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Abstract. We are concerned with a transmission problem for the Kirchhoff plate equation
where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt
constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay
rate), as well as the wellposedness, for the transmission system. The method is based on
a new Carleman estimate to obtain information on the resolvent for high frequency. The
main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate
equation.
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1. INTRODUCTION

Engineering applications give rise to fluid-structure interactions, composite lami-
nates in smart materials and structures, structural-acoustic systems, and other inter-
active physical processes, which are modeled by coupled partial differential equations
(transmission systems). Control design and stability analysis for such systems have
become active over the past decades: we refer to [4], [18], [35], [39] for the stabil-
ity analysis of the heat-wave transmission system, to [17], [9], [6], [5], [25], 7], [8]
for the uniform stabilization, polynomial stability and backward uniqueness of the
fluid-structure transmission system, and to [37] for the stabilization of heat-plate
transmission systems, respectively. We are interested in the transmission system of
wave and/or plate equations, which attracts much attention and has strong physi-
cal backgrounds; for example, it can describe the displacement of flexible structures
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consisting of two physically different types of materials. One approach to the sup-
pression of vibration of elastic structures is to bond patches made of special materials
to the underlying structures as passive or active controllers. Due to the presence of
the patches, the material properties of the structure, such as the elasticity mod-
uli, damping coefficient, and Poisson ratio, are changed. In particular, the jump
discontinuity at the location of the edges of the patches is usually introduced to
these properties. This passive method, on the one hand, makes the distributed con-
trol practically applicable, but on the other hand, brings some new mathematical
challenges which attract increasing research interests.

In recent years, the study of the stabilization problem for wave and/or plate trans-
mission systems has drawn a lot of attention. The stabilization for the wave trans-
mission system was discussed in [33], [16], [15], [10], [14], [34], [38]. For the 1D
transmission system, Liu-Williams [33] and Bastos-Raposo [10] proved exponential
decay under some conditions on the difference between the speeds of propagation.
Later, Chai-Liu [15] and Chai [14] studied the stabilization and uniform decay rate
for the wave transmission system with variable coefficients, respectively. Also, Chai-
Liu-Liu [16] showed the stability for elastic systems with the global or local Kelvin-
Voigt damping. Recently, Ramos-Souza [34] considered the equivalence between ob-
servability at the boundary and stabilization for the 1D transmission system, while
Zhang [38] proved that the energy for a multi-dimensional elastic-viscoelastic wave
transmission system does not decay exponentially.

Also, the stabilization for the wave/plate or string/beam transmission system
was discussed in [1], [2], [22], [21], [30]. Ammari-Jellouli-Mehrenberger [1] studied
the feedback stabilization for the 1D string/beam transmission system and recently,
Li-Han-Xu [30] showed that the energy decay rate of this system depends on the
location of frictional damping. Ammari-Nicaise [2] established the exponential sta-
bility for a damped wave equation coupled with a damped Kirchhoff plate equation
under some geometric condition. Recently, Hassine [22] studied a polynomial sta-
bilization for the 1D wave/plate transmission system with the local Kelvin-Voigt
damping and Hassine [21] proved an exponential stability result for the multidimen-
sional wave/plate transmission system.

Next, we discuss some recent results for the stabilization of a plate or beam trans-
mission system this paper is concerned with. Liu-Liu [31] first obtained the exponen-
tial stability for the Euler-Bernoulli beam equation with the local Kelvin-Voigt damp-
ing (see also [32]). Recently, the same result was proved for the Euler-Bernoulli beam
transmission equation in Hassine [20]. Ammari-Vodev [3] obtained the exponential
result by a boundary stabilization for the Euler-Bernoulli plate transmission system.
Recently, Hassine [23] proved the logarithmic stability for the Euler-Bernoulli plate
transmission system with the local Kelvin-Voigt damping.
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However, to our knowledge, very little is known about the stabilization for the
Kirchhoff plate transmission system (see [24] for the Kirchhoff plate model and its
boundary stabilization). The main purpose of this paper is to study this problem and
as the first step toward this goal, we consider the following initial boundary value
problem for the Kirchhoff plate transmission equation with the local Kelvin-Voigt

damping:
02(uy — BAu1) + A(BAuy + alAdur) =0, z€Qq, t >0,
02 (ug — BAug) + A(c3Aus) =0, x €Oy, t>0,
uy = uz, Oyu; = dyus, r €S, t>0,

(1.1) AAuy = 3Aus, 0y (EAur) = 0,(c3Aus), T €S, t>0,
us =0, Aug =0, zel, t>0,
ug |t=0 = u(x), Owui|t=o0 = ui(z), z €0y, t>0,
Ug =0 = ud(x), Opus|i—o = ui(x), x €N, t >0,

where Q and ; are two open, bounded and connected domains in R™ (n > 2)
with smooth boundary (of C*°-class) I" and S, respectively, such that ; C © and
SNT =0, Q2 = Q\ Q; which is an open connected domain with the boundary
00 =T US. Also, u; (i = 1,2) denote the displacements of the plates at time ¢
and position x, v denotes the unit outward normal vector to {23 and  on S and T,
respectively, ¢, > 0 (k = 1,2) are positive constants, a := a(z) are non-negative
bounded functions in 2y and 8 > 0 is a parameter in front of the inertial term.

We assume that a vanishes near the boundary .S and there exists a non-empty open
domain w C €7 such that a > ag in @ for some strictly positive constant ag, which
implies that in a viscoelastic material with the Kelvin-Voigt constitutive relation,
a transmission effect has been established in such a way that the damping is locally
effective on only one side of the interface.

When 5 = 0, the system (1.1) reduces to the Euler-Bernoulli plate transmission
problem.

The energy of the solution of the system (1.1) at time ¢ > 0 is defined by
1

E(t) = 5/9 (10rus (2, t)* + BlOeVur (2, 8)* + cf| A (2, 1) [?) do

1
+ 5/ (|0ua(x, )|? + B|0:Vua(z, )| + 2| Aug(z, t)[?) da.

Qo

By Green’s formula we can prove that for all ¢1, to > 0 we have

E(t)) — E(ts) :-/t2/ﬂ o(2)| Adyus ()| da it

and this means that the energy is decreasing over the time.
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We introduce the function spaces

(1.2) H = L*() x L*(9y) with the norm ||(u1,uz)||% = 22:/9 u?(x) dz,
=179
(1.3) V ={(u1,u2) € H: u1 € H' (), ug € H (), u2|; =0, ui|ls = uz|s}
with the norm || (u1,u9)||? = 22:/9 (u?(x) + B|Vu;(2)|?) d,
=17
(1.4) W ={(u1,u2) €V: us € H*(Qy), ug € HQ(;ZQ), Oyui|s = Opuzls}

2
with the norm || (u1, us)||%, = Z/ C?|Auj($)|2d$-
j=17%

Then H, V, and W are Hilbert spaces satisfying W c%, V %, H, where C%, denotes
continuous dense embedding (see Lemma 2.1). So, if we identify the Hilbert space H
with its dual space H*, then we have

(1.5) wclveh 7Hcl vecd wr

Next, we define linear and bounded operators A, B € L(W,W*) and C € L(V,V*) by

2 [
(1.6) (Au, V) ey = Z/Q ¢ Au(x) Av; () da,
(Bu, v) ey = A a(z)Auy (z)Avy (z) do

for u = (u1,u2), v = (v1,v2) € W and

2
(1.7) (Cu, )y yy = Z/ (ugVk + BVuy - Vo) do
k=1"7%

for u = (u1,u2), v = (v1,v2) € V, respectively, where (-, ->X*’X denotes the duality
pairing between X and X*. It is easy to check that the operator C is the isomorphism
from V onto V* by the Lax-Milgram theorem.

Now we are able to state our main results. To this end, we define the operator A by

u v
1. A = D(A
(1) (1) = (s gy )+ (w0 € DA
in the Hilbert space H = W x V with the domain
(1.9) DA) = {(u,v) e W xW: Au+ Bv € V*}.
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Then, we have the following resolvent estimate.

Theorem 1.1. There exist positive constants C > 0 and ¢ > 0 such that for every
w € R with |u| large, we have

(1.10) (A = ipudz) ™ | 2oy < CeM,

where I, is the identity operator in the space H.

As an immediate consequence of the previous theorem (for example [11], Theo-
rem 1.5 or [13]), we get the following rate of decrease of energy.

Theorem 1.2. Assume that iR N o(A) = (), where o(A) denotes the spectrum
set of A, and (1.10) holds. Then for any | € N, there exists a constant C' > 0 such
that for any initial data (u®,u') € D(A!), the energy E(t) of the system (1.1) whose

solution u(z,t) starts from (u®,u') satisfies

C
E(t) < WH(UOWI)H%W)a

where u° = (uf,u9) and u' = (ui,ul).

Now we make some comments on the analysis in this paper. We aim to dis-
cuss the stabilization of a transmission system of coupling plate equations with the
Kelvin-Voigt damping, which is one type of the viscoelastic damping. Here, we would
like to emphasize that the operator corresponding to the Kelvin-Voigt damping is
unbounded on the underlying space and is not a lower-order perturbation of the
elastic operator. Compared with the case [23] of the Euler-Bernoulli plate transmis-
sion system, the main difficulties are due to the appearance of —8Ad%u; (j = 1,2)
in (1.1)1’2, which consists of terms including the fourth order derivative with respect
to spatial and time variable. In order to show the existence of mild solutions for
the Cp-semigroup of contractions, we need to consider the operator equation of the
type Cuy + Bug + Au = 0, where C is not the identity operator, which is the first
difficulty. To circumvent the difficulty, we construct function spaces V and W with
new equivalent norms and it is essential to prove that the operator A is a generator
of a Cy-semigroup of contractions in W x V' (see Theorem 2.1). Next, to prove the
resolvent estimation (1.10), we should obtain Carleman type estimates for a new
system (3.18), which is different from the case of § = 0. To this end, we transform
the fourth order system (3.18) into the second order system (3.22), add the terms for
£ > 0, and obtain the estimate of the solution for the system (3.22) (see Lemma 3.1).
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The outline of this paper is as follows. In Section 2 we prove the existence and
uniqueness of solution to the problem (1.1). Section 3 is mainly devoted to the
resolvent estimate given by Theorem 1.1.

2. EXISTENCE AND UNIQUENESS

This section is devoted to the existence, uniqueness and regularity of solutions to
the system (1.1).

2.1. Reduction to an operator differential equation. First, we have

Lemma 2.1. Let H, V and W be the function spaces defined in (1.2)—(1.4),
respectively. Then they are Hilbert spaces satisfying W c4, V c4, H.

Proof. It is obvious that H is Hilbert space.
We prove that V is a Hilbert space and V' %, H. It is sufficient to prove that
u € Hy(Q) and [|(u1, u2)||v is equivalent to ||ul|g1(o) when (u1,uz) € V, where

B ui(x), x €O,
ule) = {ug(x), z € Qo.

In fact, using that u; € H' (1), uz € H'(Q2) and u;|s = uz|s, we obtain u € H*(£),
which implies u € Hg () together with u|r = 0. The equivalence of norms is obtained
from

2
min{1, B}|ull3 ) < Z/Q (uf + BIVu;[?) dz < max{1, 8}|ull 1 (q)-
g=17%%4

Next, we prove that W is Hilbert space and W C%, V.
It also is sufficient to prove that u € H?(Q)NHg () and ||(u1, u2)|w is equivalent
to [|ul| g2(q) when (u1,uz) € W, where

B ui(x), x €O,
ule) = {ug(x), z € Qo.

Obviously, W C V and u € H}(Q).
As uy|s = us|s and dyu1|s = Oy usals, the direct calculation shows

%0 %0 %0
/Quéxt(‘)a:] dv = /Ql “ 83:1-8331- dz+ ‘/92 42 83:1-8331- dz

= — aul%dx— au2%dm
N 8:61 8xj Qs 8xi 5‘xj
0?uy 9%ug
B ol 8%8% (,25(‘11' + Qo 8xi8xj ¢d$
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for ¢ € C§°(2) and 4,5 = 1,...,n, which means

0?u 9
83:1-8331- L (Q)
and
0?uy ()
Q
2u(z) | Bmoz; TV
21) Or:0z; )| 92
? J UQ((E) €Q
Z 2\ .

Therefore, u € H2(2) N HE ().

To prove the equivalence of ||(u1,u2)||w and |[u||g2(q), it is sufficient to check that
2
(2.2) Im >0V (ur,uz) € W, Z/ S| Aw; (2)]* de = mlul|32 g -

Using (2.1) and the estimate ||y|| g2(q) < M||f[|z2(q) for the solution y to the bound-
ary value problem

~Ay=feL*Q) inQ,
y=0 on I,

we have

2 . 2 2
) min{cf, 5}
> | duy@) do > min{e, )| Aulq > Tl

which implies (2.2). The proof of the lemma is completed. O

Next, we derive the second order operator differential equation from the sys-
tem (1.1).

Let (u1,u2) be the classical solution to the system (1.1). Then, multiplying (1.1),
and (1.1), by ¢1 and ¢2 with (¢1,¢2) € W, respectively, and integrating them over Q;
( = 1,2) to add the resulting equalities yields

2 JE—
(2.3) Z</QJ OF (ujb; — BAu;b;) do + /Q7 Alcs Au] I dx)

Jj=1

+ A(adiAuq) ¢1 dz = 0.

S~

931
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By (1.1);—(1.1), and supp(a) C €2, we have

2 2
(2.4) =S / 02 Mgy dr =Y / Votu, - Vg, da,
j=17%% j=17%%

2 2
Z/ A(C?Aujw_jdxzz:/ C?Auqubj dz,
j=1"%% j=1"7%%

A(adiAuy)éy dx z/ aAdyui Ay dx.

Ql Q1

Substituting (2.4) into (2.3) yields

2
(2.5) 3 / (0ujo) + BVOu; - V5;) de

j=1"%%

2
—1—2/ C?AujAd)jdx—i—/ alAdyui1 A¢y dz = 0.
Ao R o

By (2.5), (1.6) and (1.7), we have

(Cute, d) e v + (Aw, O) ey + (Bue, o)y = 0

for ¢ = (¢1,¢2) € W, which means the operator differential equation of the second
order

(26) Cutt + Au + But =0 in W~
Noticing that the operator C is an isomorphism from V onto V*, we rewrite (2.6) as
(27) Ut + C_l(.AU + But) =0 inV

for (u,us) € D(A) (see (1.9)).
Setting v = u; and using (1.8), the equation (2.7) is reduced to the system of first
order operator differential equations

(“t>:A(“> in W x V.
V¢ v

2.2. Existence and uniqueness of a mild solution. The main result of this
subsection is

Theorem 2.1. The operator A defined in (1.8) generates a Cp-semigroup of con-
tractions in H =W x V.
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Proof. According to the Lumer-Phillips theorem (see for example [19]) we only
have to show that A is m-dissipative.
Let (u,v) € D(A). Then by (1.8), C € Isom(V,V*) and (1.3), we have

(2.8) <A <2‘) , <Z) >H — (v, u)yy — (€7 (Au + Bv),v),,

= (v, u)y — (AU, V) e — (BY, V) s

where (-,-)  is the scalar product in the Hilbert space X.
By (1.4) and (1.6), we obtain

(2.9) Re (v, u)y, = Rez‘/ﬂ. C?Avj(x)Auj(x) dx

2
= RGZ/ ¢ Auj(x)Av; (z) dz = Re (Au, v) e gy
j=1"%%

(Bv, v)ye w :/ a(x)|Avy (x)]? dz > 0.

1

By (2.8) and (2.9), we get

et (0) ()=

which implies that A is dissipative.
So, to show that A is m-dissipative we find (u,v) € D(A) such that

(IH—A)<Z) (U+C?(:4;+Bv)>:<£> in WX V

for any (f,g) € W x V. It is sufficient to prove that there exists v € W such that

(2.10) Cv+Av+Bv=g inV"
for any g € V*. By (1.5)—(1.7) and (2.9),, we have

(2.11)  (Cw + Aw + Bw, W)y yr = (Cw, W)y + (AW, 0) e 3y + (Bw, w) e gy

= |[wlly + lwlify = ma|wlFy

for any w € W, where my > 0 is a positive constant independent of w. Using (2.11)
and the Lax-Milgram theorem, we have (2.10). The proof of the theorem is com-
pleted. ([
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A consequence of Theorem 2.1 is that, if we assume that (u®,v') € D(A), there
exists the unique solution to the system (1.1) which can be expressed by means of
a semigroup on H as

(2.12) (l) :et’-\(:ﬁ),

A is the Cy-semigroup of contractions generated by the operator —A, u =

(u1,u2), u® = (uf,ul) and u' = (ui,ul). Moreover, we have the regularity of the

where e~

solution

< u ) € C([0,50): D(A)) N CY((0, 00); H).

Ut
Besides, if (u®,u') € H, then the function (u,u;) given by (2.12) is the mild
solution of the system (1.1), (u,u)(t) € D(A) for allt > 0 and ( “ ) € C([0,00); H).
Ut

3. RESOLVENT ESTIMATE

3.1. Carleman estimate and construction of weight functions. In this
subsection, we give the Carleman estimate and construction of the weight functions,
which plays an important role in the proof of Theorem 1.1.

We first recall the local Carleman estimate at the interface described in [29] by Le
Rousseau-Robbiano.

In the neighborhood of a point (yo,y) of (0,1) x .S, we denote by x4 the variable
that is normal to the interface S and by z’ the remaining spatial variables, that is,
x = (2',24). In particular, y = (y/,0). The interface is now given by S = {z; 24 = 0}.

In a sufficiently small neighborhood V C R4t! of (yo,y), we employ normal
geodesic coordinates (with respect to the spatial variables ). For convenience, we
take the neighborhood V' of the form (yo — &,y0 +¢€) X Vi X (—¢,¢), where V,y is
a sufficiently small neighborhood of ’. We use the notations

R = {(z0,2); 4 >0}, R = {(20,2); 24 <0}, VI =VNRIH, V™ =VNREH,

We introduce the operator

o5

Aoy, D) = =02, = 02, + Fa (2, ), wa >0,
A(zo,z,D) :=

()]

Aa(wo,w, D) = =02, = 2, + Ra(w, %), 2a <0,

1

where
Rl(xafl)7 Td > 0)

R(z,{) = {Rg(x,g’), 24 <0,
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is a second order polynomial in £ with coefficients in R with the principal symbol
o) = { ri(z, &), xq>0, satisfying {r Wz, &)= ClE)? Yay>0VE e R,
ro(x,&'), xa<0, ro(x, &) > ClE'? Yag<0VE e R
Then we consider the transmission problem
A(zo,z,D)w=f Vag#0,
(3.1) w(zg, 2',07) = w(wg,2’,07) + 6,
dyw(zo,2',07) = d,w(xp,2’,07) + O,
R+

where 6, © are error terms and v is the unit outward normal vector of and

R4 on the interface S.

Let ¢ be a weight function and we define on both sides of S the conjugate operator
A, = h2e?/h Ae=#/"
with a small semi-classical parameter and the principal symbol

(.23 " g) N (§0 + i&CoSO)Q + (gn + iaﬁcn@)Q +r (J), fl + iaﬂc“p)a Tgq > 07
> (§o + ia:co@)Q + (&n + iaﬁcn@)z +ro(x, & +10.10), x4 <0.

Assumptions: we suppose that the weight function ¢ is in C>=(V), ¢|Rd+1 €
C’OO(V ), ¢l € C*>(V ) and such that

L. |v(xo,x)50|($0,$) >0inV.
2. For all 2y and z,

Oyp(xg,2',07) >0 and 9,p(xo,2’,07) >0, d,¢(xo,2’,0") — dyp(xp,2’,07) > 1.
3. The sub-ellipticity condition
Y (w0, 7,£0,€) € V7 x R"™ ay, (20,7, €0, €) = 0 = {Re(ay, ), Im(ag, )} (x,£) > 0
Then, we have

Proposition 3.1 ([29], Theorem 2.1). Let K be a compact subset of V and ¢
a weight function satisfying the above assumptions. Then there exist positive con-
stants hg > 0 and C > 0 such that

h||ewhw|\%2(1<) + h3||ewhv(zo,z)w”%2(x) + h||e¢/hw||2L2(Ks)
+ B3/ (g ) | T2 i) + PPN D2 )
< C(h e fII72x) + Plle? 00172 1
+ h3|\ewhaxo,x/9||2L2(Ks) + h3||ew/h@||2L2(K5))
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for all h € (0,ho] and w satislying the system (3.1), where w| gw € C>®(K™),
wlogr € C®(K™) and Kg = KN S. i

Next, we give the Carleman estimate needed for the resolvent estimate. To this
end, we consider two open and disjoint domains @; and Qs in which we define the
second order elliptic semi-classical operators P; = —h?A—a1h and P, = —h2A—ash,
respectively, with the principal symbol p(z, &) = ||, where h > 0 is a very small
semi-classical parameter and a4, s are two positive constants, and we suppose that

001 =yU~vy, 003 =~Uvy and N7, =7,N75 = 0.

Let @1 € C®(0;) and py € C°°(03) be two real valued functions. We define
two adjoint operators P,, = e?1/hpree1/h and P, = e?2/h Pye®2/M of the principal
symbols p,, (z,€) = p(z,{ +iV1) and py, (2, §) = p(x, & +1Ve2), respectively.

By denoting v the unit outward normal vector to O; and Oz on v Uy, and 7z,
respectively, we assume that the weight functions ¢; and - satisfy Hormander’s
condition

(1) |[Ve1|(z) > 0 for all © € O and |Vys|(z) > 0 for all € Os.
(2) dv1ly, # 0 and Jyp2ly, < 0.
3) 1ly = paly-
(4) duprly <0, Bypa|y < 0 and (Bup1)?ly — (uip2)®|y > 0.
(5) the sub-ellipticity conditions in O; and O,
V(x,f) € 51 x R™; ptp1(xa£) =0= {Re(ptm)vlm(pw)}(xvf) >0,

V(2,€) € 02 x R"; py,(2,6) = 0= {Re(py, ), Im(py, ) } (2, £) > 0,

respectively. Then, we consider the transmission boundary value problem

O52

—Aw1 — h—;wl = f1 in Ol,
a3
—A'LUQ - ﬁ'(,UQ = fg in OQ,
(3.2)
w1 = Wa on v,
d,wy = 0,ws on 7,
we =0 on 7z,

to which the Carleman estimate given by the following proposition belongs.
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Proposition 3.2. Under the above assumptions on the weight functions i
and 9, there exist positive constants hg > 0 and C' > 0 such that

2
(33) Y (hlle?/Mw;l 720, + hPlle? " Vw;|Fa0,))
j=1

2
+ 3 (hlle? /M By + W31 "Ny 3y + B 0?0052 )

—

J
2
< (M 0, + MO By + 0 0,1y

J=1

for all w; € C*°(0Q;) satistying the system (3.2) and h € (0, ho] (j = 1,2).

Proof. Setting
vi(zo, ) = X%/ My (z), i=1,2,

where zg € (0,1) is an additional variable, the system (3.2) is changed into the

system
—Avy — Ozyv1 = f7° in O7° = 01 x (0,1),
—Avg — Opyv2 = f3° in O3° = Oz x (0,1),
(3.4) U] = U on y* = x (0, 1),
0,v1 = O, v9 on y* = x (0, 1),
vy =0 on 75° =2 x (0,1),

where f'0 = e®i®/hf; (7 =1,2).
We apply Proposition 3.1 to the system (3.4) by taking into account [27], Propo-
sition 1 and [26], Proposition 2. Then we get

(3.5)

xQ - TQ
(hHe‘Pj /hijig(o;no) +h3”e‘»@j /hv(x,xo)"’j|‘i2(oj0))
7 ;

2
j=

2
*0 /h *0 /h
+ (Rl M0y gm0y + B 1075V )05 [ 0
j=1

z0
+ B3)[e%5 /"0, 05|72 (yx0))

2
370 T
< C(Z h4||e<pj /hf;co|‘%2(o;0) 4 h”ecplO/hle%z(ﬁo)

J=1

+ h3|ewfo/hayv1|i2(ﬁo))
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with the weight functions ¢}° = ¢; — a;xo, where 77 =1 x (0, 1), from which (3.3)
follows immediately. Indeed, one first chooses the partition of unity (¢;) on some
neighborhood of 00T and 003° such that any element of this partition ¢ belongs
to one of the following cases:

(i) supp(¢) N~7° # 0, supp(¢) Nv5° = 0 and supp(¢) Ny™ =
(ii) supp(¢) N5 # 0, supp(¢) N~7° = 0 and supp(¢) N 'y””o
(iil) supp(¢) Ny*0 #£ (), supp(¢) N~7° = O and supp(¢) N

Next, if supp(¢) is chosen sufficiently small, one defines ( -v. Working in local

0
0.
0

coordinates, we may apply to function ¢ - v

> in case (i) [27], Proposition 1 where especially we need the assumption 9, ¢1|,, # 0,

> in case (ii) [26], Proposition 2 since 0, 2|, < 0,

> in case (iii), Proposition 3.1 where assumptions (3) and (4) are needed here, and,
summing up these inequalities, we directly get the estimate (3.5).

The proof of the proposition is completed. O

Last, we recall a way to find two phases that satisfy Hérmander’s condition except
for a finite number of balls where one of them does not satisfy this condition while
the other does and is strictly greater.

Proposition 3.3 ([23], Proposition 4.1). Let O be a bounded open subset with
the boundary v1 U e, where 771 N 75 = (. Then there exist two real functions
1,02 € C®(0O) continuous on O satisfying for k = 1,2 that 9,41], < 0 and
O0,2|y < 0, and having only a finite number degenerate critical points such that
when Vi, = 0 then Vi1 # 0 and Yiy1 > 1, where we assume that k+ 1 = 2 if
k=landk+1=1ifk=2.

Remark 3.1 ([23], Remark 4.2). (1) A consequence of Proposition 3.3 is that
for kK = 1,2 we can find a finite number of points x; where j =1,..., N, and e > 0
such that B(zyj,2¢) C O and B(z1j,,2¢) N B(x;,,2¢) = 0, for all k = 1,2 and
Jjk=1,..., N, and in B(z;,2¢) we have g1 > ¢ forall j =1,..., Ny.

(2) For all A > 0 large enough the weight functions ¢ = e*¥* satisfy Hérmander’s

Ny, c
condition in Uy = ON (‘U1B(xkj75)) .
=

Now we construct the weight functions needed in the proof of our lemma (see
Lemma 3.1). Setting Q; = Q4 \ B,., where B, is an open ball in ; with radius r > 0
such that B, C 1, and applying Proposition 3.2 and Remark 3.1, by the same argu-
ments as in [23], we can find four weight functions ¢ 1, 1.2, p2,1, and @ o2 satisfying

~ N1 ) c ~ Niz2 c
Hormander’s condition in U171 = Ql n ( U B(J?jn, 6)) s U172 = Ql n ( U BI ($1Q,E)> s
j=1 j=1
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N2y . c N2 . c
Uzp =8N ( U B(z3,, 5)) and Uz z = Q2N ( U B(x2,, 5)) , respectively, moreover
j=1 j=1

V1, < P1,5+1 1IN B(x{k,Qa) for all j = 1,..., N1 and @2 < @241 in B(xékﬂe)
for all j =1,..., Nog. Furthermore, for all £ = 1,2 we have

(Ovo1k)ls <0, (Ovpar)ls <0, and (Jdypar)lr <O.

Also, we can suppose that 1 x|s = p2kls and (0,p1.k)%|s — (Ovpa.k)?|s > 0. For
more details of that construction of the weight functions we refer the reader to [12]
and [21].

3.2. Resolvent estimate. This subsection is devoted to the proof of the resolvent
estimate (1.10). We suppose that the resolvent estimate (1.10) is false. Then by the
continuity of the resolvent and the resonance theorem there exist K,,, > 0, u,, € R,
and two sequences (u™,v™) € D(A) and (f™,¢™) € H, m = 1,2,... such that

(3.6) lm| =00,  Kpm =00, [[(u™0™)[l% =1

and

(3.7) efmliml (A — iy, I) (um > = <fm> — 0 inH.
v g

Using (1.8), X =W x V and C € Isom(V, V*), we obtain from (3.7)

(38) eK7n|Hm‘(rUm — llj/mum) = fm — 0 in VV,
_eKm\uml(_Aum + Bo™ + i, Co™) = G™ — 0 in V¥,

where G™ = Cg™ € V*.
Noticing that

: u™ u™ m : m m
<<A—wmm>( m>( m)> = [ alof Pz = (™ Iy + 10717,
v v H N

and by (3.6) and (3.7), we have
(3.9)

Re <eK’“|”m|(A — it I3y) (um> ) (um >> = —efSmlml / alAvT > da — 0.
v v H 01

Using (3.8),, we obtain from (3.9)
(3.10) |Mm|2eKm\um|/2/ alAul"2 dz — 0.
(951
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By (3.9), (3.10) and supp(a) = @, we find that

(3.11) eKmﬂmW(/ |Au’1”|2dx+/ |Av{”|2dx> — 0.
w w

Noticing that if we set

u(z) = {ul(x), x € Q,

us(x), x € Qo,

then ||(u1,u2)||w is equivalent to |lu||g2(q), we get from (3.8),
(3.12) fomlml(ym iy, i) = f* =0 in H2(Qy),

el il (uf —ipul) = fi* — 0 in H?(Q).
Also, by using (1.6) and (1.7), we obtain from (3.8),

2
(3.13) eK”"“’”l(Z / ;AU Ag; da + /
j=17%

(951

aAvT* Agy dx)

2
+ iumeK""‘“”‘| Z/Q (vjmcﬁ_J + BVl V—cﬁ]) dz
=1/
= —(G",¢)y-y — 0 forany ¢ € W.

By (3.12), and (3.6), we have

1 —
(3.14) WHW)UT)”%&(QI) = O(1) for any real function ¢ € C°(£2y).

Taking ¢ = p, o™ in (3.13) yields

eKmluml

(3.15) (/ AAUTA(YoT) de +/ aAv A(pol) dx>

fim
1 joKmlan /(|v;”|2w + BV - V(T)) dz - 0,

where 1 € C*(Q) is any real function satisfying supp(v’) C w. By (3.11), (3.14),
and (3.15), we have

(3.16) eKWmV‘*/ 2y dz — 0.
If we set By, to be a ball with radius » > 0 such that By, C w, then it follows that

eK’“l”mV‘l/ |fu§”|2 dz — 0,
By,
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which implies together with (3.12),

(3.17) eK"mm\/z;/ 2 dz — 0,
By,

Let us consider now the transmission problem

vy —ipuy = f1, x € Qy,
vo — ipug = fa, x € Qo,
—A(2Auy + aAvy) —ip(vy — BAv1) = g1 — BAg1, x € Q,
(3.18) —A(BAuz) — ip(ve — BAv) = ga — BAga, x € o,
Uy = uz, Oyu1 = dyua, T €S,
AAuy = 3Aus, 8, (3 Aur) = 0, (c3Aus), x€Ss,
ug =0, Aug =0, zel,

where (f1, f2) € W and (g1,92) € W. Then the solution (u,us,v1,v2) of (3.18)
satisfies

vy = ipuy + f1, x € Qy,
vg = ipus + fo, x € Qo,
(12 — p?BA — AEAuy — A(aAvy — Bgr) = g1 +ipff, =€,
(3.19) (u? = W2BA = A )uz + fAgs = go +ipfs, z € O,
uy = uz, Oyu = dyus, T €S,
AAuy = 3Auz, 9, (c3Auy) = d,(c3Aus), x €S,
up =0, Aug =0, xz €T,

where f; = fi — BAfr, k=1,2.
Noticing that

for k = 1,2, where
b (1) = il (/282 + 4ct + 11lB)
by (1) = |l (/11282 + e — [18),
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we can rewrite (3.19) as

vy = ipuy + f1, x €y,
vg = ipug + fo, x € Qy,
HONE by (1)
( A 2—0%) (clAul ——p o w + a(x)Av, — Bg1>
. b
=& =g +ipff — 12((:/;) (a(x)Avy — Bg1), =€,
1
(3.20) o WY o b))
(-8 500) (a0
. b
= Oy :=go +iufs + 22(/2)/8@, x € Qg,
€3
up =uz, Oyui = Oyus, T €S,
AAuy = 3Auy, 0, (2 Aur) = 0, (c3Aus), x €S,
uz =0, Aug =0, rel.
Setting
-
(3.21) wy = cFAuy — 12(M) uy + a(x)Avi — Bg1,
-
wy = AUy — #M — Bg2,

and using (3.20), g1|ls = g2|s and (0,g1)|ls = (O,92)|s, it is easy to show that w,
and wo satisfy the simple transmission problem

b+
—Awy — 12(5)101 =&y, x€Q,
51
b ~
(3.22) —Aw; — 12(5) wy =Py, x €Dy,
5
wi; = ws, auwl :auw27 QCES,
wy =0, zel,
where
~ Wa
(3.23) By = @+ (0 (1) — b (1)) 52
2

The main ingredient of the resolvent estimate is the following lemma which is
essentially a consequence of the Carleman estimate.
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Lemma 3.1. There exist constants C > 0 and rq > 0 such that for any solution
(u,v) € D(A) of the system (3.18) the estimate

(3.24) HAU1H%2(91) + HAUQH%?(QQ) + ”UlH%?(Ql) + HU2||2L2(QZ)

< Ce“M|Af 720, + CeClr (|Af2|%2(92) + 91l 20, + 921720,

+/ a|Av1|2dx+/ |u1|2dx>
Q1 By,

T

holds for all 0 < r < rg and p € R large enough, where B, is an open ball with
radius r > 0 such that By, C w.

Proof. We introduce the cut-off function x € C*°(€) by setting

” 1 in BS,
€Tr) =
X 0 in Bo,.

Next, put wy = xw;. Then by (3.22),, one sees that

Jr
_A,[El _ bl (M)

2 17}1 = EI;I = X(I)l - [A7X]w17
1

(3.25)
where [A, x]f = A(xf) — xXAf.

Now keeping the same notations as in the previous subsection, let ¢1 1, 1.2, ¥2.1,
and ¢y 2 be four weight functions that satisfy the conclusion of Subsection 3.1.

N11 . c
Let x1,1, X1,2; X2,1 and x2 2 be four cut-off functions equal to 1 in ( U B(z,, 25)) ,
j=1

Nia c N2y . c Nao . c
(U BJ (x12,26)) , ( B(x%l,%)) and (U B($%2,2€)) , respectively, and sup-
=t N1 . =t c Niz c]=1 N2y . c Naa . c
ported in (UB(:C{UE)), (UBJ(xlg,e)) , (UB(m§1,5)> and (UB(:C;Q,E)),
j=1 J=1 Jj=1 J=1
respectively (in order to eliminate the critical point of the weight functions ¢1 1,

®1,2, P2,1, and 2 2).
Setting

w11 = X1,1W1, W12 = X1,2W1, W21 = X2,1W2, and w22 = X2,2W2,

and using (3.25), we obtain from (3.22)

b-‘r
—Awy i — 12(5) wy k= Vg, x €y,
C1
b-‘r
(3.26) —Awsyp — 12(5) wap =Vor, €,
53
Wik =Wk, OyWik=0,Wak, =€,
wa g =0, zel
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for k = 1,2, where

(3.27) Uy g = x16®P1 — [A, x1,4)@0,
' Vo = X2,k&>2 —[A, x2,5]w2.
Taking
1 .
h:f’ O;=U;x (=12), v=5,
by (1)

Y2 = I' and Y1 = (8U1,k \ S) n (8U2,k \ (SU F)),
and applying Proposition 3.2 to the system (3.26), we have

(3:28) Al Mwy k]| T2, 4y + R Vw20, 4
+ e Mg g (122w, ) + B2 Vw1120, o)

< Ch4(||e<p1’k/h‘l’1,k||2L2(U1,,€) + ||ekp2”“/h‘1’2,k||%z(U21k))

for k = 1,2, where we used that

W1 k| = Waklny = Opwi |y, = uwakly, = 0.

We estimate the right-hand side in (3.28) by using (3.27), (3.23), and (3.25). Then
we get
(3.29) h||e<p1’k/hw1,k||2L2(Ul,k) + h3||e<p1'k/hvw1,k||2L2(U1,k)

+ hlle?* Mg kG2, ) + B2 eP2H M Vwz | e, )

< OB ([0 G2, ) + 6924 " @2 F2(0 o))

+ OR*(le? A, x1al@n 72w, )

+ |le#2 /M A, X2.klwa |22, )

+ Chle? A xJwi |, ) + Ch* (03 (1)

= bf () [l Mz k|72, -

By the definition bj' (1) (1 =1,2), we find that

Alpl(cs — cf)
3.30 bl (1) — b (n) = <
(3.30) £ =010 = e

for any p € R large enough. Also, in the same lines as in [23], we obtain the following
Nijg )

fact: using the properties ©11 < ¥1,0() in (U B(lek,Ze)) and @2k < P2,5(k) 0
j=1
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N. .
( ijB(x;k, 25)), where o(k) =2 if k =1 and o(k) = 1 if k = 2, we can absorb the
j=1

terms [A, x1,5]w1 and [A, x2k]ws at the right-hand side in (3.29) into the left-hand
side for small h > 0. By using the above fact and (3.30), we obtain from (3.29) that

(3.31) /~ h(ez‘“*l/h+e2“"1*2/h)|ﬂ71|2dx+/ h(e2P21/h 4 e202.2/h)| |2 da
Q Q2

< Ch4</ (eQ‘Plvl/h+e2‘/’1v2/h)|<1>1|2dx+/
Q

2

Hont / (Pra/h g 22 /M| [A, x]un|® da
Q

Noticing that

b (1)
@l < lorl + (5] + BIARD + LU (w4 Bloa)).
1

by (1)
2] < lgal + (1ol + B1AL]) + 212 g
2
b+
J|r'u| — 0 and i('u) — 1 as|u| = oo,
by (k) by (w)
and using
1 ~ ~
h = ;o =M UBy, w;=xw; (i=1,2)
bl (1)
and

@ 1 in BS,,
€Tr) =
X 0 in Bgr,

we obtain from (3.31)

(3'32) h(e2W1,1/h _|_62<P1,2/h)|w1|2 dz + h(e2tp1,1/h +e2@1’2/h)|wQ|2 dz
Ql QZ

2
/Q (2710 222 M) (g2 4 |f5 2 + 1A S17) da

1 J

<C

J

+Ch/ (62¢1,1/h+62¢1,2/h)|wl|2

Bar

+C [ (e¥e2r/h g e2e22/M) g Aw, |2 da
931

ron / (ePera/ 4 212/ A, X | da
Q
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Inserting the maximum of o1 1, 2.1, ¢1,2, and @3 2 at the right-hand side of (3.32)
and their minimum at the left-hand side, we obtain

(3.33) /|w1|2dm+/ o 2 dr
Ql QQ

2
<3 [ o + 157 +IALR) ds
=179

+C’ec/h< |aAvl|2dx—|—/ |wl|2dﬂv—|—/~ |[A7X]w1|2dx).
Q1

Q1 2r

We estimate now the two last terms on the right-hand side of (3.33). Let X
be a cut-off function equal to 1 in a neighborhood of Bjs, and supported in By,.
Using (3.22),, we have

bY (1)
2¢2

(=14 A)(xwi) = [A, X]w1 — Xw1 — Xwi — XP1

and due to elliptic estimates (see [36]), we get

(3:34) Nwill3p g,y < CU=1+ D) (xw)lF-1(5,,) + lwill72(s,,)

<
< C(I12172(0,) + A+ b (W) [wr ]2 5,,)
< Ol + b (WI)llgall, + [P (A 1G, + 1AA]G,)]

" C(<1 167 0P, + 167 G0 [ a|Av1|2dx).

(951

Using that supp([A, x]) C Bs,, we deduce

(335) /; |’LU1|2 d,]’,‘“‘/ﬁ |[A,X]’u}1|2da}‘ < Cle”%‘Il(Bgr)
2r 1

Also, using (3.21), (3.19), |b; (¢)] < C and @ > 0 in By,, we have
(3.36)

lonlZan,, < c(||Au1||i2<B4,.> + [ ot dr + 91 o, + ||ul||%2<34,,>)
1
< c(|u|-1||Af1||%2<B4,.> S0 [ e ds
T lulBas, + ||u1||i2<34r>).
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By using (3.33)—(3.36) and |b] (1)| < C|u|?, we obtain

(3.37) [willZ2(0,) + w2l 720, < Cecl”l(HAf1||2L2(Ql) + 1A f2ll72(0,))

T el <|gl||%z<gl> o e

+/ a|Av1|2dx+/ |u1|2dx).
Q1 By,

2

On the other hand, we get by (3.21)

b, 12 b2 (1)
2 1 2 2
(3.38) HclAul — Tul‘ + HCQAUQ - 5 uz‘ 12()

L2(Qy)

c(|w1||i2<m> + el + 913 + o2l + | a|Av1|2dx).
1

Noticing that due to the transmission conditions (3.20); ;,

/&,ulul ds = —/8,,u2quS,
s s

/ Aujujdx:—/ |Vuj|2dx+/8yujujd5, ji=1,2
Q s

3 3

we have

—c2by (u )/Q Auqug dx—cgbz_(u)/Q Augug dz
1 2

2
= 300 [ (Vs e+ (6050 = 7 ) [ Qv as
j:l J

-, ciby (p) — by (1) ( Ay de — | Augus dx)
2 Q Q,
which implies
(3.39) HC%AM — bl—z(u)ul‘ ;(91) + HC%AUQ - b2—2(l1,)u2‘ ;(92)
> cil|Au|[faq,) + callAuz||72 g,
4 o (wl® ( ) |b2( ) lusll3 0,

luillzz(0y + ———

1b1 (1) = c3by (1) (/ Auju do —/ Augus dx>
2 [oN) Q2

il 2 5 2
§||AU1HLZ(91) + EHAUQHLz(Qg)'

WV
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Also, using (3.20); and (3.20),, we get

(3.40) lvilZe o, < Mallieq,) + 1Pl q,),
lv2l172() < If2llT2(0n) + 1P luzllZzq,)-
By (3.37)—(3.40), we obtain (3.24). The proof of Lemma 3.1 is completed. O

We continue the proof of the resolvent estimate (1.10). Applying the inequal-
ity (3.24) to the system (3.12)—(3.13), we arrive at

(3:41) AU Z2(0yy + 1AUS 1720y + 10717 2¢00y) + 1105|720,

< CeClimle=2nbin (| f 3, +|lg™ 3)
+ CeCltmlg=Komlpim /4 (/ alAvy |? dz +/ Jua |? dx) efmliml/a,
Ql B4,,.

where f™ = (f{", f3") € W and g™ = (g1", 95") € V.

By (3.8), (3.10), and (3.17), the right-hand side of (3.41) tends to zero as m — oo
which contradicts (3.6). The proof of the resolvent estimate (1.10) is completed.

Proof of Theorem 1.2. It just remains to show that A has no purely imaginary
eigenvalue. It is easy to check that 0 € o(A), where g(A) stands for the resolvent set
of A.

Let p # 0 be a real number and assume that for some (u,v) € D(A),

(3.42) A<Z>—iu<5).

Then we show that u = v = 0.
Noticing that

Re<A (:) , <Z>>WW - _/91 o(2)| Avy ()2 de

and using (3.42), we obtain [, a(x)|Avi(z)|* dz = 0, which means that v; = 0 on
supp(a) by the similar arguments as in (3.9)—(3.16).
Using the definition of the operator A, (3.42) can be recast as

v = ipug, T € Q,
vo = i, z € o,
—A(EAuy + aAvy) —ip(vy — BAv) =0, €y,
(3.43) —A(c3Aug) — ip(vy — BAw,) = 0, x € Qo,
uy = ug, Oyu; = Oyus, x €S,
AAuy = 3Aug,  0,(EAuy) = 9, (c3Aug), z €S,
ug =0, Aup =0, z eTl.
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Since v1 = 0 on supp(a), (3.43), yields u; = 0 on supp(a).
In the same lines as in (3.20), we can rewrite (3.43), combined with (3.43), as

bi (), o . _
AZ + 5.2 Z=0 inQ and Z =0 onsupp(a),

51

where

Z =3 Auy — blT('u)u

Then by Calderén’s theorem for elliptic operators (see [28], Theorem 4.2), we find
that Z = 0. This means that

b
C%Aul — %ul =0,

which implies for the same argument as previously that u; = 0 in Q5.
Equations (3.43), and (3.43), lead to

(3.44) c2A?uy — PP (ug — fAug) =0, x € Qo

where the transmission conditions lead to

uz = Opug = Aug = 9,(Auy) =0, z €S,
us =0, Aug =0, T € 00),.

Following these boundary conditions, we can extend wuy by zero into the whole 2
and (3.44) remains valid on all . Then by using the same arguments as for wu;
above one can also show that ug = 0 in Q. Using (3.43),, we get v = 0 in Q.
Therefore, A has no purely imaginary eigenvalue.
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