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Abstract. If K is the splitting field of the polynomial f(x) = x4 + px2 + p and p is a
rational prime of the form 4+n2, we give appropriate generators of K to obtain the explicit
factorization of the ideal qOK , where q is a positive rational prime. For this, we calculate
the index of these generators and integral basis of certain prime ideals.
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1. Introduction

Let K be a number field of degree n and OK the ring of integers K. We choose

α ∈ OK such that K = Q(α), and denote by δK the discriminant of K and

D(α) the discriminant of the basis {1, α, . . . , αn−1}. We associate to α the pos-

itive integer ind(α) =
√

D(α)/δK called the index of α. We know that δK and

D(α) are related by D(α) = det(C)2δK , where C is the coefficient matrix that

maps the basis 1, α, . . . , αn−1 to some fixed integral basis of K. Since D(α) =

ind(α)2δK , then ind(α) = |det(C)|. According to the Theorem 9.1.2 of [2] we have
ind(θ) = [OK : Z[α]], so that [OK : Z[α]] = |det(C)|. Let p be a positive rational
prime and let P1, . . . , Pg be prime ideals in OK such that

pOK = P e1
1 . . . P eg

g .

If I 6= {o} is any ideal of OK , we denote by N(I) = |OK/I| the norm of the ideal I.
Moreover, if α1, . . . , αn is an integral basis of I, then N(I) =

√

D(α1, . . . , αn)/δK .
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Particularly, N(Pi) = |OK/Pi| = pfi for i = 1, . . . , n and some fi ∈ N. If K/Q is

a Galois extension, then e = e1 = . . . = eg, f = f1 = . . . = fg and efg = n. If

G = Gal(K/Q) and α ∈ OK , we denote the norm of α by N(α) =
∏

σ∈G

σ(α).

If f(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn = Irr(α,Z), then N(α) = (−1)na0.

An old problem in algebraic number theory consists in explicitly giving prime

ideals Pi with generators and positive integers ei such that pOK = P e1
1 . . . P

eg
g . If p

is a prime number such that p ∤ ind(α) then we can decompose theoretically pOK as

Dedekind’s theorem ensures. Conrad has a comprehensive exposition of Dedekind’s

theorem in [4].

Theorem 1.1 (Dedekind). Let K = Q(α) be a number field with α ∈ OK , p be

a rational prime and f(x) = Irr(α,Q) ∈ Z[x]. Let us consider the natural map

–: Z[x] → Fp[x], where Fp = Z/pZ. Let f(x) = g1(x)
e1 . . . gr(x)

er , where

g1(x), . . . , gr(x) are distinct irreducible polynomials in Fp[x] and e1, . . . , er are

positive integers. For i = 1, . . . , r let fi(x) be any polynomial of Z[x] such that

f i(x) = gi(x) and deg(fi(x)) = deg(gi(x)). Set

Pi = 〈p, fi(α)〉.

If p ∤ [OK : Z[α]], then P1, . . . , Pr are distinct prime ideals of OK with

pOK = P e1
1 . . . P er

r and N(Pi) = pdeg(fi(x)).

But if p | ind(α) or p | [OK : Z[α]] we have the question: can we factorize pOK?

Obviously we can’t factorize pOK using Dedekind’s theorem, unless we could

change α for another α′ ∈ OK such that p ∤ ind(α′) and K = Q(α′). Remem-

ber that ind(K) = gcd{ind(α) : α ∈ OK , K = Q(α)}, so, if p | ind(K), we can’t

find α′ as we wish.

In cubic number fieldsK, Llorente and Nart (see [12]) give the factorization of pOK

for any prime p, but don’t give generators of the prime ideal factors. Following

the cubic case, Alaca et al. (see [1]) give the explicit factorization of 2OK , where

ind(K) = 2. Guàrdia et al. (see [7]) build an algorithm to compute generators for

the prime ideals Pi and the discriminant of any number field. This algorithm is a

p-adic factorization method based on Newton polygons of higher order. The theory

of Newton polygons of higher order is developed by Montes in [13] and revised in [8].

We suggest the interested reader to delight in reading [7]; we also suggest reading

Chapter 6 in [3], where the reader can find an introduction to this subject and,

especially, a version of Dedekind’s theorem without using the hypothesis p ∤ ind(α).
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In this paper we are interested in getting the factorization of qOK with K = Q(α),

where f(α) = 0, f(x) = x4 + px2 + p and, for some n ∈ N, p = 4 + n2 is a rational

prime. We don’t use Newton polygons; we use explicitly the integral basis of cyclic

quartic fields (see [10]), we calculate the integral basis of some prime ideals and we

make calculation of the index of generators of K. In our case, it is relatively easy

to factorize qOK , when q > 2. For this reason, we start Section 3 by factoring qOK

for any prime q 6= p such that q 6= 2 and q ∤ n, this includes the first case of the

factorization of q = 3. We finish Section 3 by factoring q = 2. In Section 4 we study

the case when K has index 3 and q = 3.

2. Preliminaries

In this paper we shall consider a quartic field K = Q(α) with

α =

√

−1

2
(p− n

√
p)

and p = 4 + n2 ∈ N being a prime number. If f(x) = x4 + bx2 + d ∈ Z[x] is

irreducible, then the Galois group of f(x) can be V , C4 or D4, where V is the Klein

4-group, C4 is the cyclic group of order 4, and D4 is the dihedral group of order 8.

If f(x) = x4 + px2 + p with p a prime number and α4 + pα2 + p = 0, then, according

to Theorem 3 in [11], K = Q(α)/Q is cyclic if and only if p = 4 + n2. Hardy et

al. (see [9]) show that any cyclic quartic field can be expressed in a unique way as

Q
(

√

A(D +B
√
D)

)

,

where A,B,C,D ∈ Z are such that A is an odd squarefree integer, D = B2 + C2

is squarefree, B > 0, C > 0 and A, D are relatively prime. Hudson and Williams

(see [10]) give an integral basis for the integer ring of K = Q
(

√

A(D +B
√
D)

)

. In

our case, K = Q(α). Since

α′ =
n+ 2

2
α+

√
p

2
α,

then Q(α′) ⊂ Q(α). But Irr(α′,Q) = x4 + 2px2 + n2p, so

K = Q(α) = Q(α′), α′ =
√

−(p+ 2
√
p), β′ =

√

−(p− 2
√
p),

where p = 4 + n2 is a rational prime. According to the unique theorem in [10], an

integral basis for OK is as follows: if n ≡ 3 (mod 4) then

ω1 = 1, ω2 =
1 +

√
p

2
, ω3 =

1 +
√
p+ α′ + β′

4
, ω4 =

1−√
p+ α′ − β′

4
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and if n ≡ 1 (mod 4) then

ω1 = 1, ω2 =
1 +

√
p

2
, ω3 =

1 +
√
p+ α′ − β′

4
, ω4 =

1−√
p+ α′ + β′

4
.

In any case δK = p3, and so p is the only ramified prime.

Theorem 2.1. Let K = Q(α) with

α =

√

−1

2
(p− n

√
p).

Then pOK = 〈α〉4.

P r o o f. We have

ind(α) =

√

D(α)

δK
=

√

24n4p3

p3
= 22n2,

then ind(α) 6≡ 0 (mod p). Since Irr(α,Q) = x4 + px2 + p, by Theorem 1.1, pOK =

〈p, α〉4 = 〈α〉4. �

Since K is a Galois extension, then any prime q 6= p does not ramify, i.e. e = 1

and fg = 4, so we have g = 1, g = 2 or g = 4.

On the other hand, Engstrom in [6] shows that for any quartic number field K,

ind(K) = 1, 2, 3, 4, 6, 12. Sperman and Williams in Theorem A (see [14]) show that,

in the cyclic case, ind(K) assumes all of these values and give necessary and suf-

ficient conditions for each to occur. In our case, according to Theorem A of [14],

ind(K) = 1, 3.

Theorem 2.2. Let K = Q(α) with p = 4 + n2 be a rational prime. Then

ind(K) = 3 if and only if 3 | n.

P r o o f. By Theorem A of [14], we have that if p ≡ 2 (mod 3), then ind(K) = 1;

and if p ≡ 1 (mod 3), then ind(K) = 3. If ind(K) = 3, then p 6≡ 2 (mod 3). Since

p = 4 + n2 > 5, then p ≡ 1 (mod 3). Therefore n ≡ 0 (mod 3). If n = 3t for some

t ∈ Z, we have

p = 4 + 9t2 ≡ 1 (mod 3),

so ind(K) = 3. �
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3. Factoring q 6= p

Let q ∈ N be a rational prime number. To use Dedekind’s theorem to factor-

ize qOK in OK where K = Q(α) = Q(α′), we need that ind(α) 6≡ 0 (mod q) or

ind(α′) 6≡ 0 (mod q), but if

ind(α) = 22n2, ind(α′) = 26n,

then we can factorize any prime q 6= 2, q 6= p and q ∤ n.

Theorem 3.1. Let K = Q(α) and q be a rational prime such that q 6= 2 and

q ∤ n. Then:

(1) If
(

p
q

)

= −1, then qOK = 〈q, α4 + pα2 + p〉 is a prime ideal of OK .

(2) If p ≡ t2 (mod q) for some t ∈ Z and
(

−p−2t
q

)

= −1, then

qOK = 〈q, α2 + a1α+ a0〉〈q, α2 + b1α+ b0〉,

where a1, a0, b1, b0 ∈ Z satisfy

x4 + px2 + p ≡ (x2 + a1x+ a0)(x
2 + b1x+ b0) (mod q).

(3) If p ≡ t2 (mod q) for some t ∈ Z and
(

−p−2t
q

)

= 1, then

qOK = 〈q, α+ a0〉〈q, α + b0〉〈q, α+ a1〉〈q, α + b1〉,

where a1, a0, b1, b0 ∈ Z satisfy

x4 + px2 + p ≡ (x+ a0)(x + b0)(x+ a1)(x + b1) (mod q).

P r o o f. We prove only the first assertion, the others are similar. As ind(α) 6≡ 0

(mod q), we can use Dedekind’s theorem. Since

(p

q

)

= −1,

then
(p2 − 4p

q

)

= −1,

so by Theorem 3 (iv) in [5], we have that x4+px2+p is irreducible in Fq[x]. Therefore

qOK = 〈q, α4 + pα2 + p〉. �
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Note that if 3 ∤ n, then ind(K) = 1. By (1) above, we have 3OK = 〈3〉. If q | n,
then ind(α) ≡ ind(α′) ≡ 0 (mod q). So we need to find new generators that satisfy

the hypothesis of Theorem 1.1.

Proposition 3.1. Let K = Q(α′) be with α′ =
√

−(p+ 2
√
p) and β′ =

√

−(p− 2
√
p). Then:

(i) Q(α′) = Q(α′ + tβ′) for all t ∈ Z;

(ii) ind(α′ + tβ′) = 26(4t− n(1− t2))(t2 − 1− tn)2.

P r o o f. Since α′, β′ ∈ Q(α′), then Q(α′+tβ′) ⊆ Q(α′). By Theorem 2 (iii) in [11]

we have that

h(x) = x4 + 2p(1 + t2)x2 + p(4t− n(1− t2))2

is irreducible in Q[x]. Since h(α′ + tβ′) = 0, then h(x) = Irr(α′ + tβ′,Q). Therefore

[Q(α′ + tβ′) : Q] = 4 and so Q(α′) = Q(α′ + tβ′).

For the second assertion we know that ind(α′ + tβ′) =
√

D(α′ + tβ′)/δK and

D(α′ + tβ′) = N(h′(α′ + tβ′)), where h′(x) is the derivative of h(x). Since

h′(α′ + tβ′) = 4(α′ + tβ′)((α′ + tβ′)2 + p(1 + t2)) = 4(α′ + tβ′)(2t2 − 2− 2tn)
√
p,

then N(h′(α′ + tβ′)) = 44p(4t− n(1− t2))2(2t2 − 2− 2tn)4p2.

Thus

ind(α′ + tβ′) = 26(4t− n(1− t2))(t2 − 1− tn)2.

�

We note that if q | n, then q | ind(α′ + tβ′) if and only if q | t− 1, q | t or q | t+ 1.

Theorem 3.2. Let K = Q(α′) and q be a rational prime such that q 6= 2, 3 and

q | n. If θ1 = α′ + 2β′, then:

(1) If q ≡ 5, 7 (mod 8), then qOK = 〈q, θ21 + a1θ1 + a0〉〈q, θ21 + b1θ1 + b0〉, where
a1, a0, b1, b0 ∈ Z satisfy

x4 + 10px2 + p(8 + 3n)2 ≡ (x2 + a1x+ a0)(x
2 + b1x+ b0) (mod q).

(2) If q ≡ 1, 3 (mod 8), then qOK = 〈q, θ1 + a0〉〈q, θ1 + b0〉〈q, θ1 + a1〉〈q, θ1 + b1〉,
where a1, a0, b1, b0 ∈ Z satisfy

x4 + 10px2 + p(8 + 3n)2 ≡ (x+ a0)(x+ b0)(x + a1)(x+ b1) (mod q).
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P r o o f. We note that for θ1 it follows that K = Q(θ1) and ind(θ1) 6≡ 0 (mod q).

The proof is similar to that of Theorem 3.1. �

Now we factorize q = 2 no matter what ind(K) is.

Proposition 3.2. Let K = Q(α′) as in Proposition 3.1. Then:

(i) Q(α′) = Q(θ) with θ = 1
2 (1 + α′);

(ii) ind(θ) = n, where p = 4 + n2 = 4k + 1.

P r o o f. First note that Q(θ) ⊂ Q(α′). Let us consider

h(x) = x4 − 2x3 + 2(k + 1)x2 − (2k + 1)x+ k2.

By Theorem 2 (iii) in [11],

h
(

x+
1

2

)

= x4 +
(

−3

2
+ 2(k + 1)

)

x2 +
(

− 3

16
− k

2
+ k2

)

is irreducible in Q[x]. Therefore h(x) is irreducible. Since h(θ) = 0, we have

Irr(θ,Q) = x4 − 2x3 + 2(k + 1)x2 − (2k + 1)x+ k2

and Q(α′) = Q(θ). For the assertion (ii) remember that

D(θ) = det

























4 2 1− p
1− 3p

2

2 1− p
1− 3p

2

(p− 1)2

4

1− p
1− 3p

2

(p− 1)2

4

1 + 10p+ 5p2

8
1− 3p

2

(p− 1)2

4

1 + 10p+ 5p2

8

1 + 45p+ 3p2 − p3

16

























,

so D(θ) = n2p3. Therefore ind(θ) =
√

n2p3/p3 = n. �

As a consequence of (ii) above we have 2 ∤ ind(θ).

Theorem 3.3. LetK be as in Proposition 3.1 and θ = 1
2 (1+α′). Then 2OK = 〈2〉.

P r o o f. Note that Irr(θ) = x4 − 2x3 + 2(k + 1)x2 − (2k + 1)x+ k2 ≡ x4 + x+ 1

(mod 2) and x4 + x + 1 is irreducible in F2[x]. Therefore by Dedekind’s theorem

2OK = 〈2, θ4 + θ + 1〉. Finally N(〈2, θ4 + θ + 1〉) = 24, N(〈2〉) = N(2) = 24 and

〈2〉 ⊆ 〈2, θ4 + θ + 1〉, so 2OK = 〈2, θ4 + θ + 1〉 = 〈2〉 is principal. �
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4. Factoring 3 with ind(K) = 3

In Section 3 we obtained the factorization of 3OK in the case ind(K) = 1. Re-

member that 3 | n if and only if ind(K) = 3. If 3 is a common index divisor of K,

we can’t use Dedekind’s theorem. We find new generators.

Lemma 4.1. Let K = Q(α′) with α′ =
√

−(p+ 2
√
p) and {ω1, ω2, ω3, ω4} be the

integral basis as in Section 2. Then:

(i) 1
2 (3 + α′) = 1 + ω3 + ω4;

(ii) 1
2 (5− α′) = 3− ω3 − ω4;

(iii) 1
2 (5 + α′) = 2 + ω3 + ω4.

P r o o f. We prove only one case, the others are similar. If n ≡ 3 (mod 4), then

ω1 = 1, ω2 =
1 +

√
p

2
, ω3 =

1 +
√
p+ α′ + β′

4
, ω4 =

1−√
p+ α′ − β′

4
.

Therefore 1 + ω3 + ω4 = 1
2 (3 + α′). �

Proposition 4.1. Let K = Q(α′) be as in Lemma 4.1. The ideals

M =
〈

3,
3 + α′

2

〉

, P1 =
〈

3,
5− α′

2

〉

, P2 =
〈

3,
5 + α′

2

〉

satisfy:

(i) M = 3Z+ (3 + 3ω3)Z+ (−4 + ω2 − 3ω3)Z+ (1 + ω3 + ω4)Z;

(ii) P1 = 3Z+ (−17 + ω3)Z+ (−8 + ω2 + ω3)Z+ (−3 + ω3 + ω4)Z;

(iii) P2 = 3Z+ (−1 + ω3)Z+ (ω2 + 3ω3)Z+ (2 + ω3 + ω4)Z.

P r o o f. Only we comment the proof of assertion (i). Since 1+ω3+ω4 = 1
2 (3+α′),

thenM ⊂ 3Z+(3+3ω3)Z+(−4+ω2−3ω3)Z+(1+ω3+ω4)Z. The other statement

is obtained by solving a linear equation system. The other assertions are similar. �

Corollary 4.1. Let K = Q(α′), M , P1 and P2 be as in Proposition 4.1. Then

N(M) = 9, N(P1) = N(P2) = 3.

P r o o f. Proposition 4.1 provides an integral basis. Next calculate the discrimi-

nant. �

478



Since N(P1) = N(P2) = 3 we have that P1 and P2 are prime ideals of OK and

P1 ∩ Z = P2 ∩ Z = 3Z. Also it is clear that P1 6= P2 and M 6= OK .

Theorem 4.1. Let K = Q(α′) with α′ =
√

−(p+ 2
√
p). Let us consider

M =
〈

3,
3 + α′

2

〉

, P1 =
〈

3,
5− α′

2

〉

, P2 =
〈

3,
5 + α′

2

〉

.

Then

3OK = MP1P2.

P r o o f. First we show that

P1P2 =
〈

9, 6 + 3ω3 + 3ω4, 9− 3ω3 − 3ω4,
23 + p

4
+ ω2

〉

= 〈3,−ω2〉,

where {1, ω2, ω3, ω4} is an integral basis as in Section 2, no matter if n ≡ 1 or 3

(mod 4).

In our case, ind(K) = 3 and p = 4k + 1 implies that k = 3m for some m ∈ Z.

Since 1
4 (23+ p) +ω2 = 3(2+m)+ω2 ∈ 〈3,−ω2〉, we have P1P2 ⊂ 〈3,−ω2〉. Likewise

3 = 2(9)− 3
(5 + α′

2

)

− 3
(5− α′

2

)

and
23 + p

4
= 3(2 +m),

then

ω2 =
(23 + p

4
+ ω2

)

−
(23 + p

4

)

∈ P1P2

and therefore, 〈3,−ω2〉 ⊂ P1P2.

Finally, as −ω2 = 1
4 (α

′2 + (p− 2)) then

MP1P2 =
〈

9, 3
3 + α′

2
, 3

α′2 + (p− 2)

4
,
3 + α′

2

α′2 + (p− 2)

4

〉

.

The following numbers are in 3OK :

3 + α′

2

α′2 + (p− 2)

4
, 9, 3

α′2 + (p− 2)

4
, 3

3 + α′

2
,

so MP1P2 ⊆ 3OK . Since N(MP1P2) = N(3OK) = 34, then MP1P2 = 3OK . �
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In the next result we give an integral basis of some prime ideals that will help us

to decompose the ideal M .

Proposition 4.2. Let K be as in Theorem 4.1. If n ≡ 3 (mod 4) let’s consider

the ideals Q1 = 〈3, ω2 − ω3〉, Q2 = 〈3,−ω3〉 and if n ≡ 1 (mod 4), let’s consider the

ideals Q′

1 = 〈3,−1− ω4〉, Q′

2 = 〈3, 2− ω2 − ω4〉. Then:
(i) Q1 = 3Z+ (1− ω3)Z+ (ω2 − ω3)Z + (1 + ω2 + ω4)Z;

(ii) Q2 = 3Z+ (2 + ω2 − ω3)Z+ (ω2 + ω4)Z− ω3Z;

(iii) Q′

1 = 3Z+ (−1− ω4)Z+ ω3Z+ (3− ω2 − ω4)Z;

(iv) Q′

2 = 3Z+ (1− ω4)Z+ (2 + ω3)Z+ (−2 + ω2 + ω4)Z.

P r o o f. The proof is similar to the proof of Proposition 4.1. �

By Proposition 4.2 it is clear that N(Q1) = N(Q2) = N(Q′

1) = N(Q′

2) = 3 and

therefore Q1, Q2, Q
′

1, Q
′

2 are prime ideals.

Theorem 4.2. Let K = Q(α′) with α′ =
√

−(p+ 2
√
p) and Q1, Q2, Q

′

1, Q
′

2 be

as in Proposition 4.2. Then

M =

{

Q1Q2 if n ≡ 3 (mod 4),

Q′

1Q
′

2 if n ≡ 1 (mod 4).

P r o o f. If n ≡ 3 (mod 4), we show that Q1Q2 = 〈3, 1 + ω3 + ω4〉 = M . First

we note that 9, −3ω3, 3ω2 − 3ω3 ∈ 〈3, 1 + ω3 + ω4〉. As n = 4l + 3 for some

l ∈ Z, we have −ω3(ω2 − ω3) = (−3l2 − 4l − 2) − (1 + l)ω2. By Proposition 4.1,

{3, 3 + 3ω3,−4 + ω2 − 3ω3, 1 + ω3 + ω4} is an integral basis of M and

(−3l2−4l−2)− (1+ l)ω2 = 3x1+(3+3ω3)x2+(−4+ω2−3ω3)x3+(1+ω3+ω4)x4,

where x1 = 1
3 (−3l2 − 5l − 3), x2 = −l − 1, x3 = −l − 1, x4 = 0 ∈ Z. Therefore

−ω3(ω2 − ω3) ∈ M and Q1Q2 ⊆ M . Since N(Q1Q2) = N(M) = 9 we conclude that

Q1Q2 = M . The factorization M = Q′

1Q
′

2 in the case n ≡ 1 (mod 4) is similar. �

A c k n ow l e d g em e n t. We thank the referee for the valuable comments, which

improved the presentation of this work.
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