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A Weighted Eigenvalue Problems Driven by both
p(·)-Harmonic and p(·)-Biharmonic Operators

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani

Abstract. The existence of at least one non-decreasing sequence of pos-
itive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-
biharmonic operators

∆2
p(x)u−∆p(x)u = λw(x)|u|q(x)−2u in Ω,

u ∈W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω) ,

is proved by applying a local minimization and the theory of the generalized
Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).

1 Introduction and Assumptions
We are concerned with the following nonhomogeneous eigenvalue problem:

∆(|∆u|p(x)−2∆u)− div(|∇u|p(x)−2∇u) = λw(x)|u|q(x)−2u in Ω,

u ∈W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω),

(1)

where Ω ⊂ RN with N ≥ 1 is a bounded smooth domain, λ > 0 is a real parameter,
p(·), q(·) : Ω → (1,+∞) are continuous functions, and w is a nonnegative function
satisfying conditions which will be stated later.
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∆2
p(·)u := ∆(|∆u|p(x)−2∆u), is the p(·)-biharmonic operator which is a nat-

ural generalization of the p-biharmonic (when p(·) is a positive constant), and
div(|∇u|p(x)−2∇u) is the p(·)-harmonic operator, that is

∆p(x)u := div(|∇u|p(x)−2∇u) =

N∑
i=1

(
|∇u|p(x)−2 ∂u

∂xi

)
,

which is not homogeneous and related to variable exponent Lebesgue space Lp(·)(Ω)
and variable exponent Sobolev space W 1,p(·)(Ω).

In recent years, the study of differential equations and variational problems
with variable exponent growth conditions has been an interesting topic resulting
from nonlinear electrorheological fluids (see [16]) and elastic mechanics (see [21]).

The present paper deals with a class of nonlinear Dirichlet eigenvalue prob-
lems governed by two differentiable operators with variable “rheological” exponent.
In such a way, the associated energy is a double phase functional generated by
both the gradient and the Laplace operators with variable growth, that formulated
in the form of variational integrals governed by these nonhomogenous potentials.
We point out the recent works of [2], [14], [20] in the framework of double phase
problems with variable growth involving on operator, namely the p(·)-Laplacian.

The same problem, for w ≡ 1 and q ≡ p was studied by El Khalil et al [5].
The authors established the existence of at least one non-decreasing sequence of
positive eigenvalues. The smallest eigenvalue λ1 of

(∆2
p(·) −∆p(·),W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω))

is positive and admits the following variational characterization:

λ1 = inf

{∫
Ω

1

p(x)

(
|∆u|p(x) + |∇u|p(x)

)
dx :

∫
Ω

1

p(x)
|u|p(x) dx = 1

}
. (2)

Motivated by the works [1], [10], [12], [13], [15] and through the Ljusternik-
-Schnireleman principle on C1-manifolds [17], we prove the existence of at least one
non-decreasing sequence of nonnegative eigenvalues (λk)k≥1, such that λk ↗ +∞.

Throughout this paper, we will work under the following hypotheses on the
problem (1) :

(H1) 1 < q(x) < p(x) < min

{
N

2
, p∗2(x)

}
for all x ∈ Ω.

(H2) w ∈ Lr(·)(Ω) with r(x) > N
2 and w(x) > 0 a.e. x ∈ Ω.

The rest of this article is organized as follows. In Section 2, we recall some
basic facts about the variable exponent Lebesgue and Sobolev spaces. In the third
section, we present some important basic lemmas which allow us to prove our main
results. In Section 4, we give the main results and their proofs.
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2 Preliminaries on variable exponent spaces
To study both p(·)-harmonic and p(·)-biharmonic problems, we introduce some
basic properties of the variable exponent Lebesgue-Sobolev spaces Lp(·)(Ω) and
Wm,p(·)(Ω) where Ω is an open subset of RN . For details, we refer to the book [3]
and the references therein. Set

C+
1 (Ω) := {h ∈ C(Ω) and h(x) > 1,∀x ∈ Ω} .

Define
h+ := max

x∈Ω
h(x) , h− := min

x∈Ω
h(x) , for any h ∈ C+

1 (Ω).

To handle better the generalized Lebesgue-Sobolev spaces we define first, for p(·) ∈
C+

1 (Ω), the p(·)-modular functional ρp(·) defined on Lp(·)(Ω) by

ρp(·)(u) :=

∫
Ω

|u|p(x) dx .

The generalized Lebesgue space is defined as

Lp(·)(Ω) =
{
u : Ω→ R measurable and ρp(·)(u) < +∞

}
.

We endow it with the Luxemburg norm

|u|p(·) = inf
{
µ > 0 : ρp(·)

(u
µ

)
≤ 1
}
.

For any m ∈ N∗, the Sobolev space with variable exponent Wm,p(·)(Ω) is defined
by

Wm,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ m

}
,

equipped with the norm

‖u‖Wm,p(·)(Ω) = ‖u‖m,p(·) =
∑
|α|≤m

|Dαu|p(·) .

Wm,p(·)(Ω) has the same topological features as Lp(·)(Ω). For more details, we refer

the reader to [8], [7]. We denote by Wm,p(·)
0 (Ω) the closure of C∞0 (Ω) in Wm,p(·)(Ω).

Proposition 1. [7] The space (Lp(·)(Ω), |·|p(·)) is separable, uniformly convex, re-

flexive and its conjugate dual space is Lp
′(·)(Ω) where p′(·) is the conjugate function

of p(·), i.e.,

p′(x) =
p(x)

p(x)− 1
for all x ∈ Ω.

For u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), the Hölder’s type inequality∣∣∣∫
Ω

u(x)v(x) dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u(x)|p(·)|v(x)|p′(·) ≤ 2|u(x)|p(·)|v(x)|p′(·) (3)
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holds true. Moreover, if p1, p2, p3 ∈ C+
1 (Ω) and 1

p1
+ 1

p2
+ 1

p3
= 1, then for any

u ∈ Lp1(·)(Ω), v ∈ Lp2(·)(Ω) and w ∈ Lp3(·)(Ω), the following inequality holds true
[6, Proposition 2.5]∣∣∣∫

Ω

uvw dx
∣∣∣ ≤ ( 1

p−1
+

1

p−2
+

1

p−3

)
|u|p1(·)|v|p2(·)|w|p3(·) ≤ 3|u|p1(·)|v|p2(·)|w|p3(·) . (4)

We recall also the following proposition, which will be needed later,

Proposition 2. [4] Let p and q be measurable functions such that p ∈ L∞(Ω) and
1 < p(x)q(x) <∞, for a.e. x ∈ Ω. Let u ∈ Lq(·)(Ω), u 6= 0. Then

min
{
|u|p

+

p(x)q(x), |u|
p−

p(x)q(x)

}
≤
∣∣|u|p(x)

∣∣
q(x)
≤ max

{
|u|p

+

p(x)q(x), |u|
p−

p(x)q(x)

}
. (5)

Note that weak solutions of problem (1) are considered in the generalized
Sobolev space

X := W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω) ,

endowed with the norm

‖u‖p(·) = |∆u|p(·) + |∇u|p(·) ,

is a separable and reflexive Banach space. Moreover, ‖·‖p(·) and |∆ · |p(·) are two
equivalent norms of X by [18].

Let

‖u‖ = inf

{
α > 0 :

∫
Ω

[∣∣∣∆u(x)

α

∣∣∣p(x)

+
∣∣∣∇u(x)

α

∣∣∣p(x)
]

dx ≤ 1

}
.

Then, ‖·‖ is equivalent to the norms ‖·‖p(·) and |∆ · |p(·) in X.
We consider the functional

Λp(·)(u) =

∫
Ω

(
|∆u(x)|p(x) + |∇u(x)|p(x)

)
dx , u ∈ X

and give the following fundamental proposition.

Proposition 3. For u ∈ X, the following relations hold

• ‖u‖ < 1 (respectively =; >)⇔ Λp(·)(u) < 1 (respectively =; >),

• ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Λp(·)(u) ≤ ‖u‖p− ,

• ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Λp(·)(u) ≤ ‖u‖p+ , for all un ∈ X we have

• ‖un‖ → 0⇔ Λp(·)(un)→ 0,

• ‖un‖ → ∞⇔ Λp(·)(un)→∞.

The proof of this proposition is similar to the proof of [7, Theorem 1.3]
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Lemma 1. [7] For all p, r ∈ C+
1 (Ω) such that r(x) ≤ p∗m(x) for all x ∈ Ω, then

there is a continuous embedding

Wm,p(·)(Ω) ↪→ Lr(·)(Ω) ,

where

p∗m(x) :=

{
Np(x)

N−mp(x) if mp(x) < N,

+∞ if mp(x) ≥ N.

If we replace ≤ with < the embedding is compact.

Remark 1. Regarding hypotheses (H1) and (H2), let

r′(x) =
r(x)

r(x)− 1
and s(x) =

r(x)q(x)

r(x)− q(x)
.

Then, s(x) < p∗2(x) for all x ∈ Ω. Consequently the embedding X ↪→ Ls(·)(Ω) is
compact and continuous.

3 Auxiliary results
In this section, we investigate some auxiliary results which allow us to prove our
main results. Here and henceforth, we denote by X the generalized Sobolev space
X := W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω) equipped with the norm ‖·‖, X∗ its dual space. For
simplicity we write un ⇀ u and un → u to denote the weak convergence and strong
convergence of sequence un in X, respectively.

We are interested in the weak solutions of (1) belonging to the space X in the
sense below.

Definition 1. We understand a function u ∈ X is a weak solution of (1), if for all
v ∈ X,∫

Ω

|∆u|p(x)−2∆u∆v dx+

∫
Ω

|∇u|p(x)−2∇u∇v dx = λ

∫
Ω

w(x)|u|q(x)−2uv dx . (6)

Moreover, if u ∈ X \ {0}, then we say that λ is the eigenvalue of problem (1)
corresponding to the eigenfunction u.

For any λ > 0 we define Aλ : X → R by

Aλ(u) =

∫
Ω

( |∆u(x)|p(x)

p(x)
+
|∇u(x)|p(x)

p(x)

)
dx− λ

∫
Ω

w(x)

q(x)
|u(x)|q(x) dx .

Then, Aλ ∈ C1(X,R) and〈
dAλ(u), v

〉
=

∫
Ω

(
|∆u(x)|p(x)−2∆u(x)∆v(x) + |∇u(x)|p(x)−2∇u(x)∇v(x)

)
dx

− λ
∫

Ω

w(x)|u(x)|q(x)−2u(x)v(x) dx ,
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for all u, v ∈ X. Thus the weak solution of (1) are exactly the critical points of Aλ.
We define the first Rayleigh quotient by

λ1 := inf
u∈X\{0}

∫
Ω

1
p(x)

(
|∆u|p(x) + |∇u|p(x)

)
dx∫

Ω
w(x)
q(x) |u|q(x) dx

. (7)

Let us introduce the functionals Φ,Ψ: X → R defined by

Φ(u) =

∫
Ω

(
|∆u(x)|p(x)

p(x)
+
|∇u(x)|p(x)

p(x)

)
dx ,

Ψ(u) =

∫
Ω

w(x)

q(x)
|u|q(x) dx .

Lemma 2. The functionals Φ and Ψ are even of class C1 on X, with the Gâteaux
derivative given by〈

dΦ(u), v
〉

=

∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x) dx+

∫
Ω

|∇u(x)|p(x)−2∇u(x)∇v(x) dx ,

and 〈
dΨ(u), v

〉
=

∫
Ω

w(x)|u(x)|q(x)−2u(x)v(x) dx .

The proof of Lemma 2 is based on standard arguments, and hence the details are
omitted.

Lemma 3. V = {u ∈ X; Ψ(u) = 1} is a closed C1-manifold.

Proof. • V = Ψ−1{1}. Thus V is closed.

• For all x ∈ Ω, we have q− ≤ q(x) ≤ q+, then for all u ∈ V〈
dΨ(u), u

〉
=

∫
Ω

w(x)|u(x)|q(x) dx ≥ q− > 0 .

Then, V is a C1-manifold of X with codimension one. �

Lemma 4. [5] We have the following properties:

i) ∆2
p(·) : W

2,p(·)
0 (Ω)→W−2,p′(·)(Ω) is a strictly monotone operator, that is,〈

∆2
p(·)u−∆2

p(·)v, u− v
〉
> 0 , for all u 6= v ∈W 2,p(·)

0 (Ω).

ii) ∆2
p(·) : W

2,p(·)
0 (Ω)→W−2,p′(·)(Ω) is a continuous, bounded homeomorphism.

iii) ∆2
p(·) : W

2,p(·)
0 (Ω)→W−2,p′(·)(Ω) is a mapping of type (S+), that is, if

un ⇀ u in W
2,p(·)
0 (Ω)

and
lim sup
n→∞

〈
∆2
p(·)un, un − u

〉
≤ 0 ,

then un → u in W
2,p(·)
0 (Ω).
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Lemma 5. [9] We have the following properties:

i) −∆p(·) : W
1,p(·)
0 (Ω)→W−1,p′(·)(Ω) is a homeomorphism.

ii) −∆p(·) : W
1,p(·)
0 (Ω)→W−1,p′(·)(Ω) is a strictly monotone operator.

iii) −∆p(·) : W
1,p(·)
0 (Ω)→W−1,p′(·)(Ω) is a mapping of type (S+).

Lemma 6. The functional dΨ is completely continuous, namely, un ⇀ u in X
implies dΨ(un)→ dΨ(u) in X∗.

Proof. Let un ⇀ u in X. For any v ∈ X, by Hölder’s type inequality (4) and due
to the fact that X ↪→ Ls(·)(Ω) is continuous, it follows that∣∣〈dΨ(un)− dΨ(u), v

〉∣∣ =
∣∣∣∫

Ω

w(x)
(
|un|q(x)−2un − |u|q(x)−2u

)
v dx

∣∣∣
≤ 3
∣∣w(x)

∣∣
r(·)

∣∣|un|q(x)−2un − |u|q(x)−2u
∣∣

q(·)
q(·)−1

|v|s(·)

≤ 3C
∣∣w(x)

∣∣
r(·)

∣∣|un|q(x)−2un − |u|q(x)−2u
∣∣

q(·)
q(·)−1

‖v‖ , C > 1.

On the other hand, using the compact embedding of X into Lq(·)(Ω), we have
un → u in Lq(·)(Ω). Due the fact that the map

Lq(·)(Ω) 3 u 7→ |u|q(x)−2u ∈ L
q(·)

q(·)−1 (Ω) ,

is continuous, we get

|un|q(x)−2un → |u|q(x)−2u in L
q(·)

q(·)−1 (Ω).

That is,

dΨ(un)→ dΨ(u) in L
q(·)

q(·)−1 (Ω).

Recall that the embedding

L
q(·)

q(·)−1 (Ω) ↪→ X∗ ,

is compact. Thus
dΨ(un)→ dΨ(u) in X∗. �

Let us conclude this section with show that the functional Φ satisfies the Palais-
-Smale condition (in short the (PS) condition) on V.

Proposition 4. The functional Φ satisfies the (PS) condition on V. Namely, we
will prove that for sequence {un} ⊂ V satisfying

|Φ(un)| ≤ d for some d > 0 and all n ≥ 1. (PS1)

dΦ(un)→ 0 in X∗, as n→∞. (PS2)

has a convergent subsequence in X.
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Proof. Let {un}n≥1 be a sequence of Palais-Smale of Φ in X. Since∫
Ω

1

p(x)

(
|∆un|p(x) + |∇un|p(x)

)
dx ≥ 1

p+

∫
Ω

(
|∆un|p(x) + |∇un|p(x)

)
dx

=
1

p+
Λp(·)(un) ,

this fact, combined with Equation (PS1), implies that

Λp(·)(un) ≤ p+d .

That is Λp(·)(un) is bounded in R. Thus, without loss of generality, we can assume
that

un ⇀ u for some functions u ∈ X and Λp(·)(un)→ ` .

For the rest we distinguish two cases:

Case 1. If ` = 0, then un → 0 in X and the proof is finished.

Case 2. If ` 6= 0, then we argue as follows.

From Equation (PS2), dΦ(un)→ 0. i.e.,

ηn = dΦ(un)− δndΨ(un)→ 0 as n→ +∞ , (8)

where

δn =

〈
dΦ(un), un

〉〈
dΨ(un), un

〉 .
The idea is to prove that

lim sup
n→∞

〈
∆2
p(·)un −∆p(·)un, un − u

〉
≤ 0 .

Indeed, notice that〈
∆2
p(·)un −∆p(·)un, un − u

〉
= Λp(·)(un)−

〈
∆2
p(·)un −∆p(·)un, u

〉
.

Applying ηn of (8) to u, we deduce that

θn =
〈
∆2
p(·)un −∆p(·)un, u

〉
− δn

〈
dΨ(un), u

〉
→ 0 as n→∞.

Therefore

〈
∆2
p(·)un −∆p(·)un, un − u

〉
= Λp(·)(un)− θn −

〈
dΦ(un), un

〉〈
dΨ(un), un

〉〈dΨ(un), u
〉
.

That is,

〈
∆2
p(·)un −∆p(·)un, un − u

〉
=

Λp(·)(un)〈
dΨ(un), un

〉(〈dΨ(un), un
〉
−
〈
dΨ(un), u

〉)
− θn .
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On the other hand, from Lemma 6, dΨ is also completely continuous. So

dΨ(un)→ dΨ(u) and
〈
dΨ(un), un

〉
→
〈
dΨ(u), u

〉
.

Then∣∣〈dΨ(un), un
〉
−
〈
dΨ(un), u

〉∣∣
≤
∣∣〈dΨ(un), un

〉
−
〈
dΨ(u), u

〉∣∣+
∣∣〈dΨ(un), u

〉
−
〈
dΨ(u), u

〉∣∣ .
It follows that∣∣〈dΨ(un), un

〉
−
〈
dΨ(un), u

〉∣∣
≤
∣∣〈dΨ(un), un

〉
−
〈
dΨ(u), u

〉∣∣+ ‖dΨ(un)− dΨ(u)‖∗‖u‖ ,

where ‖·‖∗ is the dual norm associated to the norm ‖·‖. This implies that〈
dΨ(un), un

〉
−
〈
Ψ(un), u

〉
→ 0 as n→∞.

Combining with the above equalities, we obtain

lim sup
n→+∞

〈
∆2
p(·)un −∆p(·)un, un − u

〉
≤ `〈

dΨ(u), u
〉 lim sup

n→∞

(〈
dΨ(un), un

〉
−
〈
dΨ(un), u

〉)
.

We deduce
lim sup
n→∞

〈
∆2
p(·)un −∆p(·)un, un − u

〉
≤ 0 .

By ii) of Lemma 4 and ii) of Lemma 5, un → u in X. Hence, the proof of the
proposition is completed. �

4 Main results
In this section, we show that the problem (1) has at least one non-decreasing
sequence of positive eigenvalues by using the results of Ljusternik-Schnireleman
principle on C1-manifolds [17]. In other words, we use a local minimization for the
corresponding energy functional.

Let
Σj =

{
H ⊂ V : H is compact, H = −H and γ(H) ≥ j

}
,

where γ(H) = j is the Krasnoselskii genus of the set H, i.e.,

γ(H) = inf
{
j : there exists an odd continuous map from H to Rj \ {0}

}
.

The main result of this paper is given by the following theorem.

Theorem 1. For any integer j ∈ N∗,

λj := inf
H∈Σj

max
u∈H

Φ(u) ,
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is a critical value of Φ restricted on V. More precisely, there exists uj ∈ H such
that

λj = Φ(uj) = sup
u∈H

Φ(u) ,

and uj is a solution of (6) associated to the positive eigenvalue λj . Moreover,

λj →∞ , as j →∞.

We proceed by two lemmas.

Lemma 7. For any j ∈ N∗, Σj 6= ∅.

Proof. Since X is separable. Therefore, for any j ∈ N∗, there exists (ϕi)i≥1 linearly
dense in X such that{

supp(ϕi) ∩ supp(ϕj) = ∅ if i 6= j,

meas(supp(ϕi)) > 0 for i ∈ {1, 2, . . . , j}.

Thanks to hypotheses (H2) we can choose ϕi such that
∫

Ω
w(x)
q(x) |ϕi|

q(x) dx = 1.
Let Xj = Span{ϕ1, ϕ2, . . . , ϕj} be the vector subspace of X generated by j

vectors {ϕ1, ϕ2, . . . , ϕj}. Then, it is clear that

• dimXj = j.

•
∫

Ω

w(x)

q(x)
|u(x)|q(x) dx > 0 for all u ∈ Xj \ {0}.

Note that Xj ⊂ Lq(·)(Ω) because Xj ⊂ X ⊂ Lq(·)(Ω). Thus the norm ‖·‖ and
|·|q(·) are equivalent on Xj because Xj is a finite dimensional space. Consequently
the map

u 7→ |u| := inf

{
α > 0 :

∫
Ω

∣∣∣∣u(x)

α

∣∣∣∣q(x)

dx ≤ 1

}
,

defines a norm on Xj . Denote S := {u ∈ Xj : |u| = 1} the unit sphere of Xj .
Let us introduce the functional

g : R+ ×Xj −→ R
(s, u) 7→ Ψ(su) .

On one hand, it is clear that

• g(0, u) = 0.

• g(s, u) is non decreasing with respect to s.

Moreover, for s > 1 we have

g(s, u) ≥ sq
−

Ψ(u) ,
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so that lim
s→+∞

g(s, u) = +∞. Therefore, for every u ∈ S1 fixed, there is a unique

value s = s(u) > 0 such that g(s(u), u) = 1.
On the other hand, since

∂g

∂s
(s(u), u) =

∫
Ω

(s(u))q(x)−1w(x)|u|q(x) dx ≥ q−

s(u)
g(s(u), u) =

q−

s(u)
> 0 .

The implicit function theorem implies that the map u 7→ s(u) is continuous and
even by uniqueness.

Now, take the compact Hj := V ∩ Xj . Since the map h : S → Hj defined by
h(u) = s(u) · u is continuous and odd, it follows by the property of genus that
γ(Hj) = j. Therefore Hj ∈ Σj . �

Lemma 8. λj →∞ as j →∞.

Proof. Let (en, e
∗
k)n,k be a bi-orthogonal system such that en ∈ X and e∗k ∈ X∗,

the (en)n are linearly dense in X and the (e∗k)k are total for the dual X∗.
For j ∈ N∗, set

Xj = Span{e1, . . . , ej} and X⊥j = Span{ej+1, ej+2, . . . }.

By property of genus, we have for any H ∈ Γj , it is H ∩X⊥j−1 6= ∅.
We claim that

tj = inf
H∈Σj

sup
u∈H∩X⊥j−1

Φ(u)→∞ as j →∞.

Indeed, if not, for large j there exists uj ∈ X⊥j−1 with∫
Ω

w(x)

q(x)
|uj(x)|q(x) dx = 1

such that
tj ≤ Φ(uj) ≤M, for some M > 0 independent of j.

Thus
‖uj‖ ≤ (p+M)

1

p− .

This implies that (uj)j is bounded in X. For a subsequence of {uj} if necessary,
we can assume that {uj} converges weakly in X and strongly in Lp(·)(Ω).

By our choice of X⊥j−1, we have uj ⇀ 0 in X because 〈e∗k, en〉 = 0, for any

n > k. This contradicts the fact that
∫

Ω
w(x)
q(x) |uj(x)|q(x) dx = 1 for all j.

Indeed, from Lemma 6, dΨ is completely continuous, so 〈dΨ(uj), uj〉 → 0.

On the other hand, since
∫

Ω
w(x)
q(x) |uj(x)|q(x) dx = 1, and

〈dΨ(uj), uj〉 =

∫
Ω

w(x)|uj(x)|q(x)dx ≥ q−
∫

Ω

w(x)

q(x)
|uj(x)|q(x)dx ≥ q−2 ≥ 1 ,

since 〈dΨ(uj), uj〉 ≥ 1, for all j, 〈dΨ(uj), uj〉 → l ≥ 1. Therefore l 6= 0.
Since λj ≥ tj , we get λj →∞ as j →∞, this complete the proof. �
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Proof of Theorem 1. Applying lemmas 7, 8 and Ljusternik-Schnirelemann theory
to the problem (1), we have for each j ∈ N∗, λj is a critical value of Φ on C1-
manifold V, such that

λj →∞ , as j →∞. �

Corollary 1. The following hold:

i) λ1 = inf
{∫

Ω
1

p(x)

(
|∆u|p(x) + |∇u|p(x)

)
dx : u ∈ X and

∫
Ω
w(x)
q(x) |u|

q(x) dx = 1
}

.

ii) 0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞.

iii) λ1 = inf Λ (i.e., λ1 is the smallest eigenvalue in the spectrum Λ of (1)).

Proof. i) For u ∈ V, set H1 = {u,−u}. It is clear that γ(K1) = 1, Φ is even and

Φ(u) = max
H1

Φ ≥ inf
H∈Σ1

max
u∈H

Φ(u) .

Thus
inf
u∈V

Φ(u) ≥ inf
H∈Σ1

max
u∈H

Φ(u) = λ1 .

On the other hand, for all H ∈ Σ1 and u ∈ H, we have

sup
u∈H

Φ ≥ Φ(u) ≥ inf
u∈V

Φ(u) .

It follows that
inf
H∈Σ1

max
H

Φ = λ1 ≥ inf
u∈V

Φ(u) .

Then

λ1 = inf

{∫
Ω

1

p(x)

(
|∆u|p(x) + |∇u|p(x)

)
dx : u ∈ X and

∫
Ω

w(x)

q(x)
|u|q(x) dx = 1

}
.

ii) For all i ≥ j, we have Σi ⊂ Σj and in view of the definition of λi, i ∈ N∗, we
get λi ≥ λj . As regards λn →∞, this has been proved in Theorem 1.

iii) Let λ ∈ Λ. Thus there exists uλ an eigenfunction of λ such that∫
Ω

w(x)

q(x)
|uλ|q(x) dx = 1 .

Therefore
∆2
p(x)uλ −∆p(x)uλ = λw(x)|uλ|q(x)−2uλ in Ω.

Then ∫
Ω

1

p(x)

(
|∆uλ|p(x) + |∇uλ|p(x)

)
dx = λ

∫
Ω

w(x)

q(x)
|uλ|q(x) dx .

In view of the characterization of λ1 in (7), we conclude that

λ =

∫
Ω

1
p(x)

(
|∆uλ|p(x) + |∇uλ|p(x)

)
dx∫

Ω
w(x)
q(x) |uλ|q(x) dx

=

∫
Ω

1

p(x)

(
|∆uλ|p(x) + |∇uλ|p(x)

)
dx ≥ λ1 .

This implies that λ1 = inf Λ. �
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