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Abstract. In this paper, we propose a smoothing Levenberg-Marquardt method for the
symmetric cone complementarity problem. Based on a smoothing function, we turn this
problem into a system of nonlinear equations and then solve the equations by the method
proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local
error bound, the new method is proved to be globally convergent and locally superlin-
early/quadratically convergent. Numerical experiments are also employed to show that the
method is stable and efficient.
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1. Introduction

We consider the symmetric cone complementarity problem (SCCP): find x ∈ V
such that

(1.1) x ∈ K, F (x) ∈ K, 〈x, F (x)〉 = 0,

where V is an n-dimensional vector space with inner product 〈·, ·〉, K ⊂ V is a sym-
metric cone and F : V → V is a continuously differentiable transformation. If there
exists a bilinear mapping (x, y) → x ◦ y : V × V → V such that for any x, y, z ∈ V ,

x ◦ y = y ◦ x; 〈x ◦ y, z〉 = 〈x, y ◦ z〉 and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y),

where x2 = x ◦ x, then (V , ◦, 〈·, ·〉) is a Euclidean Jordan algebra.

The research has been supported by the National Natural Science Foundation of China
(Grant No. 61877046).
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The SCCP, as an important optimization problem, includes the nonlinear comple-

mentarity problem (NCP) on Rn [10], second-order cone complementarity problem

(SOCCP) [4] and semi-definite complementarity problem (SDCP) [21] as special

cases and is closely associated with uncertain optimization, combination optimiza-

tion, pattern recognition and equilibrium theory. In addition, it arises from various

applications in economics, management science, transportation and communication,

see [1], [3], [8], [9], [11], [12]. Many scholars have studied the SCCP and proposed

many algorithms, such as interior point methods [13], [15], [17] and smooth Newton

smoothing methods [14], [20].

The basic idea of the smoothing Newton method is to transform the SCCP into

a set of equivalent equations by using a smoothing function. Consider the following

smoothing CHKS function

(1.2) ϕ(ε, x, y) = x+ y −
√

(x− y)2 + 2εe, ε > 0, x ∈ V , y ∈ V ,

and set

(1.3) H(z) = H(ε, x, y) =





ε

y − F (x)

ϕ(ε, x, y)



 .

Then H(ε, x, y) = 0 if and only if ε = 0 and (x, y) is the solution to the SCCP (1.1).

For solving the system of equations G(x) = 0, the iteration of the Newton

method is

xk+1 = xk + αkdk,

where dk satisfies G
′(xk)dk = G(xk) and G′(xk) is the Jacobian matrix of G(x)

at xk. The Newton method possesses quadratic convergence property if the Jaco-

bian matrix is Lipschitz continuous and nonsingular at the solution. However, the

Newton method may not be well-defined when G′(x) is singular or nearly singular.

To overcome this difficulty, the Levenberg-Marquardt (LM) method computes dk by

(1.4) [G′(xk)⊤G′(xk) + µkI]dk = −G′(xk)⊤G(xk),

where µk is a positive parameter. When the Jacobian matrix G′(xk) is singular or

nearly singular, G′(xk)⊤G′(xk)+µkI can be made positive definite by appropriately

selecting the parameter µk, so that (1.4) has a unique solution, which is one of the

advantages of LM methods.

Facchinei and Kanzow [6] proposed an inexact LM method for the large-scale non-

linear complementarity problem and proved that the LM method possesses global

and local superlinear/quadratic convergence based on the assumptions of strict com-

plementarity and uniform nonsingularity. Yamashita and Fukushima [18] introduced

a new update rule for µk and proposed an LM method for solving a system of non-
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linear equations. This work is of great significance. The LM method is shown to

be locally quadratically convergent under a local error bound assumption which is

weaker than the nonsingularity condition. The norm ‖G(x)‖ is said to provide a local
error bound on a neighborhood N of x∗ ∈ X∗ if there exists a positive constant c

such that

(1.5) dist(x,X∗) 6 c‖G(x)‖ ∀x ∈ N,

where X∗ is the solution set of G(x) = 0. Note, that if G′(x) is nonsingular at x∗,

then x∗ is an isolated solution. Thus, there exists a constant β > 0 such that

‖G(x)‖ = ‖G(x) −G(x∗)‖ > β‖x− x∗‖ = β · dist(x,X∗).

So, ‖G(x)‖ provides a local error bound by letting c = 1/β, see [18]. The converse

is not necessarily true. For example, let G(x) : R
2 → R

2 be defined by

G(x) = (ex1+x2 − 1, (x1 + x2)
2)⊤.

The solution set is X∗ = {x ∈ R
2 | x1 + x2 = 0} and we have

dist(x,X∗) =

√
2

2
|x1 + x2|.

Then, (1.5) holds for any c ∈ (1,∞) when N is chosen as

N =
{

x ∈ R
2 | |x1 + x2| 6

√
2

2

}

.

However, G′(x) is singular at any x∗ ∈ X∗. Therefore, the condition that ‖G(x)‖
provides a local error bound in a neighborhood of x∗ is weaker than the condition

that G′(x) is nonsingular.

Zhang [19] utilized a new update rule µk = ‖G(xk)‖δ, δ ∈ (0, 2], introduced by

Dan [5] and proposed a smoothing LM method for the NCP. Because of the non-

negativity of the smoothing parameter, they solved a constraint minimization prob-

lem instead of a linear system of equations to obtain the search direction. The local

convergence of the method is also analyzed based on the local error bound condition.

Motivated by the research above, we propose a smoothing LM method for the

SCCP. In order to guarantee the non-negativity of the smoothing parameter ε, a con-

straint condition is added when the line search is carried out. The proposed method

is shown to be globally convergent and locally superlinearly/quadratically conver-

gent under the condition of Lipschitz continuity of the Jacobian matrix and local

error bound.
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This paper is organized as follows. Some basic definitions and results are illustrated

briefly in Section 2. Section 3 gives an LM algorithm for the SCCP and discusses

its feasibility and global convergence. The local convergence of the proposed LM

algorithm is analyzed is Section 4. Some numerical experimental results which show

the effectiveness of the proposed method are reported in Section 5. Some conclusions

are made in the last section.

2. Preliminaries

In this section, we review some basic concepts and results on Euclidean Jordan

algebra. For a deeper discussion, the reader can be referred to [7].

Assume that V has a unit element, that is, there exists an element e ∈ V such that
x ◦ e = x for any x ∈ V . We define the degree of x as the minimal positive integer
m(x) such that {e, x, x2, . . . , xm(x)} is linearly dependent and the rank of V is defined
by rank(V) = max{m(x) : x ∈ V}. An element x ∈ V is an idempotent if x2 = x and

it is called a primitive idempotent if it is nonzero and cannot be written as a sum of

two nonzero idempotents. A finite set of primitive idempotents {e1, e2, . . . , er} in V
is a Jordan frame if ei ◦ ej = 0 for all i 6= j and

r
∑

i=1

ei = e.

The following theorem is the famous spectral decomposition theorem of [7].

Theorem 2.1. Suppose that V is a Euclidean Jordan algebra with rank r,

then for any x ∈ V , there exists a Jordan frame {e1, e2, . . . , er} and real numbers
λ1(x), λ2(x), . . . , λr(x) such that

x = λ1(x)e1 + λ2(x)e2 + . . .+ λr(x)er.

The numbers λi(x) (i = 1, 2, . . . , r) are the eigenvalues of x which are uniquely

determined by x. We write x ∈ K (x ∈ intK) for x > 0 (x > 0). The inequalities

x > y and x > y mean that x − y > 0 and x− y > 0, respectively. Define the trace

and determinant of x by tr(x) =
r
∑

i=1

λi(x) and det(x) =
r
∏

i=1

λi(x), respectively. The

inner product 〈·, ·〉 is 〈x, y〉 = tr(x ◦ y) and the norm induced by 〈·, ·〉 is defined by

‖x‖ =
√

〈x, x〉 =
√

tr(x2) =

√

√

√

√

r
∑

i=1

λ2
i (x).

Let f(·) : R → R be a real-valued function. Then we can define a vector-valued

function F (·) : V → V associated with the Euclidean Jordan algebra by

F (x) = f(λ1(x))e1 + f(λ2(x))e2 + . . .+ f(λr(x))er ,
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where x ∈ V has the spectral decomposition x =
r
∑

i=1

λi(x)ei. When f(·) is taken as
t+ = max{0, t} and t− = min{0, t} for t ∈ R, we have

x+ =

r
∑

i=1

λi(x)+ei and x− =

r
∑

i=1

λi(x)−ei.

Moreover, if x > 0, then λi(x) > 0, i = 1, 2, . . . , r. When x > 0, we can define the

square root of x by
√
x =

r
∑

i=1

√

λi(x)ei.

3. The LM algorithm and its global convergence

In this section, we propose a smoothing LMmethod for the SCCP (1.1) and discuss

its global convergence. Let H(z) be defined by (1.3) and

Ψ(z) =
1

2
‖H(z)‖2.

Upon Theorem 3.1 of [16], we have the following lemma which shows the semi-

smoothness of H(z).

Lemma 3.1. Let ϕ(ε, x, y) and H(z) be defined by (1.2) and (1.3), respectively.

Then H(z) is semi-smooth on any z ∈ R× V × V .

According to Lemma 3.1, H(z) is Lipschitz continuous on R+ × V × V , i.e., there
exists L1 > 0 such that

(3.1) ‖H(z)−H(w)‖ 6 L1‖z − w‖ ∀ z, w ∈ R+ × V × V .

Now we describe the LM method for the SCCP.

Algorithm 1 (A smoothing LM method).

Initial step. Choose ε > 0, δ ∈ (0, 2], ̺ ∈ (0, 1), and σ ∈ (0, 1). Let z0 =

(ε0, x
0, y0) ∈ R+ × V × V be an arbitrary point and µ0 = ‖H(z0)‖δ. Set k = 0 and

go to Step 1.

Step 1. If ‖H(zk)‖ 6 ε, stop. Otherwise, go to Step 2.

Step 2. Solve the following system of equations to obtain∆zk = (∆εk,∆xk,∆yk):

(3.2) [H ′(zk)⊤H ′(zk) + µkI]∆zk = −H ′(zk)⊤H(zk).
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Step 3. Find the smallest positive integer mk with αk = ̺mk such that

(3.3) Ψ(zk + αk∆zk) 6 Ψ(zk)− σαkµk‖∆zk‖2

and

(3.4) |αk∆εk| < εk.

Step 4. Let zk+1 = zk + αk∆zk, µk+1 = ‖H(zk+1)‖δ. Set k = k + 1 and go to

Step 1.

R em a r k.

(1) It is easy to see that H ′(zk)⊤H ′(zk) + µkI is symmetric positive definite, thus

the system of equations (3.2) has a unique solution∆zk. Thus Step 2 is feasible.

(2) By (3.2) and (3.3), εk+1 = εk + αk∆εk which does not guarantee the non-

negativity of {εk}. So (3.4) is essential.
(3) Upon (3.3), we obtain that {Ψ(zk)} is decreasing monotonically, which implies
that {‖H(zk)‖} is bounded, i.e., there exists C > 0 such that

(3.5) ‖H(zk)‖ 6 C ∀ k > 0.

Theorem 3.2. Algorithm 1 is well-defined.

P r o o f. From the above discussion, the system of linear equations (3.2) in Step 2

is solvable. So it suffices to show that Step 3 is feasible. From the fact that ∆zk is

the optimal solution to the unconstrained minimization problem

(3.6) min θ(∆z) =
1

2
‖H ′(zk)∆z +H(zk)‖2 + 1

2
µk‖∆z‖2,

it follows that

θ′(∆zk)⊤(∆z −∆zk) > 0 ∀∆z ∈ R× V × V .

Let ∆z = (0, 0, 0) ∈ R× V × V . We get that

{H ′(zk)⊤[H ′(zk)∆zk +H(zk)] + µk∆zk}⊤∆zk 6 0.

If ∆zk 6= 0, then

H(zk)⊤H ′(zk)∆zk 6 −‖H ′(zk)∆zk‖2 − µk‖∆zk‖2.
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Hence,

Ψ(zk + α∆zk)−Ψ(zk) = α ·Ψ′(zk)∆zk + o(α)

= α ·H(zk)⊤H ′(zk)∆zk + o(α)

6 −α · (‖H ′(zk)∆zk‖2 + µk‖∆zk‖2) + o(α)

6 −αµk‖∆zk‖2 + o(α),

which implies that there exists a constant α ∈ (0, 1) such that

Ψ(zk + α∆zk) 6 Ψ(zk)− σαµk‖∆zk‖2

holds for any α ∈ (0, α] and σ ∈ (0, 1). Hence, Step 3 can be carried out. The proof

is completed. �

Now we show the global convergence. For this purpose, we need the following

assumption.

Assumption 3.3. The function H ′(z) is Lipschitz continuous on R+×V×V , i.e.,

(3.7) ‖H ′(z)−H ′(w)‖ 6 L2‖z − w‖ ∀ z, w ∈ R+ × V × V .

Theorem 3.4. Suppose that Assumption 3.3 holds, then Algorithm 1 terminates

in a finite number of iterations or the sequence {zk = (εk, x
k, yk)} generated by

Algorithm 1 satisfies lim inf
k→∞

‖H ′(zk)⊤H(zk)‖ = 0.

P r o o f. We prove the theorem by contradiction. Assume that there exists a pos-

itive integer k > 0 such that

(3.8) ‖H ′(zk)⊤H(zk)‖ > τ1 > 0 ∀ k > k.

Thus, for any k > k, there exist τ2 > 0 and τ3 > 0 such that

(3.9) ‖H ′(zk)‖ > τ2 > 0 and ‖H(zk)‖ > τ3 > 0.

By the line search (3.3),

∞
∑

k=0

σαkµk‖∆zk‖2 < ∞, i.e., lim
k→∞

σαkµk‖∆zk‖2 = 0.

Combining this with µk = ‖H(zk)‖δ and (3.9) yields

lim
k→∞

αk‖∆zk‖2 = 0.
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Consider the following two cases:

(1) lim
k→∞

‖∆zk‖ = 0. According to (3.2), we get

lim inf
k→∞

‖H ′(zk)⊤H(zk)‖ = lim inf
k→∞

‖[H ′(zk)⊤H ′(zk) + µkI]∆zk‖ = 0,

which is a contradiction.

(2) lim
k→∞

αk = 0. Set αk′ = αk/̺. It follows from the line search (3.3) that

Ψ(zk + αk′∆zk) > Ψ(zk)− σαk′µk‖∆zk‖2.

Owing to Assumption 3.3, we have

(3.10) ‖H(z)−H(w) −H ′(w)(z − w)‖ 6 L2‖z − w‖2.

Then,

σαk′µk‖∆zk‖2

> − [Ψ(zk + αk′∆zk)−Ψ(zk)]

= − 1

2
[‖H(zk + αk′∆zk)‖2 − ‖H(zk)‖2]

= − 1

2
{‖H(zk + αk′∆zk)−H(zk)‖2 + 2H(zk)⊤[H(zk + αk′∆zk)−H(zk)]}

= − 1

2
{‖H(zk + αk′∆zk)−H(zk)‖2

+ 2H(zk)⊤[H(zk + αk′∆zk)−H(zk)− αk′H ′(zk)∆zk + αk′H ′(zk)∆zk]}

> − 1

2
{‖H(zk + αk′∆zk)−H(zk)‖2 + 2L2α

2
k′‖H(zk)‖ · ‖∆zk‖2

+ 2αk′ [H ′(zk)⊤H(zk)]⊤∆zk}}

= − 1

2
{‖H(zk + αk′∆zk)−H(zk)‖2 + 2L2α

2
k′‖H(zk)‖ · ‖∆zk‖2

− 2αk′(∆zk)⊤[H ′(zk)⊤H ′(zk) + µkI]∆zk}

> − 1

2
[L2

1α
2
k′‖∆zk‖2 + 2L2Cα2

k′‖∆zk‖2 − 2αk′µk‖∆zk‖2],

where the second inequality comes from (3.10) and the last inequality comes

from (3.1) and (3.5).

Notice that µk = ‖H(zk)‖δ > τδ3 . By a simple calculation, we get

αk′ >
2τδ3 (1− σ)

L2
1 + 2L2C

.

Taking limits on both sides of the above inequality yields

0 = lim
k→∞

αk′ > 0,

which is a contradiction. The proof is completed. �
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4. Local convergence

In this section, we discuss the local convergence of Algorithm 1. Without loss of

generality, assume that {zk} is an infinite sequence generated by Algorithm 1 which
converges to z∗ ∈ Ω, where Ω is the solution set of H(z) = 0. We first make an

assumption.

Assumption 4.1. ‖H(z)‖ provides a local error bound on some neighborhood
of z∗, i.e., there exist two constants b1 > 0 and r > 0 such that

(4.1) dist(z,Ω) 6 r · ‖H(z)‖ ∀ z ∈ N(z∗, b1).

In view of Assumption 3.3 and the Lipschitz continuity of H(z), the functions

H(z) and H ′(z) are both Lipschitz continuous at z∗, i.e., there exists a constant

b2 > 0 such that

(4.2) ‖H(z)−H(w)‖ 6 L1‖z − w‖ ∀ z, w ∈ N(z∗, b2)

and

(4.3) ‖H ′(z)−H ′(w)‖ 6 L2‖z − w‖ ∀ z, w ∈ N(z∗, b2).

Upon the Lipschitz continuity of H ′(z), we have

(4.4) ‖H(z)−H(w)−H ′(w)(z − w)‖ 6 L2‖z − w‖2 ∀ z, w ∈ N(z∗, b2).

Lemma 4.2. Suppose that Assumptions 3.3 and 4.1 hold, {zk} is generated by
Algorithm 1 and zk ∈ N(z∗, b), where b = min{b1, b2/2}. Then there exist two
constants c1 > 0 and c2 > 0 such that

‖∆zk‖ 6 c1 · dist(zk,Ω),
‖H(zk) +H ′(zk)∆zk‖ 6 c2 · dist(zk,Ω)1+δ/2.

P r o o f. Let zk = (0, x̄k, yk) ∈ Ω be such that ‖zk − zk‖ = dist(zk,Ω). Then

‖zk − z∗‖ 6 ‖zk − zk‖+ ‖zk − z∗‖ 6 ‖z∗ − zk‖+ ‖zk − z∗‖ 6 2b 6 b2.

In view of Assumption 4.1 and the Lipschitz continuity of H(z),

(4.5) µk = ‖H(zk)‖δ = ‖H(zk)−H(zk)‖δ 6 Lδ
1‖zk − zk‖δ

and

(4.6) µk = ‖H(zk)‖δ >
(1

r

)δ

· dist(zk,Ω)δ =
(1

r

)δ

· ‖zk − zk‖δ.
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It is easy to verify that zk − zk = (−εk, x̄k − xk, yk − yk) is a feasible solution

of (3.6). Combining (4.4) and (4.6) yields

‖∆zk‖2 6
2

µk
θ(zk − zk)

=
2

µk

[1

2
‖H ′(zk)(zk − zk) +H(zk)‖2 + µk

2
‖zk − zk‖2

]

=
1

µk
‖H ′(zk)(zk − zk) +H(zk)−H(zk)‖2 + ‖zk − zk‖2

6
1

µk
· L2

2‖zk − zk‖4 + ‖zk − zk‖2 6 (rδb2−δL2
2 + 1)‖zk − zk‖2.

Similarly,

‖H(zk) +H ′(zk)∆zk‖2 6 2θ(zk − zk)

= ‖H ′(zk)(zk − zk) +H(zk)‖2 + µk‖zk − zk‖2

= ‖H ′(zk)(zk − zk) +H(zk)−H(zk)‖2 + µk‖zk − zk‖2

6 L2
2‖zk − zk‖4 + µk‖zk − zk‖2

6 (b2−δL2
2 + Lδ

1)‖zk − zk‖2+δ.

Let c1 =
√

rδb2−δL2
2 + 1 and c2 =

√

b2−δL2
2 + Lδ

1. We have

‖∆zk‖ 6 c1 · dist(zk,Ω) and ‖H(zk) +H ′(zk)∆zk‖ 6 c2 · dist(zk,Ω)1+δ/2.

The proof is completed. �

Lemma 4.3. Suppose that Assumptions 3.3 and 4.1 hold. For all sufficient

large k, if zk ∈ N(z∗, b), where b is defined as in Lemma 4.2, then zk+∆zk ∈ N(z∗, b).

P r o o f. It follows from Lemma 4.2 that

‖zk +∆zk − z∗‖ 6 ‖zk − z∗‖+ ‖∆zk‖
6 ‖zk − z∗‖+ c1 · dist(zk,Ω)
= (1 + c1)‖zk − z∗‖.

By the fact that {zk} converges to z∗, we get for any sufficiently large k, that if
‖zk +∆zk − z∗‖ 6 b, then zk +∆zk ∈ N(z∗, b). The proof is completed. �

Lemma 4.4. Suppose that Assumptions 3.3 and 4.1 hold. If zk, zk + ∆zk ∈
N(z∗, b), where b is defined as in Lemma 4.2, then

dist(zk +∆zk,Ω) 6 c3 dist(z
k,Ω)1+δ/2.
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P r o o f. It follows from Assumption 4.1 and Lemma 4.2 that

dist(zk +∆zk,Ω) 6 r‖H(zk +∆zk)‖
6 r‖H(zk +∆zk)−H(zk)−H ′(zk)∆zk‖

+ r‖H(zk) +H ′(zk)∆zk‖
6 rL2‖∆zk‖2 + rc2 · dist(zk,Ω)1+δ/2

6 rL2c
2
1 · dist(zk,Ω)2 + rc2 · dist(zk,Ω)1+δ/2

6 (rL2c
2
1b

1−δ/2 + rc2) · dist(zk,Ω)1+δ/2.

Let c3 = rL2c
2
1b

1−δ/2 + rc2. The proof is completed. �

Theorem 4.5. Suppose that Assumptions 3.3 and 4.1 hold and {zk} is an infinite
sequence generated by Algorithm 1 converging to z∗ ∈ Ω. Then {zk} converges to z∗
superlinearly for δ ∈ (0, 2) and quadratically for δ = 2.

P r o o f. By Lemma 4.4, it suffices to show that zk+1 = zk + ∆zk for any suffi-

cient k, i.e.,

(4.7) Ψ(zk +∆zk) 6 Ψ(zk)− σµk‖∆zk‖2

holds for sufficiently large k.

Since {zk} converges to z∗, it follows from Lemma 4.3 that there exists k̂ > 0 such

that zk, zk +∆zk ∈ N(z∗, b) for all k > k̂.

By (4.4) and Theorem 4.2, we have

Ψ(zk +∆zk)

=
1

2
‖H(zk +∆zk)‖2

=
1

2
‖H(zk +∆zk)−H(zk)−H ′(zk)∆zk +H(zk) +H ′(zk)∆zk‖2

6
1

2
[‖H(zk +∆zk)−H(zk)−H ′(zk)∆zk‖2 + ‖H(zk) +H ′(zk)∆zk‖2]

+ ‖H(zk +∆zk)−H(zk)−H ′(zk)∆zk‖ · ‖H(zk) +H ′(zk)∆zk‖

6
1

2
[L2

2‖∆zk‖4 + ‖H(zk) +H ′(zk)∆zk‖2] + L2‖∆zk‖2 · ‖H(zk) +H ′(zk)∆zk‖

6
1

2
[L2

2c
4
1 · dist(zk,Ω)4 + c22 · dist(zk,Ω)2+δ] + L2c

2
1c2 · dist(zk,Ω)2+δ/2

6
1

2
ηk · dist(zk,Ω)2 6 ηkr

2Ψ(zk),

which shows that (4.7) holds for any sufficiently large k, where {ηk} is a sequence
which converges to 0. The proof is completed. �
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5. Numerical experiments

In this section, we give some numerical results of Algorithm 1 for solving sev-

eral SOCCPs. All experiments have been done on a PC of 2.40GHz CPU and

6.00GB memory. The computer codes are written in Matlab R2017a. We use

‖H(zk)‖ 6 10−6 as the stopping rule. Throughout our experiments, the parame-

ters used in Algorithm 1 are chosen as

̺ = 0.85, σ = 0.01, and ε0 = 0.8.

Notice that the choice of δ controls the rate of convergence. We set

(5.1) δ =







1

Ψ(zk)
, ‖H(zk)‖ > 1,

2, ‖H(zk)‖ < 1,

which is a variation of the adaptive LM parameter in [2].

The test results are listed in Tables 1, 2, and 3, where IT denotes the number of

iterations, CPU is the CPU time in seconds, GAP and ERO represent the value of

‖H(zk)‖ and |〈xk, F (xk)〉| at the final iteration, respectively. The starting points in
the first five examples are chosen as (0, . . . , 0)⊤ of suitable dimensions.

E x am p l e 5.1. V = R
5, K = K5 is the corresponding second-order cone and

F : R
5 → R

5 is given by F (x) = Mx+ q with

M =















15 −5 −1 4 −5

0 5 0 0 1

−1 −3 8 2 −3

2 −4 2 9 −4

0 −5 0 0 10















, q =















0

0

0

0

−1















.

The problem has the unique solution

x∗ ≈ (0.449185,−0.0030997, 0.0096024, 0.0031883, 0.048033)⊤.

E x am p l e 5.2. V = R
3, K = K3 is the corresponding second-order cone and

F : R
3 → R

3 is given by F (x) = Mx+ q with

M =





21 −9 18

−9 4 −7

18 −7 19



 , q =





3

7

1



 .

The problem has the unique solution

x∗ ≈ (0.183606,−0.154346,−0.099440)⊤.
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E x am p l e 5.3. V = R
4, K = K4 is the corresponding second-order cone and

F (x) : R
4 → R

4 is given by

F (x) =









ex1 + x2
1

ex2 + x2
2

ex3 + x2
3

ex4 + x2
4









.

This problem has the unique solution

x∗ = (0.327830,−0.189273,−0.189273,−0.189273)⊤.

E x am p l e 5.4. V = R
3, K = K3 is the corresponding second-order cone and

F (x) : R
3 → R

3 is given by

F (x) =





0.07x3
1 − 4

0.04x2
2 − 3.93

0.03x3
3 − 5.72



 .

This problem has the unique solution x∗ = (5, 3, 4)⊤.

Results of the above four experiments are listed in Table 1.

Q IT GAP CPU ERO

Ex. 5.1 11 7.3092× 10−12 0.0249 4.3957× 10−13

Ex. 5.2 15 1.2004× 10−8 0.0275 2.6947× 10−9

Ex. 5.3 8 2.3200× 10−12 0.0179 1.1102× 10−16

Ex. 5.4 12 3.5511× 10−10 0.0239 1.4614× 10−11

Table 1. Numerical results.

E x am p l e 5.5. V = R
n, K = Kn is the corresponding second-order cone and

F : R
n → R

n is given by F (x) = Mx+ q with

M =















1 2 . . . 2 2

0 1 . . . 2 2
...
...
. . .

...
...

0 0 . . . 1 2

0 0 . . . 0 1















, q =















−1

−1
...

−1

−1















.

This problem has the solution x∗ = (12 , 0, . . . , 0,
1
2 )

⊤. We have also coded the

inexact smoothing Newton method in [20] for comparison purpose. Results of the

numerical comparison are shown in Table 2, where LM denotes Algorithm 1 of this

paper and Smoothing denotes the inexact smoothing Newton method of [20].
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n LM Smoothing

Iter ERO CPU Iter ERO CPU

100 6 3.2628× 10−9 0.0299 5 1.2008× 10−7 0.5423

200 6 3.6426× 10−9 0.1020 5 1.2005× 10−7 0.8275

500 6 3.7024× 10−9 0.8956 5 1.2240× 10−7 2.5024

1000 6 3.6887× 10−9 5.4909 6 1.2145× 10−9 12.9209

1500 6 3.6792× 10−9 20.9476 8 3.6163× 10−10 39.4867

2000 6 3.6732× 10−9 56.8582 9 6.6828× 10−9 78.7763

3000 6 3.6663× 10−9 230.1145 13 1.7917× 10−9 281.6014

Table 2. Comparison of the results of LM and Smoothing for Example 5.5.

n IT GAP CPU ERO

100 11 4.9668× 10−7 0.0557 2.2493× 10−6

12 3.9537× 10−14 0.0556 7.9936× 10−14

12 2.7209× 10−7 0.0453 1.3457× 10−6

12 3.0030× 10−12 0.0481 1.0572× 10−11

200 13 7.3041× 10−12 0.2276 4.1506× 10−11

13 3.6666× 10−13 0.2463 1.8296× 10−12

13 1.5178× 10−14 0.2324 5.3290× 10−14

13 5.0066× 10−14 0.2219 2.3803× 10−13

500 14 2.9683× 10−9 2.0452 3.0025× 10−8

14 4.1513× 10−10 2.0547 4.1058× 10−9

14 1.9481× 10−10 2.0302 1.8921× 10−9

14 4.0587× 10−11 2.0321 3.8831× 10−10

1000 15 9.7527× 10−11 12.2889 1.3694× 10−9

15 5.1356× 10−12 12.1903 6.9121× 10−11

15 8.7585× 10−11 12.2506 1.2150× 10−9

15 9.9627× 10−11 12.3782 1.3891× 10−9

1500 15 1.4521× 10−7 36.1350 2.0164× 10−6

15 9.2302× 10−8 36.2356 1.3361× 10−6

15 2.2984× 10−7 39.7649 2.9866× 10−6

15 5.3295× 10−7 39.0144 6.2286× 10−6

2000 16 3.9668× 10−12 95.9855 7.6795× 10−11

16 8.6998× 10−12 95.4721 1.7274× 10−10

16 1.0061× 10−11 92.8790 1.9667× 10−10

16 3.3956× 10−12 94.2072 6.5995× 10−11

Table 3. Numerical results with different dimensions for Example 5.6.
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E x am p l e 5.6. V = R
n, K = Kn is the corresponding second-order cone and

F (x) : R
n → R

n is given by F (x) = Mx + q where q = (−1,−1, . . . ,−1)⊤ and M

is generated by the following procedure: let M = V ΣV ⊤, where V is a Householder

matrix and Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix whose diagonal elements

are generated by taking

σi = cos
iπ

n+ 1
+ 1 +

cos
π

n+ 1
+ 1− cond(M)

(

cos
π

n+ 1
+ 1

)

cond(M)− 1
, i = 1, 2, . . . , n,

By this means, M possesses a prescribed condition number. We set cond(M) = 100.

The matrix V can be obtained by letting

V = I − 2
vv⊤

‖v‖2 ,

where I is the unit matrix and v is uniformly distributed in (−1, 1).

All the components of the starting point x0 are randomly selected from (0, 1). The

results are listed in Table 3.

From the tables above, we see that the LM method is feasible and effective. As

the dimension of the problem increases, the LM method is more stable than the

smoothing Newton method.

6. Conclusions

In this paper, we have presented a smoothing Levenberg-Marquardt method for

solving the symmetric cone complementarity problem. Under the condition of Lip-

schitz continuity of the Jacobian matrix and the local error bound condition which is

weaker than the nonsingularity at the Jacobian and the condition of Lipschitz con-

tinuity of the Jacobian matrix, we show that the proposed method possesses global

convergence and locally superlinear/quadratic convergence. Results of numerical

experiments show that the method is efficient.

References

[1] F.Alizadeh, D.Goldfarb: Second-order cone programming. Math. Program. 95 (2003),
3–51. zbl MR doi

[2] K.Amini, F. Rostami: A modified two steps Levenberg-Marquardt method for nonlinear
equations. J. Comput. Appl. Math. 288 (2015), 341–350. zbl MR doi

[3] X.Chen, H.Qi, P.Tseng: Analysis of nonsmooth symmetric-matrix-valued functions
with applications to semidefinite complementarity problems. SIAM J. Optim. 13 (2003),
960–985. zbl MR doi

63

https://zbmath.org/?q=an:1153.90522
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1971381
http://dx.doi.org/10.1007/s10107-002-0339-5
https://zbmath.org/?q=an:1320.65074
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3349627
http://dx.doi.org/10.1016/j.cam.2015.04.040
https://zbmath.org/?q=an:1076.90042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2005912
http://dx.doi.org/10.1137/S1052623400380584


[4] J.-S.Chen, P.Tseng: An unconstrained smooth minimization reformulation of the sec-
ond-order cone complementarity problem. Math. Program. 104 (2005), 293–327. zbl MR doi

[5] H.Dan, N.Yamashita, M. Fukushima: Convergence properties of the inexact Leven-
berg-Marquardt method under local error bound conditions. Optim. Methods Softw.
17 (2002), 605–626. zbl MR doi

[6] F.Facchinei, C.Kanzow: A nonsmooth inexact Newton method for the solution of
large-scale nonlinear complementarity problems. Math. Program. 76 (1997), 493–512. zbl MR doi

[7] J. Faraut, A.Korányi: Analysis on Symmetric Cones. Oxford Mathematical Mono-
graphs. Oxford University Press, Oxford, 1994. zbl MR

[8] M.Fukushima, Z.-Q. Luo, P.Tseng: Smoothing functions for second-order-cone comple-
mentarity problems. SIAM J. Optim. 12 (2002), 436–460. zbl MR doi

[9] D.Goldfarb, W.Yin: Second-order cone programming methods for total variation-based
image restoration. SIAM J. Sci. Comput. 27 (2005), 622–645. zbl MR doi

[10] P.T.Harker, J.-S. Pang: Finite-dimensional variational inequalities and nonlinear com-
plementarity problems: A survey of theory, algorithms and applications. Math. Pro-
gram., Ser. B 48 (1990), 161–220. zbl MR doi

[11] S.Hayashi, N. Yamashita, M. Fukushima: Robust Nash equilibria and second-order cone
complementarity problems. J. Nonlinear Convex Anal. 6 (2005), 283–296. zbl MR

[12] Y.Kanno, J. A. C.Martins, A.PintoDaCosta: Three-dimensional quasi-static frictional
contact by using second-order cone linear complementarity problem. Int. J. Numer.
Methods Eng. 65 (2006), 62–83. zbl MR doi

[13] B.Kheirfam, N.Mahdavi-Amiri: A new interior-point algorithm based on modified Nes-
terov-Todd direction for symmetric cone linear complementarity problem. Optim. Lett.
8 (2014), 1017–1029. zbl MR doi

[14] N.Lu, Z.-H.Huang: A smoothing Newton algorithm for a class of non-monotonic sym-
metric cone linear complementarity problems. J. Optim. Theory Appl. 161 (2014),
446–464. zbl MR doi

[15] M.Sayadi Shahraki, H.Mansouri, M. Zangiabadi, N.Mahdavi-Amiri: A wide neighbor-
hood primal-dual predictor-corrector interior-point method for symmetric cone opti-
mization. Numer. Algorithms 78 (2018), 535–552. zbl MR doi

[16] D.Sun, J. Sun: Löwner’s operator and spectral functions in Euclidean Jordan algebras.
Math. Oper. Res. 33 (2008), 421–445. zbl MR doi

[17] G.Q.Wang, Y.Q.Bai: A class of polynomial interior point algorithms for the Cartesian
P-matrix linear complementarity problem over symmetric cones. J. Optim. Theory Appl.
152 (2012), 739–772. zbl MR doi

[18] N.Yamashita, M. Fukushima: On the rate of convergence of the Levenberg-Marquardt
method. Topics in Numerical Analysis. Computing Supplementa 15. Springer, Wien,
2001, pp. 239–249. zbl MR doi

[19] J.-L. Zhang, X. Zhang: A smoothing Levenberg-Marquardt method for NCP. Appl.
Math. Comput. 178 (2006), 212–228. zbl MR doi

[20] J. Zhang, K. Zhang: An inexact smoothing method for the monotone complementarity
problem over symmetric cones. Optim. Methods Softw. 27 (2012), 445–459. zbl MR doi

[21] L. Zhang: Solvability of semidefinite complementarity problems. Appl. Math. Comput.
196 (2008), 86–93. zbl MR doi

Authors’ address: Xiangjing Liu (corresponding author), Sanyang Liu, Xi’an Techno-
logical University, No. 2 Xuefuzhonglu Road, Weiyang District, Xi’an, Shaanxi Province
710021, P. R. China, e-mail: liuxiangjing504@163.com, liusanyang@126.com.

64

https://zbmath.org/?q=an:1093.90063
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2179239
http://dx.doi.org/10.1007/s10107-005-0617-0
https://zbmath.org/?q=an:1030.65049
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1938337
http://dx.doi.org/10.1080/1055678021000049345
https://zbmath.org/?q=an:0871.90096
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1433968
http://dx.doi.org/10.1007/BF02614395
https://zbmath.org/?q=an:0841.43002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1446489
https://zbmath.org/?q=an:0995.90094
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1885570
http://dx.doi.org/10.1137/S1052623400380365
https://zbmath.org/?q=an:1094.68108
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2202237
http://dx.doi.org/10.1137/040608982
https://zbmath.org/?q=an:0734.90098
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1073707
http://dx.doi.org/10.1007/BF01582255
https://zbmath.org/?q=an:1137.91310
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2159841
https://zbmath.org/?q=an:1106.74044
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2185946
http://dx.doi.org/10.1002/nme.1493
https://zbmath.org/?q=an:1320.90092
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3170583
http://dx.doi.org/10.1007/s11590-013-0618-5
https://zbmath.org/?q=an:1291.90261
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3193800
http://dx.doi.org/10.1007/s10957-013-0436-z
https://zbmath.org/?q=an:1395.90240
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3803358
http://dx.doi.org/10.1007/s11075-017-0387-9
https://zbmath.org/?q=an:1218.90197
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2416001
http://dx.doi.org/10.1287/moor.1070.0300
https://zbmath.org/?q=an:1251.90392
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2886370
http://dx.doi.org/10.1007/s10957-011-9938-8
https://zbmath.org/?q=an:1001.65047
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1874516
http://dx.doi.org/10.1007/978-3-7091-6217-0_18
https://zbmath.org/?q=an:1104.65061
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2248482
http://dx.doi.org/10.1016/j.amc.2005.11.036
https://zbmath.org/?q=an:1243.49036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2916855
http://dx.doi.org/10.1080/10556788.2010.534164
https://zbmath.org/?q=an:1144.90495
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2382592
http://dx.doi.org/10.1016/j.amc.2007.05.052

