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Abstract. In this paper, we consider the direct and inverse problem for time-fractional
diffusion in a domain with an impenetrable subregion. Here we assume that on the bound-
ary of the subregion the solution satisfies a generalized impedance boundary condition.
This boundary condition is given by a second order spatial differential operator imposed
on the boundary. A generalized impedance boundary condition can be used to model cor-
rosion and delimitation. The well-posedness for the direct problem is established where
the Laplace transform is used to study the time dependent boundary value problem. The
inverse impedance problem of determining the parameters from the Cauchy data is also
studied provided the boundary of the subregion is known. The uniqueness of recovering the
boundary parameters from the Neumann to Dirichlet mapping is proven.
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1. Introduction

Here we are interested in studying the direct and inverse problem for a sub-diffusive

partial differential equation in a domain with an impenetrable subregion. To close

the system we require that the solution has a given flux on the outer boundary and

satisfies a homogeneous generalized impedance boundary condition on the interior

boundary. We assume that the model is given by the fractional diffusion equa-

tion, where the spatial partial differential operator is given by a symmetric elliptic

operator. The temporal derivative is given by the Caputo fractional derivative de-

noted ∂α
t for a fixed α ∈ (0, 1). There has been a lot of interest in the study of

sub-diffusive process in recent years, see, e.g., [14] and the references therein. It

has even been shown in [16] that sub-diffusive processes can be used as a regu-

larization strategy for classical severely ill-posed backward diffusive processes. In
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general, we have seen in the literature that the generalized impedance boundary

condition models complex features such as coating and corrosion (see, e.g., [3]).

Therefore, we see that the boundary condition considered here can be used to model

different physical situations. Even though we only consider the inverse coefficient

problem of recovering the impedance parameters, another interesting inverse prob-

lem corresponds to recovering that shape of the impedance region. This can be

done using the so-called factorization method (see [17] for details). The factoriza-

tion method only provides a way of recovering the impedance region and here we

focus on recovering the coefficents assuming the region is known. In [3] a general-

ized impedance condition is derived to asymptotically describe delimitation for the

acoustic scattering problem. In [11] the factorization method is employed to solve

the inverse shape problem of recovering an inclusion with a generalized impedance

condition from electrostatic data and unique recovery of the impedance coefficients

is proven. Recently, in [9] the factorization method was studied for a heat equation

to reconstruct interior cavities. The interior cavity is given by a thermal insulating

region which gives a zero flux on the interior boundary. See the manuscript [17] for

an in-depth study of the factorization method applied to inverse scattering prob-

lems. Even though it is not considered here, the question of employing the fac-

torization method to recover the interior boundary is an interesting open problem

for either the heat equation or the sud-diffusive equation. See [4], [7] for other

examples of the inverse problem for recovering the impedance coefficients from elec-

trostatic data.

Just as in these manuscripts, we are interested in the inverse impedance prob-

lem of unique recovery of the impedance coefficients. Here we will assume that we

have the Cauchy data coming from the fractional diffusion equation. For other re-

cent manuscripts that have considered inverse problems for an impedance condition

and fractional derivatives see [12], [13], [15], [23]. Just as in [20] we will use the

Laplace transform to study the well-posedness of a diffusion equation. In order to

prove solvability in the time-domain, we will formally take the Laplace transform

of the time-fractional diffusion equation in question then appealing to Laplace in-

version formula from Chapter 3 of [22]. The Laplace and Fourier transforms are

very useful tools for studying time-domain problems. In many manuscripts such

as [2], [20] the Laplace and Fourier transform are used to prove the solvability of

hyperbolic and parabolic equations. This is done by reducing the time-domain to

an auxiliary problem in the frequency-domain, where one proves well-posedness for

the auxiliary problem. In order to establish well-posedness in the time-domain,

one must establish explicit bounds on the frequency variable and appeal to the in-

verse transform. Once in the frequency-domain, one can employ techniques used for

elliptic equations. In order to prove the well-posedness of the sub-diffusion equa-
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tion studied here, we will study the transformed equation and carefully derive the

stability estimates with respect to the frequency variable just as in the aforemen-

tioned works.

The rest of the paper is organized as follows. In Section 2 we rigorously define the

direct and inverse problems under consideration. To do so, we will define the bound-

ary value problem that will be studied as well as the appropriate assumption on the

coefficients. Then in Section 3, we prove well-posedness of the direct problem by

studying the corresponding problem in the frequency domain given by the Laplace

transform of the time dependent problem. Section 4 is dedicated to studying the

inverse impedance problem of recovering the generalized impedance boundary pa-

rameters from the knowledge of the Neumann-to-Dirichlet mapping. Lastly, in the

final section, we conclude by summarizing the result from the previous sections and

discuss future problems under consideration.

2. Problem statement

In this section, we will formulate the direct and inverse problem to be analyzed in

Sections 3 and 4. The problems will be rigorously defined so that we may employ

variational methods for solving these problems. We begin by considering the direct

problem associated with the sub-diffusion equation with an impenetrable interior

inclusion with a generalized impedance boundary condition. Here, we let D ⊂ R
2 be

a simply connected open set with C2-boundary Γ1 with unit outward normal ν. Now

let D0 ⊂ D be a (possible multiple) connected open set with C2-boundary Γ0, where

we assume that dist(Γ1, D0) > d > 0. This gives that the annular regionD1 = D\D0

is a connected set with boundary ∂D1 = Γ1 ∪ Γ0. See Figure 1 for example.

D1 =D \D0 Γ1

Γ0

D0

Figure 1. Example of a circular domain D with and elliptical subregion D0.
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In order to study this problem, we will consider the space of tempered distributions

which vanish for t 6 0 (i.e., causal). Now we define u(x, t) as the causal tempered dis-

tribution solution to the sub-diffusion equation with a generalized impedance bound-

ary condition that takes values inH1(D1) for any t > 0. The boundary value problem

under consideration is given by

∂α
t u = ∇ · A(x)∇u − c(x)u in D1 × R+ with u(x, t) = 0 ∀ t 6 0,(2.1)

∂νAu(·, t)|Γ1 = f(x)g(t) and B[u(·, t)]|Γ0 = 0 ∀ t > 0.(2.2)

We will assume that the parameter α ∈ (0, 1) is fixed. The fractional time derivative

is assumed to be the Caputo derivative defined by

∂α
t u =

1

Γ(1− α)

∫ t

0

∂τu(·, τ)

(t− τ)α
dτ,

where Γ(1 − α) is the Gamma function evaluated at 1 − α. Here the boundary

operator in (2.2) is defined as

(2.3) B[u] = ∂νAu−
d

dσ
η(x)

d

dσ
u+ γ(x)u,

where d/dσ be the tangential derivative and σ is the arc-length parameter on Γ0.

Here we take ν to be the unit outward normal to the domain D1 and ν ·A∇ = ∂νA be

the corresponding conormal derivative. Also, the generalized impedance boundary

condition on the boundary Γ0 is understood in the weak sense such that

0 =

∫

Γ0

(
ϕ∂νAu(·, t) + η

du(·, t)

dσ

dϕ

dσ
+ γu(·, t)ϕ

)
dσ ∀ϕ ∈ H1(Γ0) and t > 0.

To study problem (2.1)–(2.2) we assume that the spatial partial differential op-

erator is symmetric and elliptic. To this end, we let the matrix-valued coefficient

A(x) ∈ C0,1(D1,R
2×2) be symmetric positive definite such that

ξ ·A(x)ξ > Amin|ξ|
2 for a.e. x ∈ D1.

The scalar coefficient c(x) ∈ L∞(D1) is such that

c(x) > 0 for a.e. x ∈ D1.

Notice that the assumptions on the coefficients give that the differential operator

defined by the right-hand side of (2.1) is a symmetric elliptic partial differential

operator. The regularity assumptions on the domain and coefficients ensure that
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we can apply unique continuation for the elliptic operator, which is important for

considering the inverse problem. The flux on the boundary is given by the separated

function f(x)g(t), where f ∈ H−1/2(Γ1) and g is piecewise continuous for all t > 0 of

exponential order such that g(t) = 0 for all t 6 0. Now, assume that the impedance

parameters η ∈ L∞(Γ0) and γ ∈ L∞(Γ0). For analytical considerations throughout

the paper, we will assume that the coefficients satisfy

η > ηmin > 0 and γ > γmin > 0 for a.e. x ∈ Γ0.

Note that in three spatial dimensions the operator d
dσ η

d
dσ is replaced by the Laplace-

Beltrami operator divΓ0(η gradΓ0
) and the analysis in Section 3 holds. The analysis

in Section 4 does not hold in three spatial dimensions. There is little known for

the recovery on the impedance parameters in three dimensions. Also, the analysis

presented in the following sections can be simply augmented for the classical diffu-

sion process, where the fractional derivative is replaced with the classical first order

temporal derivative.

For completeness, we will state the result that will be used in Section 3 to prove

well-posedness. This gives a characterization of which analytic functions with values

in Banach space is the Laplace transform of a causal tempered distribution. To this

end, let C+ = {s ∈ C, Re(s) > 0} and X be a Banach space. Assume that the

mapping Φ: C+ 7→ X is an analytic function such that

(2.4) ‖Φ(s)‖X 6 C(Re(s))|s|µ with µ < −1,

where C : (0,∞) 7→ (0,∞) is non-increasing with C(σ) = O(σ−l) as σ → 0 for some

l ∈ N. Then there exists a unique X-valued causal tempered distribution ϕ(t) whose

Laplace transform is Φ(s), see [22] Chapter 3 for details.

Now when we have formulated the direct problem, we define the inverse problem

under consideration. Here we are interested in the inverse impedance problem of

determining the boundary operator B (i.e., the impedance parameters) from the

knowledge of the solution u on the outer boundary of Γ1. To this end, assume

that the temporal function g is fixed and that we have Neumann-to-Dirichlet (NtD)

mapping denoted by Λ that maps

f 7→ u(·, t)|Γ1 ∀ t > 0.

It is clear that Λ depends on the boundary parameters and we wish to study the

injectivity of the mapping (η, γ) 7→ Λ. Since the temporal function g is assumed to

be fixed, we have that the NtD operator can be viewed as linear mapping given by

Λf = u(·, t)|Γ1
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for any f ∈ H−1/2(Γ1). Using the NtD mapping to estimate the coefficients in

a differential equation goes back to at least the Calderon problem (1980) in electrical

impedance tomography [6]. It is clear that the NtD mapping will depend non-linearly

on the coefficients but one can ask questions about uniqueness and stability. This is

the basis of electrical impedance tomography, where there has been a lot of research

in using the NtD mapping (see, e.g., [18]). In our analysis, we will assume the

knowledge of the NtD mapping. A similar inverse impedance problems have been

considered in [11] for the electrical impedance tomography problem.

3. Analysis of the direct problem

To analyze the direct problem we will use the Laplace transform. Therefore, let X

be a Banach space, where we let TD[X ] denote the X-valued causal tempered dis-

tribution with values in the Banach space X (see [22] for details). In order for the

solution u(·, t) of (2.1)–(2.2) to be a causal tempered distribution, we will assume

that g is a causal (real-valued) piecewise continuous function for all t > 0 of ex-

ponential order. This gives that the boundary data f(x)g(t) is a causal tempered

distribution with values in H−1/2(Γ1). We define the Laplace transform for a causal

tempered distribution w ∈ TD[X ] as

L {w(t)} =

∫ ∞

0

w(t)e−st dt denoted W (s) = L {w(t)}

for any s ∈ C+ = {s ∈ C, where Re(s) > 0}. By our assumptions on g(t) we have

that the Laplace transform of the boundary data exists and is given by f(x)G(s),

where L {g(t)} = G(s). We will further assume that there is a constant independent

of s ∈ C+, where the Laplace transform for g satisfies

(3.1) |G(s)| 6
C

|s|p
for some p > 1 ∀ s ∈ C+.

Now we consider the function space for the solution to the direct problem. Due

to the generalized impedance condition (2.3) we consider the solution as a causal

tempered distribution that has values in H1(D1,Γ0). Therefore, we wish to show

the existence and uniqueness of the solution u ∈ TD[H1(D1,Γ0)] that is the solution

to (2.1)–(2.2) for given boundary data f(x)g(t) ∈ TD[H−1/2(Γ1)]. We now define

the space for which we attempt to find the solution as

H1(D1,Γ0) = {ϕ ∈ H1(D1) such that ϕ|Γ0 ∈ H1(Γ0)}
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with that associated norm/inner-product

‖ϕ‖2H1(D1,Γ0)
= ‖ϕ‖2H1(D1)

+ ‖ϕ‖2H1(Γ0)
.

It is clear that H1(D1,Γ0) is a Hilbert Space with the graph norm defined above.

Here the Sobolev spaces on the boundary are defined by the dual pairing between

Hp(Γj) and H−p(Γj) (for p > 0) with L2(Γj) as the pivot space, where Γj for

j = 0, 1 are the closed curves defined in the previous section. The definition of the

aforementioned Sobolev spaces can be found in [8], [21].

In order to prove the well-posedness of (2.1)–(2.2) with respect to any given spatial

boundary data f ∈ H−1/2(Γ1) and fixed causal temporal data g satisfying (3.1), we

use the Laplace transform. We formally take the Laplace transform of equation

(2.1)–(2.2) and by appealing to the fact that the solution u is causal, we obtain

−∇ ·A(x)∇U + (c(x) + sα)U = 0 in D1 ∀ s ∈ C+(3.2)

∂νAU(·; s)|Γ1 = f(x)G(s) and B[U(·; s)]|Γ0 = 0 ∀ s ∈ C+.(3.3)

Equations (3.2)–(3.3) are obtained by interchanging the spatial differential operators

with the Laplace transform, e.g.,

L {∇ · A(x)∇u − c(x)u} = ∇ ·A(x)∇L {u} − c(x)L {u},

where we use the fact that the coefficients and spatial differential operators are

independent of t. This is done similarly to the boundary conditions to obtain (3.3).

Here, U(·; s) denotes that Laplace transform of u(·, t). We have used the fact that

L {∂α
t u(·, t)} = sαU(·; s)

by appealing to the definition of the fractional time derivative and the convolution

theorem for Laplace transforms. Indeed, notice that the Caputo derivative ∂α
t u(·, t)

is the convolution integral of ∂tu(·, t) and t−α/Γ(1− α). Therefore, we formally see

that convolution theorem would give that

L {∂α
t u} = L {∂tu}L {t−α/Γ(1− α)} = [sU(·; s)− u(·, 0)]

1

s1−α
,

using the fact that u(·, 0) = 0 (see, e.g., equation (2.253) of [19]). We can consider

(3.2)–(3.3) as the frequency-domain boundary value problem associated with (2.1)–

(2.2). Using the Laplace (or Fourier) transform to study time-domain problems is

commonly done for hyperbolic problems (see, e.g., [2], [5], [10]). To prove the well-

posedness of (2.1)–(2.2) for u ∈ TD[H1(D1,Γ0)] will be done in two steps. First,
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we prove that (3.2)–(3.3) has a unique solution in H1(D1,Γ0). Then we can apply

the Laplace inversion theorem (see [22] Chapter 3) to conclude that (2.1)–(2.2) is

well-posed. This means we need to prove that U(·; s) satisfies the estimate (2.4). To

this end, we will employ a variational technique for proving the well-posedness of

(3.2)–(3.3), where we must establish the stability estimate, where the dependence on

the frequency variable s ∈ C+ is explicit to apply the Laplace inversion theorem.

We have that for any given V ∈ H1(D1,Γ0) the equivalent variational formulation

of (3.2)–(3.3) is obtained by appealing to Green’s 1st Theorem and is given by

(3.4) as(U, V ) + b(U, V ) = ls(V ).

Here the sesquilinear forms as(·, ·) and b(·, ·) : H1(D1,Γ0)
2 7→ C are defined by

as(U, V ) =

∫

D1

(A(x)∇U · ∇V + (c(x) + sα)UV ) dx,(3.5)

b(U, V ) =

∫

Γ0

(
η
dU

dσ

dV

dσ
+ γUV

)
dσ(3.6)

and the conjugate linear functional ls(·) : H1(D1,Γ0) 7→ C is defined as

(3.7) ls(V ) = G(s)

∫

Γ1

fV dσ.

It is clear that the sesquilinear forms are continuous for any given s ∈ C+ by ap-

pealing to the boundedness of the coefficients and the Cauchy-Schwartz inequality.

In order to prove the well-posedness we will use the Lax-Milgram Lemma (see [21]

Theorem 6.5), where the coercivity constant will depend on s. Then, in order to

prove that the solution U(·; s) ∈ H1(D1,Γ0) to (3.4) (and therefore (3.2)–(3.3)) is

the Laplace transform of a tempered distribution u ∈ TD[H1(D1,Γ0)] that solves

(2.1)–(2.2), we prove that the reciprocal of the coercivity constant satisfies the as-

sumption of the Laplace inversion formula given by equation (3.2) in [22].

Theorem 3.1. The sesquilinear form as(·, ·) defined by (3.5) satisfies the estimate

|as(U,U)| > C cos(απ/2)min(1,Re(s)α)‖U‖2H1(D1)
,

where C > 0 is a constant depending only on the coefficient matrix.

P r o o f. To prove the claim, notice that

|as(U,U)| = |e−iαArg(s)as(U,U)| > |Re(e−iαArg(s)as(U,U))|.
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Here Arg(s) denoted the argument of the complex number (i.e., the angular variable

when represented in polar coordinates) such that s = |s|ei Arg(s). Recall that for any

s ∈ C+ which gives that |αArg(s)| 6 απ/2 and therefore,

1 > cos(αArg(s)) > cos(απ/2) > 0 ∀α ∈ (0, 1).

This is due to the fact that cos(z) is minimized at ±απ/2 for any z ∈ [−απ/2, απ/2].

Therefore, we see that for all U ∈ H1(D1,Γ0)

e−iαArg(s)as(U,U) = e−iαArg(s)

∫

D1

(A(x)∇U · ∇U + c(x)|U |2) dx

+ sαe−iαArg(s)

∫

D1

|U |2 dx

for all U ∈ H1(D1,Γ0) and notice that sα = |s|αeiαArg(s), which gives that

sαe−iαArg(s) = |s|α. Also, notice that the volume integrals in as(U,U) are real-

valued based on the assumptions of the coefficients. Now, using the fact that

c(x) > 0, we can then estimate

Re(e−iαArg(s)as(U,U)) > cos(αArg(s))

∫

D1

A(x)∇U · ∇U dx+ |s|α
∫

D1

|U |2 dx

> cos(απ/2)[Amin‖∇U‖2L2(D1)
+Re(s)α‖U‖2L2(D1)

]

> cos(απ/2)min(1, Amin)min(1,Re(s)α)‖U‖2H1(D1)
.

This proves the claim. �

This gives us an explicit s-dependent coercivity estimate in H1(D1) for a(·, ·). We

now prove a coercivity estimate in H1(Γ0) for the sesquilinear form b(·, ·), which

would imply that the sum of the sesquilinear forms is coercive in H1(D1,Γ0).

Theorem 3.2. The sesquilinear form b(·, ·) defined by (3.6) satisfies the estimate

|b(U,U)| > C cos(απ/2)‖U‖2H1(Γ0)
,

where C > 0 is a constant depending only on the impedance parameters.

P r o o f. Similarly to proving the lower bound, we consider

|b(U,U)| > |Re(e−iαArg(s)b(U,U))|,

where again Arg(s) is the argument of the complex number s. We still have that

1 > cos(αArg(s)) > cos(απ/2) > 0 ∀α ∈ (0, 1),
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where again we use the fact that cos(z) is minimized at ±απ/2 for any z ∈

[−απ/2, απ/2]. Therefore, by (3.6) we have that

e−iαArg(s)b(U,U) = e−iαArg(s)

[∫

Γ0

η
∣∣∣
dU

dσ

∣∣∣
2

+ γ|U |2 dσ

]

for all U ∈ H1(D1,Γ0). Notice that the line integrals in b(U,U) are real-valued

based on the assumptions of the coefficients. Now, using the lower bounds on the

impedance parameters

η > ηmin > 0 and γ > γmin > 0 for a.e. x ∈ Γ0

we have that

Re(e−iαArg(s)b(U,U)) > cos(αArg(s))

[∫

Γ0

η
∣∣∣
dU

dσ

∣∣∣
2

+ γ|U |2 dσ

]

> cos(απ/2)
[
ηmin

∥∥∥
dU

dσ

∥∥∥
2

L2(Γ0)
+ γmin‖U‖2L2(Γ0)

]

> cos(απ/2)min(γmin, ηmin)‖U‖2H1(Γ0)
.

Recall that the norm in H1(Γ0) is given by

‖U‖2H1(Γ0)
=

∫

Γ0

(∣∣∣
dU

dσ

∣∣∣
2

+ |U |2
)
dσ.

This proves the claim. �

Notice that the Lax-Milgram Lemma implies that the sesquilinear form given by

as(·, ·) + b(·, ·) defined by (3.5)–(3.6) can be represented by an invertible operator

T(s) that maps H1(D1,Γ0) into itself so that

as(U, V ) + b(U, V ) = (T(s)U, V )H1(D1,Γ0) ∀U, V ∈ H1(D1,Γ0).

Since the sesquilinear form as(·, ·) is analytic for s ∈ C+, we have that T(s) depends

analytically on s ∈ C+. Indeed, to prove the analyticity of as(·, ·) we see that by the

Riesz representation theorem there exist bounded linear mappings from H1(D1,Γ0)

into itself such that
∫

D1

(A(x)∇U · ∇V + c(x)UV ) dx = (A1U, V )H1(D1,Γ0)

and ∫

D1

UV dx = (A2U, V )H1(D1,Γ0) ∀U, V ∈ H1(D1,Γ0).
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Now, appealling to (3.5) we see that

as(U, V ) = (A1U, V )H1(D1,Γ0) + sα(A2U, V )H1(D1,Γ0)

and since the mapping s 7→ A1 + sαA2 is analytic from C+ to the space of bounded

linear operators, it proves the analyticity of as(·, ·). Now provided that T(s) is

invertible its inverse would also depend analytically on s ∈ C+.

We will now derive a norm estimate for the inverse of T(s) for any s ∈ C+, where

the dependence on the frequency variable is made explicit. To this end, the lower

bounds given in the above results imply that

|(T(s)U,U)H1(D1,Γ0)| > C cos(απ/2)min(1,Re(s)α)‖U‖2H1(D1,Γ0)
,

where the constant C is independent of s ∈ C+. Notice that we have used that

Re(e−iαArg(s)b(U,U)) > C cos(απ/2)‖U‖2H1(Γ0)

> C cos(απ/2)min(1,Re(s)α)‖U‖2H1(Γ0)
.

From the coercivity estimate we have that

‖T−1(s)‖B(H1(D1,Γ0)) 6
C sec(απ/2)

min(1,Re(s)α)

(see [21] Theorem 6.5) in the operator norm, where B(H1(D1,Γ0)) is the space

of bounded linear transformations from H1(D1,Γ0) into itself. Therefore, in the

inversion theorem we can conclude that C(Re(s)) from (2.4) is given by

C(Re(s)) =
C sec(απ/2)

min(1,Re(s)α)
.

Now we derive a norm estimate for the conjugate linear functional ls(·).

Theorem 3.3. The conjugate linear functional ls(·) defined by (3.7) satisfies the

estimate

|ls(V )| 6 C|G(s)|‖f‖H−1/2(Γ1)‖V ‖H1(D1,Γ0),

where C > 0 is a constant depending only on the domain.

P r o o f. This is a consequence of the duality between H±1/2 with L2 as the

pivot space and the trace theorem (see, e.g., [8]) which gives that

|ls(V )| 6 |G(s)|‖f‖H−1/2(Γ1)‖V ‖H1/2(Γ0) 6 C|G(s)|‖f‖H−1/2(Γ1)‖V ‖H1(D1,Γ0).

Here C is the constant from the trace theorem, proving the claim. �
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By appealing to the Riesz representation theorem we can conclude that the vari-

ational problem (3.4) is equivalent to

T(s)U = Ls where ls(V ) = (Ls, V )H1(D1,Γ0) ∀V ∈ H1(D1,Γ0).

We have that

‖Ls‖H1(D1,Γ0) 6 C|G(s)|‖f‖H−1/2(Γ1).

Provided that G(s) depends analytically on s ∈ C+, we can conclude that Ls depends

analytically on s ∈ C+. The analyticity assumption on G(s) is needed so that we may

apply the Laplace inversion formula. This implies that U = U(·, s) ∈ H1(D1,Γ0)

is given by U(·, s) = T(s)−1Ls and is therefore analytic with respect to s ∈ C+.

By appealing to the estimate of the norm for the inverse of T(s) we have that the

solution U to the variational problem (3.4) satisfies the norm estimate

(3.8) ‖U(·, s)‖H1(D1,Γ0) 6
C sec(απ/2)

min(1,Re(s)α)
|G(s)|‖f‖H−1/2(Γ1),

where the constant C > 0 is independent of s ∈ C+. From the above analysis we have

that there is a unique solution to (3.2)–(3.3) satisfying the stability estimate (3.8).

We recall that (3.2)–(3.3) was obtained by taking the Laplace transform of the time

dependent equations (2.1)–(2.2). In order to prove the well-posedness of (2.1)–(2.2),

we still need to show that U(·, s) is the Laplace transform of a causal tempered

distribution u(·, t) that takes values in H1(D1,Γ0). To do so, we will appeal to the

Laplace inversion theorem which can be applied, since we have assumed that the

Laplace transform for g(t) satisfies (3.1). Applying equation 3.3 from [22] gives the

following result.

Theorem 3.4. Assume that f ∈ H−1/2(Γ1) and the Laplace transform of g(t)

given by G(s) depends analytically on s ∈ C+ satisfying (3.1). Then we have that

there is a unique solution u ∈ TD[H1(D1,Γ0)] to (2.1)–(2.2). Moreover, we have the

estimate

‖u(·, t)‖H1(D1,Γ0) 6 Ctα+|1−p|‖f‖H−1/2(Γ1) ∀ f ∈ H−1/2(Γ1)

when t > 1, where the constant C > 0 is independent of t.

Notice that Theorem 3.4 gives that there is a solution u(·, t) to (2.1)–(2.2) that has

at most polynomial growth in t. The proof of Theorem 3.4 is a direct consequence

of the previous analysis in this section along with the strong inversion formula for

the Laplace transform. The polynomial growth will play a role in an estimate in the

proceeding section to study the inverse problem.
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4. Analysis of the inverse problem

In this section, we consider the inverse impedance problem of recovering the

impedance parameters η and γ from the Cauchy data. These types of inverse

problems have applications where one needs to infer about the interior structure

of a medium from boundary measurements. Indeed, this comes up in medical imag-

ing and non-destructive testing when investigating the interior structure must be

done without being able physically access the interior. These problems are frequently

found in engineering applications of non-destructive testing. The mathematical ques-

tions are uniqueness, existence, and continuity with respect to the given measure-

ments as well as developing numerical inversion algorithms. These questions have

been studied for the elliptic problem coming from electrical impedance tomography

in [4], [7], [11], where uniqueness results are given as well as numerical methods for

recovering the impedance parameters. Note that the generalized impedance condi-

tion given in (2.3) depends on the material parameters η and γ linearly. Therefore,

one hopes to derive a direct algorithm for recovering the coefficients. This is useful,

since it would not require initial estimate on the material parameters. In [11] this

is done in the case of electrical impedance tomography as well as developed a fac-

torization method for recovering the interior boundary. Whereas in [4] a system of

non-linear boundary integral equations is used to recover the impedance parameters

and interior boundary Γ0. Here we will only focus on the question of uniquely de-

termining the impedance parameters on the interior boundary from measurement on

the exterior boundary.

To begin, we assume that the temporal part of the flux g(t) is a causal tempered

distribution that is again fixed such that its Laplace transform G(s) is well-defined

and depends analytically on s ∈ C+ satisfying (3.1). Therefore, by Theorem 3.4

we have that there is a unique solution u to (2.1)–(2.2) that is a causal tempered

distribution that takes values in H1(D1,Γ0) for all t > 0. Then we consider the

Neumann-to-Dirichlet (NtD) mapping denoted by Λ that maps

H−1/2(Γ1) → TD[H1/2(Γ1)]

such that

f 7→ u(·, t)|Γ1 ∀ t > 0.

We will assume that the NtD is known, i.e., one can measure the solution on

the boundary Γ1 given the flux f . By appealing to Theorem 3.4 and the trace

theorem we have that the NtD operator is a well defined linear operator. In-

deed, we have that by Theorem 3.4, the mapping f 7→ u(·, t)|D1 exists as a

bounded linear map from H−1/2(Γ1) into TD[H1(D1,Γ0)]. Then by the trace
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theorem the mapping u(·, t)|D1 7→ u(·, t)|Γ1 is a well defined bounded linear

mapping from TD[H1(D1,Γ0)] into TD[H1/2(Γ1)] and we see that the NtD is

the composition of the aforementioned bounded linear mappings. The main

idea in this section is to extend the theory developed in [11] for the electri-

cal impedance tomography problem for our inverse problem by appealing to the

Laplace transform. This employs variational techniques to prove the unique-

ness of the coefficients from the knowledge of the NtD mapping. Since vari-

ational techniques are used, less regularity is needed in the analysis than in

[4] but one requires the knowledge of the full NtD mapping. We will assume

that the NtD mapping is known for any f ∈ H−1/2(Γ1) and for all t > 0

denoted

Λ = Λ(η, γ) with Λf = u(·, t)|Γ1 ∀ t > 0.

Since the NtD mapping is known for all t > 0, we can consider the Laplace transform

of the NtD mapping

L {Λf} =

∫ ∞

0

u(·, t)|Γ1e
−st dt

that maps

f 7→ U(·, s)|Γ1 for any s ∈ C+,

where U is the solution to (3.2)–(3.3). Since U solves an elliptic problem, it is easier

to study the uniqueness in the frequency-domain which would imply uniqueness in

the time-domain by the inversion formula. Before we can prove the main uniqueness

result we first prove an auxiliary density result.

Theorem 4.1. Define the set

U = {U |Γ0 : U ∈ H1(D1,Γ0) solving (3.2)–(3.3) ∀ f ∈ H−1/2(Γ1)} ⊂ H1(Γ0).

Then U is a dense subspace of L2(Γ0) for any s ∈ R+ such that G(s) 6= 0.

P r o o f. It is clear that the mapping f 7→ U(·, s)|Γ0 is linear since it is the

composition of the solution operator for (3.2)–(3.3) and the Trace operator. This

implies that U defines a linear subspace of L2(Γ0). Now to prove the claim we will

show that the set U⊥ = {0}. To this end, we let ϕ ∈ U⊥ and let V ∈ H1
0 (D1,Γ1) be

the solution to the dual problem

−∇ ·A(x)∇V + (c(x) + sα)V = 0 in D1 ∀ s ∈ C+

∂νAV |Γ1 = 0 and B[V ]|Γ0 = ϕ ∀ s ∈ C+.
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It is clear that there is a unique solution V ∈ H1
0 (D1,Γ0) to the dual problem

above by appealing to similar arguments as in Section 3. Now let s ∈ R+ such that

G(s) 6= 0. Therefore, we obtain that

0 =

∫

Γ0

Uϕds =

∫

Γ0

UB[V ] ds =

∫

Γ0

(U∂νAV − V ∂νAU) ds

= −

∫

Γ1

(U∂νAV − V ∂νAU) ds = G(s)

∫

Γ1

fV ds ∀ f ∈ H−1/2(Γ1),

where we have used Green’s 2nd Theorem. Due to the duality of H±1/2 the Hahn-

Banach Theorem implies that V = 0 on Γ1. Since V has zero Cauchy data on Γ1, we

can conclude that V = 0 in D1 by unique continuation due to the assumptions on

the domain and coefficients. The generalized impedance boundary condition implies

that ϕ = 0, proving the claim. �

In order to prove the uniqueness result, we will require that the impedance param-

eters (η, γ) ∈ C(Γ0) × L∞(Γ0). Even though less regularity is needed to prove the

well-posedness of the problem, we will see that the increased regularity is needed for

the proof of the uniqueness result presented in this section. This is not uncommon

that the well-posedness can be established for weaker assumptions on the coefficients.

The extra regularity for η is expected since it turns up in the second order differen-

tial operator on the boundary. This is standard in the analysis of PDEs just as in

standard elliptic regularity results [8].

Theorem 4.2. Let Λ be the Neumann-to-Dirichlet operator for (2.1)–(2.2) such

that

f 7→ u(·, t)|Γ1 ∀ t > 0.

Then the mapping (η, γ) 7→ Λ(η, γ) is injective provided that (η, γ) ∈ C(Γ0) ×

L∞(Γ0).

P r o o f. In order to prove the claim, we proceed by way of contradiction. So

assume that there are two sets of impedance parameters denoted (ηj , γj) ∈ C(Γ0)×

L∞(Γ0) that produce the same NtD data for all t > 0. Then we have that the

corresponding NtD mappings

Λj = Λ(ηj , γj) for j = 1, 2

coincide for all f ∈ H−1/2(Γ1). Now define the corresponding solutions to (2.1)–(2.2)

by u(j) and its Laplace transform by U (j) which is the solution to (3.2)–(3.3). Since

the Cauchy data for u(j) on Γ1 coincide for all t > 0, we have that U (1) = U (2) in D1
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for all s ∈ C+ and for any f ∈ H−1/2(Γ1). We will assume that s ∈ R+ so that the

Laplace transforms of the solution are real-valued. Now denote U = U (1) = U (2),

which satisfies the generalized impedance conditions

∂νU −
d

dσ
η1

d

dσ
U + γ1U = ∂νU −

d

dσ
η2

d

dσ
U + γ2U = 0 on Γ0.

By subtracting the equations we obtain

0 = −
d

dσ
(η1 − η2)

d

dσ
U + (γ1 − γ2)U on Γ0

and integrating over Γ0 gives that

0 =

∫

Γ0

−
d

dσ
(η1 − η2)

d

dσ
U + (γ1 − γ2)U dσ =

∫

Γ0

(γ1 − γ2)U dσ,

where the equality comes from integration by parts with the arc length variable σ.

Since the above equality holds for all f ∈ H−1/2(Γ1), appealing to Theorem 4.1 we

can conclude that γ1 = γ2 a.e. on Γ0.

Now assume that f ∈ L2(Γ1) ⊂ H−1/2(Γ1) is real-valued, then by the similar

analysis as in Section 2 of [7] we can conclude that U ∈ H3/2(D1), which implies that

∂νU ∈ L2(Γ0). Then the generalized impedance boundary condition implies that

η1
dU

dσ
∈ H1(Γ0) ∀ f ∈ L2(Γ1),

which implies that U ∈ C1(Γ0), since H1(Γ0) ⊂ C(Γ0) and η1 ∈ C(Γ0) with η1

strictly positive. Since γ1 = γ2, subtracting the generalized impedance conditions

gives
d

dσ
(η1 − η2)

d

dσ
U = 0 ∀ f ∈ L2(Γ1).

Whence

(η1 − η2)
dU

dσ
= C ∀ f ∈ L2(Γ1),

where C is some constant. Now define x(σ) : [0, l] 7→ R
2 as an l-periodic C2 repre-

sentation of the closed curve Γ0, where l is the length of the curve. Then we identify

the space H1(Γ0) with the auxiliary space H
1
per[0, l] of l-periodic functions. It is clear

that due to the periodic condition, U(x(0)) = U(x(l)) for all real-valued f ∈ L2(Γ1).

Rolle’s Theorem gives that the tangential derivative for U is zero for at least one

point on the curve which gives that

(η1 − η2)
dU

dσ
= 0 for all real-valued f ∈ L2(Γ1).
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Now to prove that η1 = η2, we proceed by contradiction and assume that there is

some x∗ ∈ Γ0, where (η1−η2)(x
∗) > 0. Due to the continuity there exists δ > 0 such

that (η1 − η2) > 0 for all x ∈ Γδ
0 = Γ0 ∩B(x∗, δ). We can conclude that

(4.1)
dU

dσ
= 0 on Γδ

0 for all real-valued f ∈ L2(Γ1).

Now for any f1 and f2 linearly independent real-valued L2(Γ1) functions, we have

that the corresponding Uf1 and Uf2 are linearly independent (see Theorem 2.2 in [7]).

Therefore, we can conclude that the Wronskian given by

(Uf1 , Uf2) 7→ Uf1

d

dσ
Uf2 − Uf2

d

dσ
Uf1

cannot be identically zero on any open subset of Γ0. By (4.1) we have that Wronskian

is identically zero on Γδ
0, which contradicts the linear independence of f1 and f2

proving the claim. �

Notice that from the proof of Theorem 4.2 we have that Cauchy data for f and

U(·, s) on Γ1 uniquely determine the impedance parameters. Assuming that the NtD,

as well as Γ0, is known, this implies that we can use a data completion algorithm to

recover Uf (·, s) and ∂νAUf (·, s) on the inner boundary Γ0. Recently, in [1] a stable

data completion algorithm was derived using boundary integral equations for the

Helmholtz equation. Provided that A = I and c = 0, the numerical method for

recovering the interior Cauchy data in [1] can be employed for a given s ∈ R+. Once

Uf (·, s) and ∂νUf (·, s) are known on Γ0, we can employ the reconstruction algorithm

in Section 4 of [11] to recover the impedance parameters. This method constructs

a linear system of equations to recover the impedance parameters. This gives a direct

method for recovering the parameters where one does not need a priori estimates for η

and γ. To do this, we need the compute the Laplace transform of the data. This

would require infinite temporal measurements on Γ1 which is not physically feasible.

Therefore, we will show that one can take partial temporal measurements on the

outer boundary Γ1 to approximate the Laplace transform of the NtD mapping.

To this end, we now define the partial temporal NtD measurements on the outer

boundary Γ1. This is that mapping such that the spatial flux component f ∈

H−1/2(Γ1) is mapped to

ũf(·, t)|Γ1 =

{
uf(·, t)|Γ1 , t 6 T

0, t > T
for some T > 1.

It is clear that ũf(·, t)|Γ1 ∈ TD[H1/2(Γ1)] and it denotes the measured partial tem-

poral data on the finite time-interval (0, T ). This can be seen as an approximation
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of the measured data, where we extend that data for all unknown temporal values

by zero. Note that we can write

(4.2) ũf (·, t)|Γ1 = χ
[0,T ]

(t)uf (·, t)|Γ1 ∀ t > 0,

where χ is the indicator function. Now, we will estimate the error in the Laplace

transforms in the NtD measurements with respect to the finite time of measurements

taken on (0, T ), where T > 1.

Theorem 4.3. Let Ũf (·, s)|Γ1 ∈ H1/2(Γ1) denote the Laplace transform of the

partial temporal NtD measurements given by (4.2) for any f ∈ H−1/2(Γ1). Then we

have that there is a m ∈ N such that

‖Uf(·, s)− Ũf (·, s)‖H1/2(Γ1) 6 CTme−Re(s)T ‖f‖H−1/2(Γ1) for any T > 1

with the constant C > 0 being independent of T and f ∈ H−1/2(Γ1).

P r o o f. We begin by noticing that

[uf (·, t)− ũf (·, t)]|Γ1 = [1− χ
[0,T ]

(t)]uf (·, t)|Γ1

for any f ∈ H−1/2(Γ1). By taking the Laplace transform on both sides we have that

Uf(·, s)− Ũf (·, s) =

∫ ∞

T

u(·, t)|Γ1e
−st dt.

From the above equality we are able to estimate the H1/2(Γ1) norm. Therefore, by

the trace theorem we have

‖Uf (·, s)− Ũf (·, s)‖H1/2(Γ1) 6

∫ ∞

T

‖u(·, t)‖H1/2(Γ1)e
−Re(s)t dt

6 C

∫ ∞

T

‖u(·, t)‖H1(D1,Γ0)e
−Re(s)t dt.

Now by the norm estimate in Theorem 3.4 we have that

‖Uf(·, s)− Ũf (·, s)‖H1/2(Γ1) 6 C‖f‖H−1/2(Γ1)

∫ ∞

T

tα+|1−p|e−Re(s)t dt

since we have assumed that T > 1. We now let m = ⌈α+ |1− p|⌉ and whence

∫ ∞

T

tme−Re(s)t dt = e−Re(s)T
m∑

k=0

(
m

k

)
(m− k)!

Re(s)m−k+1
T k,
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which is obtained by the binomial theorem and using standard calculus to evaluate

the improper integral. Therefore, we can conclude that

‖Uf(·, s)− Ũf(·, s)‖H1/2(Γ1) 6 C‖f‖H−1/2(Γ1)e
−Re(s)T

m∑

k=0

(
m

k

)
(m− k)!

Re(s)m−k+1
T k

and again, the fact that T > 1 proves the claim. �

Notice that by Theorem 4.3 we have that the Laplace transform of the partial

temporal finite time NtD measurements converge in the operator norm to the Laplace

transform of the NtD measurements for (3.2)–(3.3) as T → ∞. This gives that for

the case when A = I and c = 0 one can use the stabilized data completion algorithm

in [1] to recover the Cauchy data on the inner boundary for a fixed T ≫ 1 and

whence reconstruct the impedance parameters according to [11].

5. Summary and conclusions

Here we have studied the direct and inverse impedance problems for a sub-diffusion

equations with a generalized impedance boundary condition. The analysis for the

direct problem holds in both R
2 and R

3. The analysis uses the Laplace transform

to study the problem in the frequency-domain and to assure that one can use the

inversion formula to infer the solvability in the time-domain. There is still a need

to test numerical methods for solving the direct problem. The uniqueness results

for the inverse impedance problem strongly depend on analysis unique to the R
2

case. We have also discussed a possible method for recovering the impedance pa-

rameters for the NtD measurements on the outer boundary. The inversion algorithm

uses a method for the case when the elliptic operator is given by the Laplacian.

A numerical study for the proposed inversion algorithm also needs to be established.
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