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Abstract. The paper presents a discontinuous Galerkin method for solving partial integro-
differential equations arising from the European as well as American option pricing when
the underlying asset follows an exponential variance gamma process. For practical purposes
of numerical solving we introduce the modified option pricing problem resulting from a lo-
calization to a bounded domain and an approximation of small jumps, and we discuss the
related error estimates. Then we employ a robust numerical procedure based on piecewise
polynomial generally discontinuous approximations in the spatial domain. This technique
enables a simple treatment of the American early exercise constraint by a direct encompass-
ing it as an additional nonlinear source term to the governing equation. Special attention is
paid to the proper discretization of non-local jump integral components, which is based on
splitting integrals with respect to the domain according to the size of the jumps. Moreover,
to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in
the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demon-
strate the capability of the numerical scheme presented within the reference benchmarks.

Keywords: option pricing; variance gamma process; integro-differential equation; Amer-
ican style options; discontinuous Galerkin method; semi-implicit discretization
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1. Introduction

The basic ideas of option pricing methods date back to [4] and [31]. These authors

proposed relatively simple techniques based on no-arbitrage arguments and leading

to the risk-neutral world, i.e., if one can constitute a hedged portfolio of option and

its underlying asset, it should have a riskless return and the actual risk attitude of
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market participants should not matter. Notwithstanding, the crucial assumption is

the existence of complete markets and Gaussian distribution of log-returns of the

underlying asset prices. However, empirical observations show that the returns of

financial asset prices are not normally distributed—instead, the fat tails and asym-

metry are present, which might lead to market incompleteness.

In order to cope with these facts, one can consider either stochastic volatility,

probability distribution with more parameters, or jumps (or their combination), see,

e.g., [7] for a review and discussion of various empirical facts, such as large and sudden

movements in the price (jumps), heavy tails (kurtosis), risk asymmetry (skewness)

and market incompleteness (perfect hedging is sometimes impossible). Obviously,

incorporating additional properties into the model commonly increases its complexity

and using numerical approaches can be inevitable.

In this contribution we focus on the variance gamma (VG) model, which dates back

to the pioneering papers [29] as concerns the symmetric case and [27], [28] as concerns

the asymmetric case. Because of its nice interpretations, either as a subordinating

Brownian motion depending on the market activity or a difference of two gamma

processes measuring the arrival of either positive or negative information, the model

has become quite popular in financial modelling including option pricing, despite

that it adds an integral operator to governing equations of original option pricing

models. As a result, the unknown pricing function is characterized as a solution of

a relevant partial integro-differential equation (PIDE) and its valuation leads to new

theoretical and numerical issues.

The objective of the paper is to provide the readers the comprehensive method-

ological concept that forms and improves the option valuation under the VG process,

taking into account its infinite activity and finite variation as well. From the previous

research, let us quote at least the Monte Carlo (MC) approach [14] and multinomial

method [5] that are based on a stochastic concept of option prices. In contrast,

the most flexible and efficient way, which is able to resolve many details of realistic

option pricing, is a PIDE approach. There is a vast literature focused on finite dif-

ference (FD) schemes related to the VG option pricing model, e.g., [2], [8] and [17],

but relatively little can be found about variational techniques, such as finite element

based methods that provide solutions in the entire computational domain and are

also suitable for complex geometries compared to FD methods.

The presented work is the follow up to the results from [20] where a jump process

of a finite activity is assumed. In a similar way we transform the original governing

equation to the initial-boundary value problem that reflects the properties of the

VG process. Next, a proper numerical method is employed. We focus on a discon-

tinuous Galerkin (DG) method, for a complete overview see book [11]. The DG

approach is based on piecewise polynomial generally discontinuous approximations
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in the spatial domain. As a result, sensitivity measures are resolved more properly

and a simple treatment of the American early exercise constraint is possible by

direct encompassing a penalty term to the governing equation. Further, mention

a weak imposition of boundary conditions and a simple adaptivity implementation.

Moreover, incorporating an upwind stabilization makes the numerical scheme suffi-

ciently robust with respect to various VG model parameters. Last but not least, the

sophisticated treatment of the non-local jump integral operator according to the size

of jumps improves the scheme as well. All the above attributes make this method

a suitable candidate for solving the problem of option pricing under the VG process.

Apart from our recent results [18], [19] and [20], let us mention some of the few other

applications of the DG approach in option pricing problems, e.g., [24] and [32].

The paper is organized as follows. In Section 2 we introduce the option pricing

problem under the VG model, including relevant partial integro-differential equa-

tions. Next, in Section 3 the discretization of the problem is provided. Finally, in

Section 4 numerical experiments with the European and American option pricing

are evaluated.

2. Option pricing problem under VG model

An option is a special type of financial derivative giving its holder the right to

trade an underlying asset S and it is limited by the maturity time T . The simplest

forms of this right are the right to buy it (call option) and the right to sell it (put

option) for the prespecified price K, usually called the strike price. If the trade is

executed, it is said that the option is exercised.

Various types of options are categorized by families of options, related to the de-

termination of the payoff and dates on which the option may be exercised. According

to the structure of the payoff, these contracts are classified as vanilla options or as

exotic ones, whose payoff results from additional conditions enforced on options.

From the second aspect, the way of exercise, we distinguish two major option styles,

namely European and American options that allow option exercising at the maturity

and before or at the maturity, respectively. This early exercise feature increases the

complexity of option pricing models and poses challenging problems in valuation.

In the rest of the paper, we consider both the European and American styles for

the plain vanilla option contract, i.e., option whose payoff function p(S) depends

only on a difference between the actual underlying asset price S and the strike

price K, specifically

(2.1) p(S) =

{
max(S −K, 0) for a call,

max(K − S, 0) for a put.
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Despite the piecewise linear character of (2.1), this payoffmakes the pricing procedure

more challenging than in the case of forwards or swaps.

The forthcoming section is organized as follows. We start with a brief introduction

into gamma and variance gamma stochastic processes, followed by a description of

the model dynamics and the derivation of the corresponding pricing equation for

European style options. Then, we present a localization and a modification of the

governing equation that allow us to formulate the resulting option pricing problem

as an initial-boundary value one. Finally, we extend the whole pricing procedure to

American style options.

2.1. Gamma and variance gamma processes. In order to present the con-

struction of the variance gamma process, it is first necessary to recall the definition

of the gamma process itself. Let t > 0 be the actual time and {γµ,ν(t)}t>0 denote

the gamma process with the mean rate µ ∈ R and variance rate ν > 0. By definition,

γµ,ν(t) is an increasing, time-continuous stochastic process with independent incre-

ments γµ,ν(t + ∆t) − γµ,ν(t) over disjoint intervals (t, t + ∆t) that follow a gamma

distribution with the mean µ∆t and variance ν∆t, given by the probability density

function

(2.2) ga,d(x) =
da

Γ(a)
xa−1 exp(−dx), x > 0,

where a = µ2∆t/ν > 0 and d = µ/ν > 0 are the shape-rate parameters, and Γ(·)

denotes the gamma function, see [1].

Further, we present a brief introduction into the construction of VG processes

and their properties. The history of the VG process dates back to the pioneering

paper of Madan and Seneta [29], where this new stochastic process was introduced

in two ways—as a time changed Brownian motion or as a difference of two gamma

processes. For the purpose of a robust approach based on the concept of a stochastic

subordination [7], we recall the first case. Let

(2.3) θt+ σW (t)

be a drifted Brownian motion, where θ ∈ R denotes the drift, σ > 0 is the volatility

and {W (t)}t>0 means the standard Brownian motion.

Then the VG process is the three-parameter stochastic process {X(t)}t>0, ob-

tained by evaluating (2.3) at stochastic times given by a gamma process with the

unit mean rate, i.e.,

(2.4) X(t) ≡ Xσ,ν,θ(t) = θγ1,ν(t) + σW (γ1,ν(t)).

This process belongs to the family of Lévy processes [7], specifically to the class

of pure jump processes, since (2.4) does not have any continuous component. The
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dynamics of (2.4) is best explained by describing its simulation in terms of (σ, ν, θ)

for the corresponding Lévy measure ν(dx) (see [27]), given by

(2.5) ν(dx) = kVG(x) dx =
1

ν|x|
exp

(θx
σ2

)
exp

(
−
|x|

σ

√
2

ν
+

θ2

σ2

)
dx.

Taking into account the properties of the function kVG, specifically

(2.6)

∫

R

kVG(x) dx = ∞ and

∫

R

min(1, |x|)kVG(x) dx < ∞,

we speak of processes with infinite activity and finite variation, respectively. In other

words, almost all paths of X(t) have an infinite number of jumps on every compact

interval and they have bounded variation. Both properties are inherited from the

gamma process, see the detailed explanation in [27]. In contrast to the BS framework,

the property of bounded variation agrees more tightly with economics theories.

The Lévy measure for the VG process (2.5) has an equivalent expression obtainable

through a direct manipulation of (2.5). It is closely related to the decomposition of

the VG process as a difference of two gamma processes. Hence, the function kVG

can be rewritten as

(2.7) kVG(x) =
1

ν

(e−λn|x|

|x|
bx<0 +

e−λpx

x
bx>0

)
,

where bx<0 and bx>0 are indicator functions of subsets (−∞, 0) and (0,∞), respec-

tively. The positive parameters λn and λp provide a way to control decreases and

increases in the VG process and take the form

λn =

√
θ2

σ4
+

2

σ2ν
+

θ

σ2
> 0 and λp =

√
θ2

σ4
+

2

σ2ν
−

θ

σ2
> 1.(2.8)

In the rest of the paper we prefer the specification of the Lévy measure of the

VG process via the set of three parameters (ν, λn, λp) through which one can indi-

rectly control tails, skewness and kurtosis of the distribution. In particular, heavy

tails, higher kurtosis and negative skewness are important for the approximation of

a real asset price process, cf. the normal Gaussian distribution in the BS frame-

work [4] and [31].

2.2. Market model and governing equations. Consider the underlying as-

set S(t) paying a constant dividend yield q with a constant interest rate r. Further,

we assume that the movement of the asset prices {S(t)}t>0 is driven by the VG pro-

cess. The fact that this price process allows for jumps makes the market incomplete,

i.e., there exists a large set of equivalent martingale measures consistent with the

condition of the absence of arbitrage, see [22].
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Following [10], one can assume the existence of the risk-neutral probability mea-

sure Q, i.e., some equivalent martingale measure such that the discounted process

{e−(r−q)tS(t)}t>0 is a Q-martingale. Under Q, the asset price process is described

by the exponential dynamics

(2.9) S(t) = S(0) exp(L(t)),

where the Lévy process {L(t)}t>0 is defined as a drifted VG process (2.4), see [27].

Since the VG process is of finite variation, the log-price process L(t) inherits this

property and its Lévy-Itô decomposition can be written in the simplified superposi-

tion as

(2.10) L(t) = bt+

∫

R

xµL(t, dx),

where b is the drift of the logarithmic price of the asset and the integral of a Poisson

random measure µL represents the VG process (2.4). For the detailed information,

we refer the reader to semimartingale theory [23].

On the other hand, since (2.5) and (2.7) result to
∫
R
|x|ν(dx) < ∞, the Lévy

process L(t) has the finite first moment and thus the big jumps can be compensated

by νL(t, dx) = t · ν(dx), called the compensator of µL. More precisely, the Lévy-Itô

decomposition (2.10) takes a more general form

(2.11) L(t) =

(
b+

∫

|x|<1

xν(dx)

)
t+

∫

|x|>1

xµL(t, dx) +

∫

|x|<1

x(µL − νL)(t, dx).

Taking into account the martingale property of the discounted process e−(r−q)tS(t),

the drift term in (2.11) has to satisfy the relation (see [12])

(2.12) b+

∫

|x|<1

xν(dx) = r − q −

∫

R

(ex − 1− xb|x|<1)ν(dx).

From (2.12) we get the particular value of the drift term of the Lévy process L(t)

(2.13) b = r − q +

∫

R

(1− ex)ν(dx) = r − q + ω, ω ∈ R.

Referring to [2], one can express

(2.14) ω =

∫

R

(1 − ex)kVG(x) dx =
1

ν

(
ln
(
1 +

1

λn

)
+ ln

(
1−

1

λp

))
,

which plays the crutial role of a compensation constant that renders the process

{S(0) exp(ωt + X(t))}t>0 into a Q-martingale. Further, putting (2.10) and (2.12)

together, we get the risk-neutral process of the underlying asset log-price under the

VG dynamics in the form

(2.15) L(t) = (r − q + ω)t+X(t).
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For a better view of the asset dynamics given by (2.9) and (2.15), Figure 1 shows

sample paths of an underlying asset with the particular settings.
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Figure 1. Sample paths of an asset driven by the VG process with S(0) = 100, r = 0.1,
q = 0.0, ν = 0.5, λn = 2.8504 and λp = 2.4948.

In what follows, we consider a European option contract written on the underlying

asset (2.9) with the terminal payoff (2.1). Following the steps from [7], Chapter 12,

the value of such option, denoted by V (S, t), can be expressed as the discounted con-

ditional expectation of the payoff function under the risk-neutral probability mea-

sure Q, which has the following form, taking into account the Markov property,

(2.16) V (S, t) = e−r(T−t)EQ[p(S(T )) | S(t) = S].

By making the change of variables x = ln(S/K), t̂ = T − t and noting that

(2.17) w0(x) = p(Kex)/K, w(x, t̂) = V (Kex, T − t̂)/K,

we obtain from (2.16) and (2.9) the expression for w(x, t̂) through the following steps:

(2.18) w(x, t̂) = V (Kex, T − t̂)/K = V (S, t)/K = e−r(T−t)EQ[p(S(T )) | S(t) = S]/K

= e−r(T−t)EQ[p(S(t) exp(L(T − t)))]/K = e−rt̂EQ[p(Kex exp(L(t̂)))/K]

= e−rt̂EQ[w0(x+ L(t̂))].

Further, the infinitesimal generator LL (see [7] for the definition) of the process L(t̂),

applied to function f(x, t̂), has the form

(2.19) LLf(x, t̂) =

(
b+

∫

|y|<1

yν(dy)

)
∂f

∂x
(x, t̂)

+

∫

R

(f(x+ y, t̂)− f(x, t̂)− yb|y|<1
∂f

∂x
(x, t̂))ν(dy)

= (r − q + ω)
∂f

∂x
(x, t̂) +

∫

R

(f(x+ y, t̂)− f(x, t̂))ν(dy).
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Assume that w : R× [0, T ] → R
+
0 defined by (2.18) is once continuously differentiable

in both arguments on the domain R× [t̂0, T ] for some t̂0 > 0. By martingale pricing

theory [7], one can show that

(2.20)
∂

∂t̂
(ert̂w(x, t̂)) = LL(ert̂w(x, t̂));

in other words, as the fundamental result, the price function w satisfies the resulting

PIDE

(2.21)
∂w

∂t̂
−(r − q + ω)

∂w

∂x
+ rw

︸ ︷︷ ︸
D(w)

=

∫

R

(w(x + y, t̂)− w(x, t̂))kVG(y) dy

︸ ︷︷ ︸
I(w)

.

The typical feature of the VG model as well as a general pure jump model

with finite variation is that the corresponding pricing equation (2.21) is for-

mally of the first order, since there is no diffusion term in the differential oper-

ator D and the compensation constant ω contributes directly to the convection

term of D.

Since the smoothness condition w ∈ C1(R× [0, T ]) does not hold in the VG model

(see a counterexample in [9]), the classical solution is not available for the prob-

lem (2.21) for all (x, t̂) ∈ R× (0, T ), subject to the initial condition

(2.22) w(0, t̂) = w0(x) =

{
max(ex − 1, 0) for a call,

max(1 − ex, 0) for a put.

Therefore, under weakened regularity assumptions on the price function w on can

show that w defined by (2.16)–(2.18) is a generalized (viscosity) solution of the

Cauchy problem (2.21)–(2.22). The detailed description of the concept of viscosity

solutions for option pricing problems can be found in [9].

However, if we replace the Cauchy problem (2.21)–(2.22) with a new problem,

the solution of which in a certain sense approximates the original option contract,

it is even possible to introduce the notion of a weak solution in Sobolev spaces, see

Section 2.3.

2.3. Localized and modified problem. For a later numerical approach to solv-

ing the pricing PIDE it is necessary to deal with the unbounded spatial domain R,

the singularity of the integral operator I from (2.21) and the non-local character of

the term w(x+ y, t̂). Therefore, in this section, we introduce a new modified pricing

problem that reflects these issues, and discuss for the localization and approximation

errors. The inspiring ideas for the approach presented come from [7], [8] and [17].
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At first, we truncate the spatial domain R to a bounded interval Ω = (xmin, xmax),

where xmin < 0 and xmax > 0 stand for the minimal and maximal scaled logarithmic

asset price, respectively. Without loss of generality, we assume that xmin = −xmax

in the rest of the paper.

Next, we modify the approach from [17], split the integral term I into three parts

and evaluate or approximate each of them separately. Let ε > 0. Then one can write

(2.23) I(w)(x, t̂) =

∫

|y|6ε

(w(x + y, t̂)− w(x, t̂))kVG(y) dy

︸ ︷︷ ︸
I1(w)

−

∫

|y|>ε

w(x, t̂)kVG(y) dy

︸ ︷︷ ︸
I2(w)

+

∫

|y|>ε

w(x + y, t̂)kVG(y) dy

︸ ︷︷ ︸
I3(w)

.

The term I1 represents the contribution of small jumps and it can be approximated

with the aid of the Taylor formula up to the second order (under appropriate regu-

larity assumptions),

(2.24) w(x + y, t̂) = w(x, t̂) + y
∂w

∂x
(x, t̂) +

y2

2

∂2w

∂x2
(x, t̂) +O(ε3), y ∈ [−ε, ε].

Then, we have

(2.25) I1(w) ≈
∂w

∂x
(x, t̂)

∫

|y|6ε

ykVG(y) dy

︸ ︷︷ ︸
β(ε)

+
1

2

∂2w

∂x2
(x, t̂)

∫

|y|6ε

y2kVG(y) dy

︸ ︷︷ ︸
σ2(ε)

and an easy calculation leads to

β(ε) =
1

νλp
(1− e−λpε)−

1

νλn
(1− e−λnε),(2.26)

σ2(ε) =
1

νλ2
p

(1− e−λpε − λpεe
−λpε) +

1

νλ2
n

(1− e−λnε − λnεe
−λnε).(2.27)

In other words, the approximate evaluation of (2.25) leads to the additional convec-

tion as well as diffusion terms. In particular, the nonzero diffusion coefficient (2.27)

completely changes the character and the order of the differential operator; and

thanks to its newly acquired ellipticity, standard numerical techniques can be con-

veniently used.

R em a r k 2.1. Note that one can intuitively use the Taylor expansion of only the

first order in (2.24) due to the natural assumptions of C1-smoothness of w, see (2.21).

In this case we simply put σ2(ε) = 0, but this treatment does not allow us to derive

estimates based on the approximation of the process (2.15) by an appropriate finite

activity one, see [7].
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For the term I2 we may simply use direct calculation and obtain the additional

reaction term. More precisely,

(2.28) I2(w) = w(x, t̂)

∫

|y|>ε

kVG(y) dy = λ(ε)w(x, t̂),

where

(2.29) λ(ε) =
1

ν

(∫ ∞

ε

e−λpy

y
dy −

∫ −ε

−∞

eλny

y
dy

)
=

1

ν
(E1(λpε) + E1(λnε)).

In the last relation in (2.29) we use the definition of the exponential integral

E1(s) =

∫ ∞

s

e−ζ

ζ
dζ, s > 0;

for details see [1].

Finally, the last term I3 has already a smooth kernel, but due to presence of the

term w(x+ y, t̂) it is non-local. In the first instance we split I3 in two parts, related

to the left and right tails of the VG distribution, and make the change of variables

z = x+ y, then it can be written as

(2.30) I3(w) =

∫ x−ε

−∞

w(z, t̂)kVG(z − x) dz

︸ ︷︷ ︸
I−

3
(w)

+

∫ ∞

x+ε

w(z, t̂)kVG(z − x) dz

︸ ︷︷ ︸
I+

3
(w)

.

In order to evaluate the contributions of large jumps as |z| → ∞, we require that

the pricing function w satisfies the so-called knock-out condition, defined as the

discounted and shifted payoff

(2.31) w(z, t̂) = e−rt̂w0(z + (r − q)t̂) for z ∈ R \ Ω,

to reflect asymptotic values of European option prices as S → 0+ and S → ∞,

see [15]. In logarithmic prices, the asymptotic behaviour is

lim
x→−∞

w(x, t̂) = 0, lim
x→∞

{w(x, t̂)− (ex−qt̂ − e−rt̂)} = 0, t̂ > 0, (call)(2.32)

lim
x→−∞

{w(x, t̂)− (e−rt̂ − ex−qt̂)} = 0, lim
x→∞

w(x, t̂) = 0, t̂ > 0. (put)(2.33)

From the financial point of view, the condition (2.31) can be interpreted as a payment

of an artificial rebate, see [13].
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In what follows, suppose xmax > |r − q|T (as usually holds in practice) and the

case of a call option, then the knock-out condition (2.31) results into

(2.34) w(z, t̂) =

{
0 for z 6 −xmax,

ez−qt̂ − e−rt̂ for z > xmax.

Thus, the contribution of large jumps from the left tail I−3 (i.e., with the negative

argument of the kernel kVG) can be represented by the non-local truncated integral

operator I−
ε , defined on the bounded domain for x ∈ Ω as

(2.35) I−
ε (w)(x, t̂) =





0 if x− ε 6 −xmax,∫ x−ε

−xmax

w(z, t̂)kVG(z − x) dz if x− ε > −xmax.

Analogously, in the case of the right tail we get I+3 (w) = I+
ε (w) + Rε, where the

integral operator I+
ε is defined in a similar manner as (2.35), i.e.,

(2.36) I+
ε (w)(x, t̂) =





0 if x+ ε > xmax,∫ xmax

x+ε

w(z, t̂)kVG(z − x) dz if x+ ε < xmax,

and now the source term Rε results from the nonzero condition (2.34) as

(2.37) Rε(x, t̂) =





∫ ∞

x+ε

(ez−qt̂ − e−rt̂)kVG(z − x) dz if x+ ε > xmax,

∫ ∞

xmax

(ez−qt̂ − e−rt̂)kVG(z − x) dz if x+ ε < xmax.

Using the back transformation y = z − x and definition of the exponential inte-

gral, (2.37) can be expressed as

(2.38)

Rε(x, t̂) =





1

ν
(ex−qt̂E1((λp − 1)ε)− e−rt̂E1(λpε)), x+ ε > xmax,

1

ν
(ex−qt̂E1((λp − 1)(xmax − x)) − e−rt̂E1(λp(xmax − x))), otherwise.

A similar approach for put options leads to the expression

(2.39)

Rε(x, t̂) =





1

ν
(e−rt̂E1(λnε)− ex−qt̂E1((λn + 1)ε)), x− ε 6 −xmax,

1

ν
(e−rt̂E1(λn(xmax + x)) − ex−qt̂E1((λn + 1)(xmax + x))), otherwise.
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Actually, within the aforementioned localization and approximation of the integral

operator we follow the idea from [7], where the finite activity process

(2.40) Lε(t) = (r − q + ω(ε))t+Xε(t)

approximates process (2.15) to avoid the singularity of the kernel kVG near to zero.

Therefore, to ensure the probabilistic representation of the solution of the new

modified pricing equation it is necessary not to violate the martingale property

of (2.40). This condition is essential in order that we are able to establish a relation

between solutions of the original and the modified pricing problems, see Theorem 2.1.

As in (2.15) the martingale property can be preserved by a suitable choice of the

compensation constant ω(ε) in (2.40), specifically

(2.41) ω(ε) =

∫

|y|>ε

(1− ey)kVG(y) dy = λ(ε)− κ(ε),

where κ(ε) = ν−1(E1((λp − 1)ε) + E1((λn + 1)ε)).

In the next paragraph, we describe in detail the relationship between ω and ω(ε).

Using the Taylor series of ey about y = 0, we have

(2.42) ω−ω(ε) =

∫

|y|6ε

(1−ey)kVG(y) dy = −β(ε)−
σ2(ε)

2
−

∫

|y|6ε

∞∑

i=3

yi

i!
kVG(y) dy

and the Taylor remainder, expressed in the integral form, can be easily estimated as

(2.43)

∣∣∣∣
∫

|y|6ε

∞∑

i=3

yi

i!
kVG(y) dy

∣∣∣∣ =
∣∣∣∣
∫

|y|6ε

(∫ y

0

es

2
(y − s)2 ds

)
kVG(y) dy

∣∣∣∣

6
1

6

∫

|y|6ε

|y3|e|y|kVG(y) dy

6
1

9ν
max(1, eε−λnε)ε3.

Comparing (2.42)–(2.43) and (2.24)–(2.25) one concludes that the approximations

of ω and w(x + y, t̂) produce similar errors proportional to ε only provided that

(2.44) ω + β(ε) ≈ ω(ε)−
σ2(ε)

2
.

Consequently, taking all the above into account, it is possible to represent the

modified option pricing problem as the initial-boundary value one for an unknown

function u(x, t̂) : Ω× (0, T ) → R
+
0 governed by

(2.45)
∂u

∂t̂
+Dε(u) = Iε(u) +Rε in Ω× (0, T ),

868



where Iε = I−
ε + I+

ε is given by (2.35)–(2.36), and

(2.46) Dε(u) = −
σ2(ε)

2

∂2u

∂x2
−
(
r − q + ω(ε)−

σ2(ε)

2

)∂u
∂x

+ (r + λ(ε))u,

and u(x, t̂) satisfies the (restricted) initial condition

(2.47) u(x, 0) = w0(x) in Ω

and a couple of appropriate boundary conditions

u(−xmax, t̂) = uL(t̂) =

{
0 for a call,

e−rt̂ − e−xmax−qt̂ for a put,
(2.48)

u(xmax, t̂) = uU(t̂) =

{
exmax−qt̂ − e−rt̂ for a call,

0 for a put.
(2.49)

Although the Dirichlet boundary conditions (2.48)–(2.49) reflect the asymptotic be-

haviour of the options (2.32)–(2.33), they are inaccurate in general, see [18]. How-

ever, from the point view of financial engineering, this fact is marginal provided that

the zone of financial interest, i.e., the domain Ω∗ ⊂ Ω, in which option values are

desirable to know, is sufficiently distant from the far-field boundary ∂Ω.

In what follows, we discuss estimates for localization and truncation errors related

to approximation of the original option pricing contract by the artificial one paying

a rebate corresponding to the discounted and shifted payoff.

Theorem 2.1. Let w be the (viscosity) solution of (2.21)–(2.22) and let wε
Ω be

the (classical) solution of (2.45)–(2.49), both related to the European put option

contract. Then,

(2.50) |w(x, t̂)− wε
Ω(x, t̂)| 6 C(εemax(λp,λn)ε + e−α(xmax−|x|)) for x ∈ Ω,

where 0 < α < min(λp, λn) and the constant C does not depend on xmax and ε.

P r o o f. The proof is based on the application of the probabilistic approach

from [3] and [7]. Accordingly, we split the error in two parts and treat each part

separately, i.e.,

(2.51) |w(x, t̂)− wε
Ω(x, t̂)| 6 |w(x, t̂)− wε(x, t̂)|+ |wε(x, t̂)− wε

Ω(x, t̂)|,

where the function wε(x, t̂) satisfies the Cauchy problem

∂wε

∂t̂
+Dε(w

ε) = I3(w
ε) in R× (0, T ),(2.52)

wε(x, 0) = w0(x) in R.(2.53)
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Since w0 is Lipschitz continuous (the proof is left to the reader), by a direct appli-

cation of [8], Theorem 5.1, arising from [7], Proposition 6.2, we have

(2.54) |w(x, t̂)− wε(x, t̂)| 6 C1

∫
|y|6ε |y|

3kVG(y) dy

σ2(ε)
6 C2εe

max(λp,λn)ε

with C1, C2 independent of ε. The second inequality in (2.54) results from the

estimates
∫

|y|6ε

|y|3kVG(y) dy 6
1

ν

∫

|y|6ε

y2 dy =
2

3ν
ε3,(2.55)

∫

|y|6ε

y2kVG(y) dy >
1

ν
min(e−λpε, e−λnε)

∫

|y|6ε

|y| dy =
1

ν
ε2e−max(λp,λp)ε.(2.56)

In the following, we equivalently express the problem (2.45)–(2.49) with the knock-

out condition (2.31) as

∂wε
Ω

∂t̂
+Dε(w

ε
Ω) = I3(w

ε
Ω) in Ω× (0, T ),(2.57)

wε
Ω(x, 0) = w0(x) in Ω,(2.58)

wε
Ω(x, t̂) = e−rt̂w0(x+ (r − q)t̂) in R \ Ω.(2.59)

More precisely, the solution of (2.45)–(2.49) represents a solution of the localized

problem (2.57)–(2.59) restricted to Ω. Since the payoff of a put option is bounded,

i.e., ess sup
x∈R

w0(x) = 1, and the function kVG satisfies

(2.60)

∫

|y|>1

eα|y|kVG(y) dy < ∞ for 0 < α < min(λp, λn),

the assumptions of [8], Proposition 4.1, are fulfilled for the process Lε(t) and thus

we obtain the estimate

(2.61) |wε(x, t̂)− wε
Ω(x, t̂)| 6 C3e

−α(xmax−|x|) for x ∈ Ω

with C3 independent of xmax. Finally, putting (2.54) and (2.61) together, we obtain

the desired estimate (2.50). �

R em a r k 2.2. The solution w of (2.21)–(2.22) is considered to be a viscosity

solution, the existence and uniqueness of which is guaranteed by the Lipschitz conti-

nuity and polynomial growth at infinity of w0, for more details see [9]. Furthermore,

the solution wε
Ω of (2.45)–(2.49) is the classical solution, the existence and unique-

ness of which is a direct consequence of the Feynman-Kac representation of wε
Ω in

terms of the process (2.40), see [7]. Therefore, the point-wise evaluation of the error

in (2.50) makes sense, because the classical solution wε
Ω is also a viscosity solution

under given regularity; for further reading we refer to [9].
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R em a r k 2.3. The estimate (2.50) illustrates that the localization error has an

exponential decay proportional to the size of |Ω| and the truncation error decreases

almost linearly with respect to the size of ε. As noted above these estimates cannot

be directly applied to call options, and to obtain similar results (for calls) one can

use the put-call parity to transform the option pricing problem to put options, i.e.,

(2.62) wcall(x, t̂)− wput(x, t̂) = ex−qt̂ − e−rt̂.

Finally, we derive the variational formulation to (2.45)–(2.49). In the first in-

stance, we recall the well-known Lebesgue space L2(Ω) with the norm ‖·‖ = (·, ·)1/2

induced by the inner product (u, v) =
∫
Ω uv dx, and the Sobolev spaces H1(Ω)

and H1
0 (Ω) = {v ∈ H1(Ω): v(−xmax) = v(xmax) = 0}. The detailed definition of

Lebesgue, Sobolev and Bochner spaces can be found in [25].

Next, we follow standard steps. Considering a test function v from the space

C∞
0 (Ω), that is densely embedded in H1

0 (Ω), we multiply (2.45) by v and employ

integration by parts for diffusion terms. As a result, we define the bilinear form

(2.63) Dε(u, v) =
σ2(ε)

2

∫

Ω

∂u

∂x

∂v

∂x
dx+

(σ2(ε)

2
− ω(ε)− r + q

)∫

Ω

∂u

∂x
v dx

+ (r + λ(ε))

∫

Ω

uv dx

and introduce the following concept of a weak solution similarly as in [20].

Definition 2.1. The variational formulation of (2.45)–(2.49) reads: Find u ∈

L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) such that the following conditions are satisfied:

(2.64) u− uD ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)),

where uD(t̂) fulfills

uD(t̂)|x=−xmax
= uL(t̂) and uD(t̂)|x=xmax

= uU(t̂)

a.e. t̂ ∈ (0, T ),

(∂u
∂t̂

(t̂), v
)
+Dε(u(t̂), v) = (Iε(u(t̂)), v) + (Rε(t̂), v)(2.65)

∀ v ∈ H1
0 (Ω) a.e. t̂ ∈ (0, T ),

(u(0), v) = (w0, v) ∀ v ∈ H1
0 (Ω).(2.66)

R em a r k 2.4. Since we avoid the singularity of the original integral operator

and at the same time obtain the parabolicity of the modified price equation, to

prove the existence and uniqueness of the weak solution of (2.64)–(2.66), we may

apply results from [30], specifically Theorem 2.3 and Theorem 3.4, introduced in

that paper.
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2.4. Extension to American options. In contrast to the European style option,

an American style option can be exercised before the expiry of the contract, deriving

thus a more complex problem. In this case, we have to encompass an additional

constraint to the problem (2.21)–(2.22) that w(x, t̂) > w0(x) at any time t̂ ∈ (0, T ).

In other words, the value of an American option cannot fall below its payoff function.

This American feature leads to a moving-boundary problem [6], where apart from

solving the pricing equation, it is also necessary to determine two regions separated

by a free boundary E driven by the optimal exercise price. Thus, in the exercise

region ΩE ⊂ R, it is optimal to exercise the option early and we solve the problem

(2.67)

∂w

∂t̂
+D(w) − I(w) > 0,

w(x, t̂) = w0(x)



 in ΩE × (0, T ).

While in the continuation region, it is not optimal to exercise early and we solve the

problem

(2.68)

∂w

∂t̂
+D(w) − I(w) = 0,

w(x, t̂) > w0(x)



 in (R \ ΩE)× (0, T ).

Moreover, to guarantee the well-posedness of (2.67)–(2.68), the continuity of the price

function w and its derivative ∂w/∂x is required on the free boundary E , see [33].

There are several approaches how to handle the early exercise feature, among

the widely used ones let us cite the linear complementarity problem with penalty

techniques [34] or operator splitting methods [21]. In this paper we follow the penalty

approach and reformulate both the problems (2.67) and (2.68) into one equation valid

everywhere in both regions, i.e.,

(2.69)
∂w

∂t̂
+D(w) − I(w) − g = 0 in R× (0, T ),

where the penalty term g = g(x, t̂) is defined so as to ensure the American constraint

and it satisfies the conditions

(2.70) g(x, t̂) =

{
zero if w(x, t̂) > w0(x),

positive if w(x, t̂) = w0(x).

Analogously to the case of European options, we transfer (2.69) to the localized and

modified option pricing problem

(2.71)
∂w

∂t̂
+Dε(w) = Iε(w) +Rε + g in Ω× (0, T ),

subjected to the same initial condition (2.47) and boundary conditions set in accor-

dance with the early exercise feature. More precisely, if −xmax or xmax belongs to ΩE,
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then the value of w at that point is given by the initial condition (2.47), else the val-

ues correspond to the boundary conditions for European counterparts (2.48)–(2.49).

In line with this, terms (2.38) and (2.39) are slightly modified by avoiding the pa-

rameters r and q.

Finally, note that the enforcement of the American constraint can be viewed as

an additional nonlinear source term g in the pricing PIDE. Obviously, this penalty

approach can be unified for both European and American exercise features, if we set

g(x, t̂) = 0 in the whole domain for the case of a European exercise right. There

are several ways to define such a penalty term g that forces the solution of (2.71)

to be equal to the payoff in the exercise region ΩE, one of them arising from [34] is

discussed in Section 3.2.

3. Discretization

The more rigorous approach using PIDE forms the basis of advanced option

pricing models. As a result, there is a need to successfully solve these complex

governing equations containing a combination of differential and integral operators.

Unsurprisingly, analytical option pricing formulae are available only for simple op-

tion contracts or under very strong limitations on the market conditions. Therefore,

in general, the pricing equation has to be carefully solved numerically. This is also

the case of the VG model presented, where we simultaneously treat the convec-

tion dominated character of the differential part and the non-smooth kernel of the

integral part.

Taking these properties into account, the DG method combined with a modi-

fied numerical quadrature approach for convolution integrals represents a promising

numerical tool for such option pricing models that improves the valuation process.

Within the DG approach the numerical solution is composed by piecewise polynomial

functions on the finite element mesh without any requirements on the inter-element

continuity of the solution; for a detailed overview see [11]. More specifically, the

discontinuous treatment enables to apply upwind stabilization among elements as

well as to handle the American early exercise constraint in a more natural way. As

a result, the numerical scheme obtained is sufficiently robust with respect to option

styles and market conditions.

We follow the standard discretization steps in this section. At first, a partition of Ω

is introduced together with the appropriate function spaces. Then, the derivation of

DG formulation for the option pricing problem is presented employing a method of

lines for space semidiscretization and including a numerical quadrature approach to

the integral operator. Finally, a suitable time discretization is applied that results to

a numerical scheme consisting of a sequence of systems of linear algebraic equations.
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3.1. Partitions and function spaces. We start with a discretization of the

computational domain Ω and recall the standard notation from [11]. Let Th,

h > 0, denote a partition of the closure Ω = [−xmax, xmax] of the domain Ω

into N closed subintervals (called elements) Jk = [xk−1, xk] with a uniform length h

(to simplify a discretization of the integral term, see Section 3.2). Obviously,

Th = {Jk, 1 6 k 6 N}.

Over the fixed partition Th we define the finite dimensional space of discontinuous

piecewise polynomial functions

(3.1) Sp
h(Ω, Th) = {v ∈ L2(Ω): v|Jk

∈ Pp(Jk) ∀ Jk ∈ Th},

where Pp(Jk) denotes the space of all polynomials of the order less than or equal

to p defined on Jk. We recall that our aim is to construct an approximate solution

of (2.45) or its American counterpart (2.71) lying in the space Sp
h. The DG methods

can handle different polynomial degrees over elements in general, but here we consider

only p-uniform approximations for simplicity.

Since the functions v ∈ Sp
h are discontinuous across partition nodes in general, we

introduce the operator jump [·] and mean value 〈·〉 as

(3.2) [v(xk)] = v(x−
k )− v(x+

k ), 〈v(xk)〉 =
1

2
(v(x−

k ) + v(x+
k )), xk ∈ Ω,

where v(x+
k ) = lim

∆→0+
v(xk + ∆) and v(x−

k ) = lim
∆→0+

v(xk − ∆). For endpoints

{x0, xN}, we simply put [v(x0)] = −v(x+
0 ), 〈v(x0)〉 = v(x+

0 ), [v(xN )] = v(x−
N ) and

〈v(xN )〉 = v(x−
N ).

3.2. DG formulation for option pricing problem. In order to derive the

spatial semidiscrete problem in the sense of the DG approach, we assume that u(t̂)

as a solution of (2.64)–(2.66) is a sufficiently regular function lying in the suitable

space, see broken Sobolev spaces [11].

Following the standard techniques as in [20], we proceed in the same way as in

the variational formulation, with the only difference that we apply the integration

by parts to convection terms as well, cf. (2.63), and include discontinuities across

partition nodes with the aid of operators (3.2). As a result, it is necessary to deal

with the definition of the convective flux

(σ2(ε)

2
− ω(ε)− r + q

)
u

at the partition nodes xk ∈ Ω. Therefore, to ensure the propagation of the informa-

tion through these nodes in the proper direction, the concept of upwinding (see [11])
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within the following numerical flux H is employed, i.e.,

(3.3)

H(u(x−
k ), u(x

+
k )) =





(σ2(ε)

2
− ω(ε)− r + q

)
u(x−

k ) if
σ2(ε)

2
− ω(ε) > r − q,

(σ2(ε)

2
− ω(ε)− r + q

)
u(x+

k ) if
σ2(ε)

2
− ω(ε) < r − q,

where the choice of u(x−
0 ) and u(x

+
N ) for the boundary points −xmax and xmax has to

satisfy the prescribed Dirichlet boundary conditions (2.48) and (2.49), respectively.

Further, to introduce the semidiscrete variant of (2.63), we recall three slightly

modified bilinear forms from [20] defined on Sp
h × Sp

h, that is,

aεh(u, v) =
σ2(ε)

2

N−1∑

k=0

∫ xk+1

xk

∂u

∂x

∂v

∂x
dx−

σ2(ε)

2

N∑

k=0

〈∂u
∂x

(xk)
〉
[v(xk)](3.4)

+
σ2(ε)

2

N∑

k=0

〈∂v

∂x
(xk)

〉
[u(xk)],

bεh(u, v) =
(
r − q + ω(ε)−

σ2(ε)

2

)N−1∑

k=0

∫ xk+1

xk

u
∂v

∂x
dx(3.5)

+

N∑

k=0

H(u(x−
k ), u(x

+
k ))[v(xk)],

Jε
h(u, v) =

σ2(ε)

2h

N∑

k=0

[u(xk)][v(xk)].(3.6)

Then, we define the compound form

(3.7) Dε
h(u, v) = aεh(u, v) + bεh(u, v) + Jε

h(u, v) + (r + λ(ε))(u, v) ∀u, v ∈ Sp
h,

that represents the form (2.63) in the sense of the non-symmetric interior penalty

Galerkin method; for the detailed explanation see [11].

As in [20], we introduce the linear form ℓεh to enforce the fulfillment of the boundary

conditions and to encompass the remainders from the large jumps, specifically

(3.8) ℓh(v)(t̂) = (Rε(t̂), v) +
σ2(ε)

2

(
−
∂v

∂x
(x+

0 )uL(t̂) +
∂v

∂x
(x−

N )uU(t̂)

+
uL(t̂)v(x

+
0 )

h
+

uU(t̂)v(x
−
N )

h

)
.

In contrast to the BS framework, the semidiscrete variant of the integral operator

from (2.45) has to be also included. We formally obtain L2(Ω)-inner product of a test

875



function v with a convolution integral, which can be written under (2.35)–(2.36) as

(3.9) Iε(u)(x, t̂) =





∫

Ω

u(z, t̂)kεVG(z − x) dz, x ∈ (−xmax + ε, xmax − ε),

0, x ∈ Ω \ (−xmax + ε, xmax − ε),

where kεVG(y) = kVG(y)(1− b|y|<ε). In particular, it is much more essential how the

convolution integral (3.9) is numerically treated. A commonly used direct approxima-

tions of this term are based on the standard quadrature methods, see, e.g., [26]. Apart

from the wavelet transform [30], another, relatively modern technique represents the

integral terms as solutions of proper PDEs and leads to the local pseudo-differential

formulation; for more details see [22].

In the following paragraphs we recall and modify the numerical quadrature ap-

proach primarily designed for finite activity processes, i.e., for convolution integrals

with smooth kernels. Therefore, to avoid discontinuity of the function kεVG we follow

the simplest way and introduce a new function

(3.10) k̂εVG(y) =





kεVG(y), |y| > ε,

kεVG(ε)− kεVG(−ε)

2ε
y +

kεVG(−ε) + kεVG(ε)

2
, |y| < ε,

that creates a continuous function from kεVG by connecting the function values

kεVG(−ε) and kεVG(ε) using a linear function defined on the interval [−ε, ε]. Then,

we can write

(3.11)

∫

Ω

u(z, t̂)kεVG(z − x) dz =

∫

Ω

u(z, t̂)k̂εVG(z − x) dz

−

∫ x+ε

x−ε

u(z, t̂)
(kVG(ε)− kVG(−ε)

2ε
(z − x) +

kVG(−ε) + kVG(ε)

2

)
dz.

Now, we employ two different quadrature rules with the same orders of accuracy. For

simplicity, we assume that quadrature nodes coincide with the partition nodes of Th.

In line with [26], the first term in (3.11) is evaluated by the composite trapezoidal

quadrature rule. For the second term in (3.11), the midpoint rule is employed.

More precisely,

(3.12)

∫

Ω

u(z, t̂)k̂εVG(z − x) dz

≈
h

2

N−1∑

k=0

(u(x+
k , t̂)k̂

ε
VG(xk − x) + u(x−

k+1, t̂)k̂
ε
VG(xk+1 − x))− η(ε)u(x, t̂),
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where η(ε) = (kVG(−ε)+kVG(ε))ε. In order to guarantee that both quadrature rules

in (3.12) produce proportionally the same errors, one has to assume ε = h/2 and

odd N . On the basis of the above considerations, one can conclude that

Iε(u)(x, t̂) ≈ Iε
h(u)(x, t̂)− η(ε, x)u(x, t̂),

where η(ε, x) = η(ε)b|x|<xmax−ε and

(3.13)

Iε
h(u)(x, t̂) =





h

N∑

k=0

ϑk〈u(xk, t̂)〉k̂
ε
VG(xk − x), x ∈ (−xmax + ε, xmax − ε),

0, x ∈ Ω \ (−xmax + ε, xmax − ε)

with the weights ϑ0 = ϑN = 1
2 and ϑ1 = . . . = ϑN−1 = 1. Unfortunately, the

simplicity of the above numerical quadrature approach is partly compensated by

higher computational demandingness, cf. the multinomial method in [5].

Furthermore, to handle the American early exercise feature, we were inspired

by [34] and introduce the DG formulation of the penalty term g in the form

(3.14) (g(t̂), v) = cp

N−1∑

k=0

∫ xk+1

xk

bexe(t̂)(w0 − u(t̂))v dx

= cp

N−1∑

k=0

∫ xk+1

xk

bexe(t̂)w0v dx

︸ ︷︷ ︸
gh(v)

− cp

N−1∑

k=0

∫ xk+1

xk

bexe(t̂)u(t̂)v dx,

︸ ︷︷ ︸
Gh(u,v)

which can be split into the linear form gh and the bilinear form Gh. The function

bexe(t̂) in (3.14) is defined as an indicator function of the optimal early exercise

region ΩE at the time instant t̂ and cp > 0 is a suitably defined large number that

represents a weight with which the early exercise of the option is enforced. Its value

is specified later in Section 3.3 and Section 4. For European options, ΩE = ∅ and

the term (3.14) vanishes.

Finally, we define the semidiscrete problem to (2.45)–(2.49) or its American coun-

terpart (2.71) with the relevant boundary conditions and construct the solution

uh(t̂) ∈ Sp
h with continuous time running, i.e., the so-called method of lines. The DG

semidiscrete formulation of the option pricing problem reads: Find uh ∈ H1(0, T ;Sp
h)

such that the following conditions are satisfied:

(∂uh(t̂)

∂t̂
, vh

)
+Dε

h(uh(t̂), vh) + Gh(uh(t̂), vh)(3.15)

= (Iε
h(uh(t̂)), vh)− (η(ε, x)uh(t̂), vh) + ℓh(vh)(t̂) + gh(vh)

∀ vh ∈ Sp
h, ∀ t̂ ∈ (0, T ),

(uh(0), vh) = (w0, vh) ∀ vh ∈ Sp
h.(3.16)
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In other words, the problem (3.15) represents a system of ordinary differential equa-

tions for the unknown function uh(t̂) subjected to the initial condition (3.16).

R em a r k 3.1. Since ∂w0/∂x is discontinuous at x = 0, to preserve the regularity

of uh(0), it is sufficient to capture the support of w0 exactly. Therefore, one can

require that x = 0 is a partition node of Th, see [20]. If odd N is assumed as in (3.12),

the central element [−h/2, h/2] is bisected to two equal parts. Then, the definitions

of (3.6) and (3.13) are slightly changed. This modification is left to the reader.

3.3. Fully discrete option pricing problem. In what follows, we discretize

(3.15)–(3.16) with respect to the temporal variable t̂. In order to speed up numerical

simulations, the proposed numerical scheme should have no restrictive condition on

the length of the time step, preserve the sparsity of a system of linear algebraic

equations (resulting from this fully discrete problem) and be easy to implement.

Therefore, the simple way is to realize the discretization in time by a semi-implicit

Euler scheme, where the non-local integral term (Iε
h(·), ·) is evaluated only explicitly.

Let 0 = t̂0 < t̂1 < . . . < t̂M = T be a partition of the interval [0, T ] with the

constant time step τ = T/M (for simplicity) and denote by um
h ∈ Sp

h the approxi-

mation of the solution uh(t̂) at the time level t̂m ∈ [0, T ]. Then, the fully discrete

formulation of the option pricing problem results in a sequence of problems of the

form: Find um+1
h ∈ Sp

h, m = 0, . . . ,M − 1, such that

(3.17) (um+1
h , vh) + τDε

h(u
m+1
h , vh) + τ(η(ε, x)um+1

h , vh) + τGh(u
m+1
h , vh)

= (um
h , vh) + τℓh(vh)(t̂m+1) + τ(Iε

h(u
m
h ), vh) + τgh(vh) ∀ vh ∈ Sp

h

with the starting data, defined by projections (u0
h, vh) = (w0, vh) for all vh ∈ Sp

h.

This simple treatment is balanced by the fact that the resulting accuracy of the

numerical scheme is only of the first order in time. As an improvement of (3.17) we

refer to the scheme of the second order accuracy in [20].

For practical purpose, we use in the evaluation of forms Gh and gh an element-wise

approximation of the early exercise region ΩE, defined by the approximate solution

from the previous time level as in [19], i.e.,

(3.18) bexe(t̂m)|Jk
≈





1 if um−1
h

(xk−1 + xk

2

)
< w0

(xk−1 + xk

2

)
,

0 if um−1
h

(xk−1 + xk

2

)
> w0

(xk−1 + xk

2

)

for t̂m ∈ (0, T ) and Jk ∈ Th. Moreover, the value of cp should be proportional to

1/τ in order to avoid the influence of time stepping on the enforcement of the early

exercise feature, especially for small time steps, see (3.17).
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R em a r k 3.2. The existence and uniqueness of the discrete solution in (3.17)

are standardly guaranteed under the boundedness and ellipticity of the form (·, ·) +

τDε
h(·, ·) + τ(η(ε, x)·, ·) + τGh(·, ·) on the left-hand side. Since Gh can be observed as

the weighted variant of the L2-inner product, we can follow the same steps as in [20].

The properties of the scheme (3.17) depend on the orders of polynomial ap-

proximation essentially. Intuitively, in the continuation region Ω \ ΩE, the rate

of convergence is driven by properties of the NIPG variant of the DG method and

quadrature rules applied. On the other hand, in the early exercise region ΩE, as

cp ≫ 0, the scheme (3.17) tends to the equation Gh(u
m+1
h , vh)=gh(vh) that in fact

represents the L2-projection of the payoff function w0 onto the space S
p
h restricted

to ΩE. Here the rate of convergence is driven by the approximating properties of the

space Sp
h.

As one can easily recognize, the problems (3.17) result into a sequence of solving

linear algebraic equations. Let B = {ϕj}
N(p+1)
j=1 denote the basis of the space Sp

h.

Then the discrete solution um
h is identified with the real vector of its basis coefficients

Um = {ξmj }
N(p+1)
j=1 ∈ R

N(p+1) with respect to the basis B and (3.17) reads

(3.19) (M+ τD + τM̂+ τG)Um+1 = MUm + τ(Fm+1 +Gm), m = 0, 1, . . . ,

with the initial vector U0 related to u
0
h.

The system matrix in (3.19) is a composition of the mass matrixM = {mij}
N(p+1)
i,j=1 ,

its slight modification M̂ = {m̂ij}
N(p+1)
i,j=1 , the matrix D = {dij}

N(p+1)
i,j=1 and the

penalty matrix G = {gij}
N(p+1)
i,j=1 , defined element-wisely as mij = (ϕj , ϕi), m̂ij =

(η(ε, x)ϕj , ϕi), dij = Dε
h(ϕj , ϕi) and gij = Gh(ϕj , ϕi), respectively. Taking into ac-

count the properties of the basis B together with the definition of the form Dε
h,

one can conclude that the system matrices are non-symmetric and sparse with

a block structure.

The right-hand side of (3.19) contains two vectors evaluated at different time

levels t̂m and t̂m+1, more precisely Gm = {(Iε
h(u

m
h ), ϕj) + gh(ϕj)}

N(p+1)
j=1 that in-

cludes terms arising from quadrature rules and enforces the American constraint,

and Fm+1 = {ℓh(ϕj)(t̂m+1)}
N(p+1)
j=1 , that encompasses remainders from the large

jumps together with the fulfillment of boundary conditions.
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4. Numerical experiments

In this section, we illustrate through two numerical experiments of option pricing

in the VG model with European as well as American exercise features the usage and

capabilities of the numerical scheme presented.

The whole implementation is done in the solver Freefem++ (see [16]). As far as

solving linear systems (3.19) of given properties is concerned, the GMRES method

is used without preconditioner, since the number of unknowns is relatively small in

the experimental study considered. Moreover, in order to handle numerically the

American early exercise feature, we choose cp = 103/τ in (3.14) according to [34].

The value cp set seems to be sufficient and taking larger values does not improve the

results significantly.

From the practical point of view we are most interested in the option values in the

zone of financial interest Ω∗, which is usually associated with the underlying prices in

the range [0.75K, 1.25K], thus we set Ω∗ = [ln(0.75), ln(1.25)] ⊂ Ω in all forthcoming

experiments. Accordingly, we restrict the computational domain to Ω = (−3, 3).

The value xmax = 3 is experimentally set to eliminate the localization component

of error (2.50) under the given set (ν, λn, λp) with respect to the discretization error

(related to Ω∗) on the finest space-time grid (i.e., for sufficiently small parameters h,

τ and ε). For the detailed procedure we refer to [20].

Regarding the experimental error analysis, an important indicator for financial

practitioners is the worst-case pricing scenario, which is evaluated as the discrete

l∞-norm

(4.1) eMh,∞(Pp) = max
xi∈Ω∗

|〈uM
h (xi)〉 − uref(xi, T )|,

where xi are all nodes lying in the zone of financial interest (associated with degrees

of freedom for the finest mesh), uM
h is the Pp approximate solution (constructed on

the grid with the mesh size h and evaluated at t̂ = t̂M = T ) and uref is a given

reference solution. Since analytical pricing formulae are not available in general,

especially for American options, one can consider uref (in a certain sense) as the

approximate solution computed on the sufficiently fine time-space grid. In that case,

we write also 〈uM
ref(xi)〉 in (4.1). On the other hand, since the discrete solutions are

discontinuous across the partition nodes, we also evaluate errors in the L2-norm to

illustrate convergence properties of the numerical scheme in a more credible way, i.e.,

(4.2) eMh,2(Pp) = ‖uM
h − uref(T )‖L2(Ω∗).

At this point, it should be emphasized that the aim of the forthcoming numerical

experiments is to substantiate the design of the numerical scheme as the whole. We
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are aware that the presented results are preliminary and more thorough numerical

analysis is needed, especially in the issue of discretization errors. But it would be

beyond the scope of this article and it is left for a future research.

4.1. European call option. Within the first set of numerical experiments we

evaluate the European call options under the model parameters

(4.3) T = 0.25, K = 100, r = 0.1, q = 0.0, ν = 0.3, λn = 13.653, λp = 33.153,

which are artificially set to be the representatives of parameter values of practical

significance.

We start with a point-wise comparison of the proposed numerical scheme to MC

simulations performed according to [14] with 107 samples. This approach is the most

common from the practical point of view, when options are numerically priced. We

compute the piecewise linear (p = 1) and quadratic (p = 2) numerical solutions on

a sequence of grids with the consecutively expanding number of elements N . The

time step is fixed sufficiently small as τ = T/400 to suppress the influence of the

time discretization on the results. A particular case of numerical solution is depicted

in Figure 2 (left).
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Figure 2. The piecewise quadratic option prices evaluated at t̂ = T on a mesh withN = 512:
European call (left) and American put (right).

The computed pricing functions are evaluated at underlying prices Sref ∈

{90, 95, 100, 105, 110} at the time state t̂ = T and recorded in Table 1 with the

MC values as a proxy of the exact option prices. The results obtained reveal that

the presented DG approach with quadratic approximations seems to be successfully

applicable to the VG option pricing problem. More precisely, the numerical option

prices match tightly the reference ones as the space-mesh is finer and the polynomial
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order increases. However, this behaviour does not have to be strictly monotonous in

the case of the point-wise evaluation within the DG approach, since the point-wise

behaviour is influenced to certain extent by a position of the reference point with

respect to the partition nodes.

DG(Pp) N S = 90 S = 95 S = 100 S = 105 S = 110

32 0.98424 2.11433 3.38527 7.95426 12.7910

64 0.14464 1.69416 3.75683 8.02284 12.3793

p = 1
128 0.19617 1.23641 4.00082 8.25562 13.0759

256 0.18812 1.22217 4.23043 8.59100 13.4296

512 0.17101 1.17748 4.22910 8.56719 13.3662

1024 0.16652 1.13503 4.14308 8.42880 13.1702

32 0.54205 1.79065 3.66037 7.65324 12.1325

64 0.22890 1.28376 3.81029 7.81889 12.3171

p = 2
128 0.18101 1.15525 3.97338 8.03154 12.5958

256 0.16971 1.20231 4.09739 8.21763 12.8232

512 0.16305 1.10190 4.14886 8.29462 12.8958

1024 0.16122 1.09845 4.15733 8.31574 12.9097

MC simulations 0.161 1.103 4.162 8.305 12.89

Table 1. European case: Comparison of the approximate option values with the reference
values at five reference nodes for P1 and P2 approximations on a sequence of
meshes.

N convection
diffusion eMh,2(P2) ratio eMh,∞(P2) ratio

32 34 1.5433e− 01 — 8.9854e− 03 —

64 104 8.8434e− 02 1.745 7.1431e− 03 1.258

128 341 1.0754e− 01 0.822 9.5735e− 03 0.746

256 1199 6.9258e− 02 1.553 6.5092e− 03 1.471

512 4446 2.7230e− 02 2.544 3.3293e− 03 1.955

1024 17063 7.9732e− 03 3.415 1.4984e− 03 2.222

Table 2. European case: Errors (in the L2- and l∞-norm) and the corresponding conver-
gence ratios for P2 approximations on a sequence of meshes.

Secondly, we investigate the numerical scheme with respect to the errors (4.1)

and (4.2). Since the parameters ε and h are bonded together, the equation (2.45)

becomes convection dominated thanks to the refinement. Therefore, we would like

to illustrate also the robustness of the scheme with respect to the character of the

differential operator (2.46), i.e., the ratio convection
diffusion . According to the point-wise

observations we consider P2 approximations and the same time step. The results

obtained are listed in Table 2, which is divided into two panels associated with the
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particular error and the corresponding convergence ratio (related to two consecutive

grids). Actually, the evaluated errors are the scaled ones in the original underlying

prices and option values by the factor K, calculated over the interval [0.75K, 1.25K].

The observed ratios indicate how fast the numerical solutions converge to the refer-

ence solution uM
ref given by the piecewise quadratic approximation computed on the

grid with 4096 elements with τ = T/400. In case of the L2-norm, the decrease seems

to be closer to the quadratic rate, while the l∞-norm shows rather a linear character.

As stated before, these observations are preliminary and they should be confronted

(within the future research) with theoretical results to provide a clear statement.

4.2. American put option. The second numerical benchmark is performed on

the reference data from [5], where the American put option prices under the VG

process are evaluated using a multinomial method. In the following setting for the

VG model, we take the parameters

(4.4) T = 1.0, K = 40, r = 0.06, q = 0.0, ν = 0.2, λn = 13.50781, λp = 18.50781,

which correspond to the values θ = −0.1 and σ = 0.2 in the original VG process.

N S = 36 S = 38 S = 40 S = 42 S = 44

32 4.00080 2.00481 0.02206 0.20102 0.19041

64 4.01528 2.38182 1.71172 1.12280 0.75179

128 4.28127 2.77698 2.01871 1.49855 1.09643

256 4.29901 3.18462 2.34633 1.70440 1.23528

512 4.31640 3.20918 2.37141 1.70809 1.23301

1024 4.30214 3.20549 2.37175 1.69989 1.22739

Ref. val. [5] 4.3173 3.2034 2.3767 1.6947 1.2267

Table 3. American case: Comparison of the approximate option values with the reference
values at five reference nodes for P2 approximations on a sequence of meshes.

We proceed similarly as in the previous experiment. Within the first part we an-

alyze the point-wise behaviour of P2 numerical solutions computed on a sequence

of uniformly refined grids with the fixed time step τ = T/800. In Table 3 we

compare approximate option prices (associated to reference the underlying prices

Sref ∈ {36, 38, 40, 42, 44} and time t̂ = T ) with values obtained by a multinomial

method from [5]. In this respect, the results obtained are quite comparable with the

reference ones, as in the case of the European style option.

The second part aims to determine the behaviour of both the errors considered

with respect to the discretization parameter h. The reference solution (related to the

883



zone of financial interest [30, 50] in the original underlying prices) is again given by

the approximate one computed for the discretization parameters p = 2, N = 4096

and τ = T/800. Table 4 has the same format as Table 2 in the preceding experiment.

Except for minor differences, the errors exhibit the behaviour similar as for the case

of the European style option, thus we come to the same conclusions, including the

robustness of the scheme with respect to the convection-diffusion character of the

pricing equation.

N convection
diffusion eMh,2(P2) ratio eMh,∞(P2) ratio

32 11 7.0415e− 01 — 5.8778e− 02 —

64 36 6.7800e− 01 1.039 5.8514e− 02 1.005

128 125 2.5000e− 01 2.712 1.6273e− 02 3.560

256 454 1.6509e− 01 1.514 1.5465e− 02 1.052

512 1723 6.0034e− 02 2.750 8.4185e− 03 1.837

1024 6696 1.7627e− 02 3.406 2.8998e− 03 2.903

Table 4. American case: Errors (in the L2- and l∞-norm) and the corresponding conver-
gence ratios for P2 approximations on a sequence of meshes.

Finally, to conclude this section, we illustrate the American constraint in Figure 2

(right) that shows a general relationship between the American and European option

prices with respect to their payoff. It is apparent that the American option prices

do not fall below the values of the payoff. Moreover, one can easily observe other

typical findings, namely that the American options cost more than their European

counterparts.

5. Conclusion

Pricing of options is very challenging and no less important part of financial en-

gineering and the numerical techniques take a crucial part in this field, especially if

no closed-form pricing formulae exist for the particular market conditions. In this

contribution we have presented the methodological concept based on the DG method

that forms and improves the numerical valuation of options under the VG process,

including different options styles (European vs. American). The presented experi-

ments provide a brief insight into the performance of the method and although the

results obtained are comparable with the reference values of selected benchmarks,

more thorough numerical (error) analysis is needed and various improvements of

the numerical scheme are welcome within the further investigation. Furthermore,

the natural extension of this scheme is its application to option pricing under the

Carr-Geman-Madan-Yor (CGMY) process.
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