly similar
to Case (1).

Case (5): p* = 7Tmod36 or p* = 31 mod36. For both possibilities, we have
Ir = {1,7,13,19,25,31} and accordingly we can verify that this case is similar to
Case (2).

Case (6): p¥ = 13 mod 36 or p* = 25 mod36. For both possibilities, we have
Ir = {1,13,25} and one can verify that this case is again similar to Case (2). O

6. DISCUSSION

We have discussed the unit groups of semisimple group algebras of 14 non-
metabelian groups. All the results are verified using GAP. It can be clearly seen
that with the increase in the order of group, complexity in the determination of
unique Wedderburn decomposition upsurges. This completes the study of the unit
group of semisimple group algebras up to groups of order 72.
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