
Kybernetika

Yong Su; Radko Mesiar
Representation and construction of homogeneous and quasi-homogeneous n-ary
aggregation functions

Kybernetika, Vol. 57 (2021), No. 6, 958–969

Persistent URL: http://dml.cz/dmlcz/149350

Terms of use:
© Institute of Information Theory and Automation AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/149350
http://dml.cz


KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 6 , PAGES 9 5 8 – 9 6 9

REPRESENTATION AND CONSTRUCTION
OF HOMOGENEOUS AND QUASI-HOMOGENEOUS
N-ARY AGGREGATION FUNCTIONS

Yong Su and Radko Mesiar

Homogeneity, as one type of invariantness, means that an aggregation function is invari-
ant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed ver-
sion, reflects the original output as well as the constant. In this paper, we characterize all
homogeneous/quasi-homogeneous n-ary aggregation functions and present several methods to
generate new homogeneous/quasi-homogeneous n-ary aggregation functions by aggregation of
given ones.
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1. INTRODUCTION

Aggregation functions, as tools for aggregation (fusion) process that combine numerical
values into a single representative value, have proved to be useful in computer and
engineering science, economic and finance, social science as well as many other applied
fields of physics and natural science [6]. There exist a great number of aggregation
functions owing to the diversified demands of different areas, and their selection generally
depends on the context to which they are going to be applied.

The scale types of variables being aggregated as an essential factor when choosing an
appropriate aggregation function should be taken into consideration. The scale type of
a variable is defined by the class of admissible transformations, such as that from grams
to pounds, that change the scale into an alternative acceptable scale. Many decisions
are achieved by aggregation functions, which are “meaningful”, in the sense that they do
not depend upon the particular scales of measurement chosen for the variables, but only
upon their scale types. A function invariant under appropriate admissible transformation
is the one not depending on a given scale. According to the type of scales we can speak
of several types of invariantnesses of aggregation functions.

Invariantness with respect to any scale which is rather restrictive has been studied
in [12]. If we fix the beginning of our scale (i. e., “zero” is fixed) but letting free the
unit (recall, e. g., the mass measurement in kilograms and in pounds), homogeneous
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aggregation functions are needed [13]. The homogeneity of order k has been studied
for t-norms/t-conorms [2], for copulas [9] and for general binary aggregation functions
in [15]. For general aggregation functions, only the homogeneity of order 1 was dis-
cussed in [13], see also [6]. The homogeneity is a rather restrictive property, and we
need a more relaxed version, one that reflects the original output as well as the con-
centration constant. A relaxed homogeneity, called quasi-homogeneity, was introduced
in [4]. The quasi-homogeneity has been investigated for t-norms [4], for copulas [10]
and for general binary aggregation functions [15]. In this paper, homogeneity/quasi-
homogeneity n-ary aggregation functions are characterized and several methods to con-
struct homogeneous/quasi-homogeneous n-ary aggregation functions by aggregation of
given ones are presented.

The paper is organized as follows. In Section 2 we present the preliminary notions
and results that are necessary in the remainder of this paper. In Section 3 the character-
izations of (quasi-)homogeneous n-ary aggregation functions are presented and Section 4
is devoted to presenting several methods to generate homogeneous/quasi-homogeneous
n-ary aggregation functions by aggregation of given ones. Finally, Section 5 includes
some conclusions and future work.

2. PRELIMINARIES

First, let us review essential prerequisites. Let n be any non-zero natural integer and
set [n] := {1, . . . , n}. We will often use bold symbols to denote n-tuples. For instance,
(x1, . . . , xn) will often be written as x. In particular, 0 = (0, . . . , 0) and 1 = (1, . . . , 1).
We will frequently use vector inequality x ≤ y, which means that xi ≤ yi for any i ∈ [n].
For any n-tuples x,y ∈ [0, 1]n such that x ≤ y, we denote by x

y the n-tuple (x1

y1
, . . . , xnyn )

with convention 0
0 = 1. For any non-zero natural integer k and any x ∈ [0, 1], we set

k · x := x, . . . , x (k times). For instance, F(3 · x, 2 · y) = F(x, x, x, y, y).
An n-ary aggregation function on [0, 1]n is merely a function A(n) : [0, 1]n → [0, 1]

that

(i) is nondecreasing (in each variable), i. e., x ≤ y ⇒ A(n)(x) ≤ A(n)(y) for all
x,y ∈ [0, 1]n;

(ii) fulfills the boundary conditions A(n)(0) = 0 and A(n)(1) = 1.

When no confusion can arise, the aggregation functions will simply be written as A
instead of A(n).

An n-ary function F : [0, 1]n → [0, 1] is

• homogeneous of order k > 0 if, for any λ ∈ [0, 1] and any x ∈ [0, 1]n,

F(λx) = λkF(x); (1)

• meaningful on a single ratio scale [6] if, for any λ ∈ [0, 1], there exists R(λ) > 0
such that

F(λx) = R(λ)F(x) (2)

for all x ∈ [0, 1]n;
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• quasi-homogeneous [4] if there exists some continuous, strictly monotonic function
ϕ : [0, 1]→ R and some function f : [0, 1]→ [0, 1] such that, for any λ ∈ [0, 1] and
any x ∈ [0, 1]n,

F(λx) = ϕ−1(f(λ)ϕ(F(x))). (3)

In this case, we also say that F is (ϕ, f)-quasi-homogeneous.

Note that if an n-ary function F satisfies Eq. (1) with k = 1, then we say that F is
ratio scale invariant or positively homogeneous (see [6]).

By means of any n-ary aggregation function A, a positively homogeneous n-ary func-
tion HA can be constructed by HA(0) = 0 and

HA(x) = Max(x)A

(
x

Max(x)

)
if x 6= 0,

where Max(x) := max(x1, . . . , xn). Observe that HA is positively homogeneous, how-
ever, it needs not be monotone. A necessary and sufficient condition for a function HA

to be monotone was presented in [13].

Theorem 2.1. Let A be an n-ary aggregation function. The function HA : [0, 1]n →
[0, 1] is an n-ary aggregation function if and only if

A(x)

A(y)
≥Min

(
x

y

)
(4)

with convention 0
0 = 1 for all x,y ∈ [0, 1]n such that x ≤ y and xi = yi = 1 for some

i ∈ [n].

By using the logarithmic transformation of an n-ary aggregation function B into
L : [0,∞]n → [0,∞], namely,

L(x) := − log(B(exp(−x1), . . . , exp(−xn))),

property (4) can be rewritten as

| L(x)− L(y) |≤ ‖x− y‖∞ (5)

where ‖ · ‖∞ is the standard Chebyshev norm, i. e., ‖x‖∞ = maxi |xi|. The property
(5) will be called kernel property. From the monotonicity of L, it suffices to deal with
x,y ∈ [0,∞]n such that xi = yi = 0 for some i ∈ [n]. Note that aggregation functions
with property (5) for all x,y ∈ [0,∞]n are equivalently characterized by

L(x + s1) ≤ L(x) + s

for all x ∈]0,∞[n and s ∈ [0,∞], and as a prominent example we recall the Choquet
integral-based aggregation functions (see pp. 279–280 in [6] for details).
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Example 2.2. For any weight vector w = (w1, w2, . . . , wn) ∈ [0, 1]n such that
∑n
i=1 wi =

1, in the class of quasi-arithmetic means (weighted quasi-arithmetic means), positively
homogeneous aggregation functions form a subclass (Ap)p∈]−∞,∞[ of so called power-
root operators [3],

Ap(x1, . . . , xn) =

(
n∑
i=1

wix
p
i

) 1
p

for p 6= 0 and A0(x1, . . . , xn) =
n

Π
i=1
xwii is weighted geometric mean.

Finally, we review a general composition construction method that yields a (new)
aggregation function from given ones: For an m-ary outer aggregation function A, any
system (E1, . . . , Em) of non-empty subsets of [n] with a fixed position of its members
(i. e., Ei = {pi,1, . . . , pi,ni} a subset of [n] with cardinality ni), and aggregation functions
Bi related to dimension ni = cardEi, for x ∈ [0, 1]n define ni-ary input vector xEi =
(xpi,1 , . . . , xpi,ni ), then the composite function

C(x) = A(B1(xE1), . . . ,Bm(xEm)) (6)

is an n-ary aggregation function.
Observe that the general composition construction method above includes those two

composition construction methods in Chapter 6.3 of [6], that is,

• Composition based on partition: an n-ary outer aggregation function A and m
inner aggregation functions B1, . . . ,Bm defined on n1-, . . ., nm-dimensional input
vectors, i. e., for n =

∑m
i=1 ni we obtain an aggregation function DA;B1,...,Bm :

[0, 1]n → [0, 1] given by

DA;B1,...,Bm(x1, . . . ,xm) = A(B1(x1), · · · ,Bm(xm)) (7)

where xi ∈ [0, 1]ni , i = 1, . . . ,m.

• Composition of functions: Let m,n ∈ N\{1}. Let A : [0, 1]m → [0, 1] and
B1, . . . ,Bm : [0, 1]n → [0, 1] be aggregation functions. Then the function C =
A(B1, . . . ,Bm) : [0, 1]n → [0, 1] given by

C(x) = A(B1(x),B2(x), . . . ,Bm(x)) (8)

is an n-ary aggregation function.

3. CHARACTERIZATIONS OF (QUASI-)HOMOGENEOUS
N -ARY AGGREGATION FUNCTIONS

Positively homogeneous aggregation functions were characterized in [13] (e. g., Theorem
2.1). In this section, we will characterize (quasi-)homogeneous n-ary aggregation func-
tions in terms of positively homogeneous aggregation functions. First, we show that for
an n-ary aggregation function, Eqs. (1) and (2) are equivalent.
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Proposition 3.1. An n-ary aggregation function A is meaningful on a single ratio scale
if and only if it is homogeneous of order k for some k > 0.

P r o o f . The sufficiency is obvious.
Suppose that A is meaningful on a single ratio scale. Then R(x) = R(x)A(1) =

A(n · x) for any x ∈ [0, 1] and hence, R is increasing. Further

R(xy) = A(n · xy) = R(x)A(n · y) = R(x)R(y),

and hence, R solves Cauchy functional equation R(xy) = R(x)R(y). Thus, R(x) = xk

for some k > 0. In this case, A is homogeneous of order k. �

3.1. A characterization of homogeneous n-ary aggregation functions

By means of any n-ary aggregation function A, for any k > 0, a new n-ary aggregation
function Ak can be constructed by Ak(x) = (A(x))k for any x ∈ [0, 1]n. Before char-
acterizing homogeneous n-ary aggregation functions, we present a method to construct
homogeneous aggregation functions from given ones and by this result, we can reduce
the study of aggregation functions that homogeneous of order k to that of positively
homogeneous aggregation functions.

The following corollary follows from the definition of homogeneous functions:

Corollary 3.2. An n-ary aggregation function A is homogeneous of order k if and only
if A

1
k is positively homogeneous.

Finally, we present a characterization of n-ary aggregation functions that are homo-
geneous of order k in terms of positively homogeneous aggregation functions.

Theorem 3.3. An n-ary aggregation function A is homogeneous of order k if and only
if there exist a positively homogeneous n-ary aggregation function B such that A = Bk.

P r o o f . Suppose that A is homogeneous of order k. Consider B = A
1
k . Clearly,

A = Bk. From Corollary 3.2, it follows that B is positively homogeneous.
Conversely, suppose that there exists an n-ary aggregation function B such that B is

positively homogeneous and A = Bk. Then A
1
k = B is positively homogeneous, which,

together with Corollary 3.2, yields that A is homogeneous of order k. �

3.2. A characterization of quasi-homogeneous n-ary aggregation functions

This section is devoted to characterizing quasi-homogeneous n-ary aggregation functions.
If an n-ary aggregation function A is (ϕ, f)-quasi-homogeneous, then ϕ(1) 6= 0, otherwise

A(n · λ) = ϕ−1(f(λ)ϕ(A(1))) = ϕ−1(0) = 1 for each λ ∈ [0, 1],

it is impossible. Let ϕ̃(x) = ϕ(x)/ϕ(1). Direct checking verifies that ϕ̃(1) = 1 and
that A is (ϕ, f)-quasi-homogeneous if and only if A is (ϕ̃, f)-quasi-homogeneous. In the
following, we presuppose that ϕ(1) = 1.
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Proposition 3.4. If an n-ary aggregation function A is (ϕ, f)-quasi-homogeneous, then

(i) its diagonal section δ(x) = A(n · x) is an increasing bijection.

(ii) f(x) = xc and ϕ(x) = (δ−1(x))c for some arbitrarily chosen c > 0.

(iii) δ−1 ◦A is positively homogeneous.

P r o o f . Set xi = 1 (i ∈ [n]) in (3) to get ϕ(δ(λ)) = f(λ) for every λ ∈ [0, 1] and further
that f is monotonic. Putting xi = x (i ∈ [n]) in (3), we have δ(λx) = ϕ−1(f(λ)ϕ(δ(x))),
or equivalently, f(λx) = f(λ)f(x) for any λ, x ∈ [0, 1]. Thus, f satisfies the multi-
plicative Cauchy equation, and hence f(λ) = λc for every λ ∈ [0, 1] with c > 0 (see
[1]). As a consequence, ϕ(δ(λ)) = λc, whence δ must be an increasing bijection and
further ϕ(x) = (δ−1(x))c. From f(λ) = λc and ϕ(x) = (δ−1(x))c, (3) can be rewritten
as δ−1 ◦A(λx) = λδ−1 ◦A(x), i. e., δ−1 ◦A is positively homogeneous. �

For brevity, in the following take δ to mean the diagonal of the n-ary aggregation
function A, i. e., δ(x) = A(n · x) for each x ∈ [0, 1]. For any idempotent aggregation
function A, δ = id, whence the following corollary follows:

Corollary 3.5. An n-ary idempotent aggregation function is quasi-homogeneous if and
only if it is positively homogeneous.

Theorem 3.6. An n-ary aggregation function A is quasi-homogeneous if and only if its
diagonal section δ is an increasing bijection and δ−1 ◦A is positively homogeneous. In
this case, A is (f, ϕ)-quasi-homogeneous with f(x) = xc and ϕ(x) = (δ−1(x))c for some
arbitrarily chosen c > 0.

P r o o f . The necessity is guaranteed from Proposition 3.4.

Sufficiency: Suppose that δ is an increasing bijection and δ−1 ◦A is positively homo-
geneous. Consider f(x) = xc and ϕ(x) = (δ−1(x))c (or equivalently, δ(x) = ϕ−1(xc)) for
some arbitrarily chosen c > 0. Since δ−1 ◦A is positively homogeneous, we then have
that for any λ ∈ [0, 1] and any x ∈ [0, 1]n, δ−1 ◦A(λx) = λδ−1 ◦A(x). Thus,

A(λx) = δ(λδ−1 ◦A(x)) = ϕ−1(λcϕ(A(x))) = ϕ−1(f(λ)ϕ(A(x)))

i. e., A is (f, ϕ)-quasi-homogeneous. �

By virtue of Theorem 3.6, we can see that the study of quasi-homogeneous n-ary ag-
gregation functions can reduce to that of positively homogeneous aggregation functions.
By Theorems 3.3 and 3.6, the following theorem follows.

Theorem 3.7. An n-ary aggregation function A is quasi-homogeneous if and only if its
diagonal section δ is an increasing bijection and there exists a positively homogeneous
n-ary aggregation function B such that A = δ ◦B.
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Example 3.8. Let δ : [0, 1] → [0, 1] be the increasing bijection given by δ(x) =
max(x/3, 3x− 2). By applying Theorem 3.7 to δ and (Ap)p∈]−∞,∞[ in Example 2.2, we
obtain a family of one-parametric quasi-homogeneous aggregation functions (Bp)p∈]−∞,∞[

given by

Bp(x1, . . . , xn) = max

1

3

(
n∑
i=1

wix
p
i

) 1
p

, 3

(
n∑
i=1

wix
p
i

) 1
p

− 2


for p 6= 0 and

B0(x1, . . . , xn) = max

(
1

3

n

Π
i=1
xwii , 3

n

Π
i=1
xwii − 2

)
.

Moreover, the diagonal section of (Bp)p∈]−∞,∞[ is δ for any p ∈]−∞,∞[.

Example 3.9. Fix k ∈ [0, 1[ and α such that max(0, 2k−1) ≤ α ≤ k. Let δk,α : [0, 1]→
[0, 1] be the increasing bijection given by

δk,α(x) =

{
αx
k if x ≤ k,
α−1
k−1x+ k−α

k−1 otherwise.

By applying Theorem 3.7 to δk,α and (Ap)p∈]−∞,∞[ in Example 2.2, we obtain a family
of three-parametric quasi-homogeneous aggregation functions Ap,k,α given by

Ap,k,α(x1, . . . , xn) =


α
k

(
n∑
i=1

wix
p
i

) 1
p

if

(
n∑
i=1

wix
p
i

) 1
p

≤ k,

α−1
k−1

(
n∑
i=1

wix
p
i

) 1
p

+ k−α
k−1 otherwise

for p 6= 0 and

A0,k,α(x1, . . . , xn) =


α
k

n

Π
i=1
xwii if

n

Π
i=1
xwii ≤ k,

α−1
k−1

n

Π
i=1
xwii + k−α

k−1 otherwise.

4. CONSTRUCTION METHODS

In this section, we introduce several composition construction methods to generate
(quasi-)homogeneous aggregation functions and illustrate these construction methods
by several examples.

Proposition 4.1. Let the m-ary aggregation function A be homogeneous of order k, let
the system (E1, . . . , Em) be non-empty subsets of [n] with a fixed position of its members
and let aggregation functions Bi related to dimension ni = cardEi be homogeneous of
order r. Then the aggregation function C : [0, 1]n → [0, 1] given by (6) is homogeneous
of order kr.
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P r o o f . For any λ ∈ [0, 1] and any x ∈ [0, 1]n, it holds

C(λx) = A(B1(λxE1), . . . ,Bm(λxEm))

= A(λrB1(xE1), . . . , λrBm(xEm))

= λkrA(B1(xE1), . . . ,Bm(xEm))

= λkrC(x),

i. e., C is homogeneous of order kr. �

From Proposition 4.1, the next two corollaries follows.

Corollary 4.2. Let the n-ary aggregation function A be homogeneous of order k and let
ni-ary aggregation functions Bi be positively homogeneous, i = 1, ..,m. If

∑m
i=1 ni = n,

then the aggregation function C : [0, 1]n → [0, 1] given by (7) is homogeneous of order
k.

Corollary 4.3. Let m,n ∈ N\{1}. Let A : [0, 1]m → [0, 1] and B1, . . . ,Bm : [0, 1]n →
[0, 1] be aggregation functions. If A be homogeneous of order k, and Bi is positively
homogeneous, i = 1, ..,m, then the n-ary aggregation function C given by (8) is homo-
geneous of order k.

Example 4.4. Let 1 ≤ k ≤ 2 and θ = 2− k. The Cuadras-Augé copula

Cθ(x1, x2) = (x1 ∧ x2)θ(x1x2)1−θ

is homogeneous of order k (see Theorem 3.4.2 in [9] for details). Clearly, the binary
geometric mean function GM : [0, 1]2 → [0, 1] given by GM(x1, x2) =

√
x1x2 and the

binary arithmetic mean function AM : [0, 1]2 → [0, 1] given by AM(x1, x2) = x1+x2

2 are
positively homogeneous aggregation functions.

(i) Applying Corollary 4.2 to Cθ, GM and AM, we know that the aggregation func-
tion A1 : [0, 1]4 → [0, 1] given by

A1(x1, x2, x3, x4) = Cθ(GM(x1, x2),AM(x3, x4))

=

(
√
x1x2

∧ x3 + x4
2

)θ (√x1x2(x3 + x4)

2

)1−θ

is homogeneous of order k.

(ii) Applying Corollary 4.2 to Cθ, GM and AM, we know that the aggregation func-
tion A2 : [0, 1]2 → [0, 1] given by

A2(x1, x2) = Cθ(GM(x1, x2),AM(x1, x2))

=
√
x1x2

(
x1 + x2

2

)1−θ

is homogeneous of order k.
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Example 4.5. Let w = (w1, w2, . . . , wn) ∈ [0, 1]n be any weight vector such that∑n
i=1 wi = 1. Let pi ∈]−∞,∞[\{0}, i = 1, 2, . . . , k. Clearly, the product

u(x) =

k∏
i=1

xi

is homogeneous of order k. Consider power-root operators (Ap)p∈]−∞,∞[ in Example
2.2. From Corollary 4.3, we know that the n-ary aggregation function C given by

C(x) =

k∏
i=1

Api(x) =

k∏
j=1

(
n∑
i=1

wix
pj
i

) 1
pj

is homogeneous of order k.

Finally, we present a method to generate quasi-homogeneous aggregation functions.

Proposition 4.6. Let δ : [0, 1] → [0, 1] be an increasing bijection. Let the m-ary
aggregation function A be positively homogeneous, let the system (E1, . . . , Em) be non-
empty subsets of [n] with a fixed position of its members and let aggregation functions Bi
related to dimension ni = cardEi be quasi-homogeneous aggregation functions. If δi is
the diagonal section of Bi, i = 1, . . . ,m, then the aggregation function C : [0, 1]n → [0, 1]
given by

C(x) = δ ◦A(δ−11 ◦B1(xE1
), · · · , δ−1m ◦Bm(xE1

))

is a quasi-homogeneous aggregation function.

P r o o f . Clearly, C is an n-ary aggregation function. Since the ni-ary aggregation
function Bi is quasi-homogeneous and its diagonal section is δi, i = 1, . . . ,m, we the
have that δ−1i ◦Bi is positively homogeneous, which, together with Proposition 4.1, gives

that the aggregation function C̃ : [0, 1]n → [0, 1] given by

C̃(x) = A(δ−11 ◦B1(xE1), · · · , δ−1m ◦Bm(xE1))

is positively homogeneous. This proposition follows from Theorems 2.1 and 3.7. �

By the proposition above, we have the following corollaries:

Corollary 4.7. Let δ : [0, 1] → [0, 1] be an increasing bijection. Let the aggregation
function A : [0, 1]m → [0, 1] be positively homogeneous and let ni-ary aggregation
functions Bi be quasi-homogeneous aggregation functions, i = 1, ..,m. If

∑m
i=1 ni = n

and δi is the diagonal section of Bi, i = 1, . . . ,m, then the aggregation function C :
[0, 1]n → [0, 1] given by

C(x1, . . . ,xm) = δ ◦A(δ−11 ◦B1(x1), · · · , δ−1m ◦Bm(xm))

with xi ∈ [0, 1]ni , i = 1, . . . ,m, is a quasi-homogeneous aggregation function.
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Corollary 4.8. Let m,n ∈ N\{1} and let δ : [0, 1] → [0, 1] be an increasing bijection.
Let the aggregation function A : [0, 1]m → [0, 1] be positively homogeneous, and let
B1, . . . ,Bm : [0, 1]n → [0, 1] be quasi-homogeneous aggregation functions. If δi is the
diagonal section of Bi, i = 1, . . . ,m, then the function C : [0, 1]n → [0, 1] defined by

C(x) = δ ◦A(δ−11 ◦B1(x), · · · , δ−1m ◦Bm(x))

is a quasi-homogeneous aggregation function.

Example 4.9. Fix p ∈]1,∞[ and β ∈] −∞, 0[. Let δ : [0, 1] → [0, 1] be the increasing
bijection defined by

δ(x) =
px

1 + (p− 1)x
.

The t-norm T : [0, 1]2 → [0, 1] given by

T(x1, x2) = (xβ1 + xβ2 − 1)
1
β

is a quasi-homogeneous 2-ary aggregation function, of which the diagonal section is

δ1(x) = (2xβ − 1)
1
β (see Theorem 2.3 in [4]) for details; we also mention that the

considered t-norm T is a strict Schweizer-Sklar t-norm, also called strict Clayton copula
(see Remark 4.4 in [7]) and the product u : [0, 1]n → [0, 1] is a quasi-homogeneous n-
ary aggregation function (further an aggregation function that is homogeneous of order
n). Applying corollary 4.7 to the binary geometric mean function GM, T and u, we
obtain a family of two-parametric quasi-homogeneous n + 2-ary aggregation functions
Cp,β given by

Cp,β(x1, x2, x3, . . . , xn+2) =

p
n+2∏
i=3

x
1
2n
i

(
(xβ1+x

β
2−1)

1
β +1

2

) 1
2β

1 + (p− 1)
n+2∏
i=3

x
1
2n
i

(
(xβ1+x

β
2−1)

1
β +1

2

) 1
2β

.

Example 4.10. Fix c ∈]0,∞[, p ∈]1,∞[ and β ∈]−∞, 0[. Let δ : [0, 1]→ [0, 1] be the
increasing bijection defined by δ(x) = xc.

The aggregation function A : [0, 1]2 → [0, 1] given by

A(x1, x2) = max(x1, x2) exp

(
1−

√
1 + log

∣∣∣∣x2x1
∣∣∣∣
)

is positively homogeneous. Applying corollary 4.8 to A, the binary geometric mean func-
tion GM and the binary arithmetic mean function AM, we obtain a quasi-homogeneous
2-ary aggregation functions C given by

C(x1, x2) =

(
x1 + x2

2

)c
exp

(
c− c

√
1 + log

∣∣∣∣ x1 + x2
2
√
x1x2

∣∣∣∣
)
.
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5. CONCLUDING REMARKS AND FUTURE WORK

In this paper, all (quasi-)homogeneous n-ary aggregation functions were characterized in
terms of positively homogeneous n-ary aggregation functions (see Theorems 3.3 and 3.7)
and several methods to construct (quasi-)homogeneous n-ary aggregation functions were
presented. We have discussed homogeneity problems from a general point of view, not
focusing on some particular class of aggregation functions. Observe, for example, that
in the class of integrals, all decomposition integrals [5] or finite super-decomposition
integrals [11] are positively homogeneous. In the literature, there exists an extended
quasi-homogeneity, called pseudo-homogeneity. A function O : [0, 1]2 → [0, 1] is pseudo-
homogeneous [14] if there exists some G : [0, 1]2 → [0, 1] such that, for any x, y, λ ∈ [0, 1],

O(λx, λy) = G(λ,O(x, y)). (9)

Clearly, the quasi-homogeneity implies the pseudo-homogeneity. Further, for any aggre-
gation function O such that its diagonal section δ is a bijection, the quasi-homogeneity
and pseudo-homogeneity are equivalent. Indeed, putting x = y in (9), we have G(λ, x) =
δ(λδ−1(x)), and further O is quasi-homogeneous with f = id and ϕ = δ−1. However,
when δ is not a bijection, pseudo-homogeneity is much more complex. Another direction
of the future research in this domain should be devoted to the study of n-ary aggregation
functions which are pseudo-homogeneous.

In decision making, homogeneous aggregation functions are needed whenever one
fixes the beginning of our scale (i. e., “zero” is fixed) but letting free the unit [13]; and in
image processing, for many techniques in image segmentation, e. g. thresholding, edge
detection, or enhancement, the homogeneity plays a key role (for more details see [8]
and the references therein). Therefore, this work will be beneficial to decision making
and image processing.

ACKNOWLEDGEMENTS

Support from the National Natural Science Foundation of China (no. 11801220) and the Natural
Science Foundation of Jiangsu Province (no. BK20180590) is fully acknowledged. R. Mesiar
was supported by the project APVV-18-0052 and by the IGA project of the Faculty of Science
Palacky University Olomouc PrF2019015.

(Received September 21, 2020)

R E F E R E N C E S

[1] J. Aczél: Lectures on Functional Equations and their Applications. Acad. Press, New
York 1966.

[2] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions. Triangular Norms and
Copulas, World Scientific Publishing Co., Singapore 2006.

[3] J. J. Dujmovic: Weighted conjuctive and disjunctive means and their application
in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147–158.
DOI:10.3406/ameri.1998.1400

[4] B. R. Ebanks: Quasi-homogeneous associative functions. Int. J. Math. Math. Sci. 21
(1998), 351–358.

https://doi.org/10.3406/ameri.1998.1400


Representation and construction of homogeneous and quasi-homogeneous n-ary aggregation. . . 969

[5] Y. Even and E. Lehrer: Decomposition-integral: unifying Choquet and the concave
integrals. Economic Theory 56 (2014), 1, 33–58. DOI:10.1007/s00199-013-0780-0

[6] M. Grabisch, J. L. Marichal, R. Mesiar, and E. Pap: Aggregation Functions. Cambridge
University Press, New York 2009.

[7] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publisher,
Dordrecht 2000.

[8] L. Lima, B. Bedregal, H. Bustince, E. Barrenechea, and M. Rocha: An interval extension
of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355–356
(2016), 328–347. DOI:10.1016/j.ins.2015.11.031

[9] R. E. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.

[10] G. Mayor, R. Mesiar, and J. Torrens: On quasi-homogeneous copulas. Kybernetika 44
(2008), 6, 745–755. DOI:10.1007/s00466-009-0406-3

[11] R. Mesiar, J. Li, and E. Pap: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54
(2013), 357–364. DOI:10.1016/j.ijar.2012.07.008
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