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Two remarks on the maximal-ideal space of H∞

Stephen Scheinberg

Abstract. The topology of the maximal-ideal space of H∞ is discussed.
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In this note I discuss two properties of the topology of M, the maximal-ideal

space of H∞, which is the Banach algebra of analytic functions which are bounded

in the unit disc D = {z : |z| < 1}. The collection of homomorphisms from H∞

to C is referred to as M (which technically is the collection of the kernels of these

homomorphisms). Each f ∈ H∞ is identified with the function on M which takes

every homomorphism φ to φ(f). (I shall use “z” for the identity function or for

a complex number, according to whatever may be convenient.) If λ ∈ C and

|λ| = 1, a compact subset Mλ (called the fiber over λ) of M is defined to be

the collection of homomorphisms φ for which φ(z) = λ. A great deal is known

about M and about the fibers Mλ. See [1] and [2]. The disc D is identified

with a subset of M by having each point z correspond to the homomorphism

evaluation at z.

Two comments I wish to make are in regard to the fibers. In particular, M1 is

known to be connected; the proof relies on a difficult theorem [1, page 88]. I shall

present an easy proof by use of a different difficult theorem, the Corona theorem

[2, pages 185, 315], which is that D is dense in M. The second comment regards

subsets of D which may or may not have M1 in their closures.

Proposition 1. The fiber M1 is connected.

Proof: The portion of the disc {z = reiθ : R < r < 1 and |θ| < δ}, where δ is

a small positive number, has M1 in its closure C(R, δ). This is obvious from the

fact that D is dense in M. The set C(R, δ) is compact and connected, being the

closure of a connected set in a compact space. Form
⋂

R→1
C(R, δ), the intersec-

tion of nested sets, to obtain C(δ), again compact and containing M1. Now take
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⋂

δ→0
C(δ), once again obtaining a compact and connected space. Obviously, this

last contains M1 and nothing else. �

Proposition 2. Let U be a subset of D. If the closure U of U in C does not

contain an arc of the circle T = {z : |z| = 1} which has 1 in its (relative) interior,

then the closure of U in M does not contain all of M1.

Proof: Recall the pseudo-hyperbolic metric ̺(z, u) = |z − u|/|1 − uz| between

two points of D. Convergence of
∏

̺(z, un) at any point z of the disc (and

therefore at all points of the disc) is the necessary and sufficient condition that

there be a (convergent) Blaschke product with {un : n = 1, 2, . . .} as its zeroes. If

no un is 0 and they are all distinct, the standard Blaschke product B(z) with {un:

n = 1, 2, . . .} as its zeroes is this:

B(z) = B(z, {u1, u2, . . . }) =
∏

[−un

un

z − un

1− unz

]

.

(Note that B(0) =
∏

|un| > 0.)

Observe that if δ > 0, then for every θ, ̺(z, reiθ) → 1 uniformly on {z :

|z| ≤ 1, |z − eiθ| ≥ δ} as r → 1−.

If the closure U of U in C omits small arcs An = {eiθ : θ ∈ Jn}, where Jn =

[an, bn] are pairwise disjoint intervals in (0, 1) and bn → 0 as n → ∞, we shall

see that the closure of U in M does not contain all of M1. (There is no loss

of generality in using (0, 1) instead of (−1, 0) ∪ (0, 1). And if (−ε, ε) is disjoint

from U , the proposition is obvious.) For each Jn let Kn = (a′n, b
′

n), where a′n
and b′n are any numbers for which an < a′n < b′n < bn, and let rn be positive

numbers converging to 1 so that the open sets Cn = {reiθ : rn < r < 1, θ ∈ Kn}

are nonempty, are contained in D, and are disjoint from U .

For any set V of points (not including 0) of D let B(z, V ) be the Blaschke

product having V as its set of zeroes, as indicated above, if it converges. We

shall choose a sequence V by induction. First select u1 to be any point of C1

so that inf{̺(z, u1) : z ∈ U} > 1/2. Next pick u2 ∈ C2 so that inf{̺(z, u2) :

z ∈ U∪{u1}} > 3/4. And choose u3 ∈ C3 so that inf{̺(z, u3) : z ∈ U∪{z1, z2}} >

7/8. Etc. We eventually pick un ∈ Cn so that inf{̺(z, un) : z ∈ U ∪ {u1,

u2, . . . , un−1}} > 1− 2−n. Etc. We obtain a sequence un which converges to 1.

The choices of un and the above inequalities show that

B(z) = B(z, {u1, u2, . . . })

converges and |B(z)| ≥ c > 0 for some c and all z ∈ U . This means that

if a homomorphism Φ is in the cluster set of U in M, then |Φ(B)| ≥ c > 0.

However, the sequence un has a cluster set in M1, and for any homomorphism ϕ

in that cluster set ϕ(B) = 0.
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This means that the closure of U in M does not contain all of M1, since it

omits such ϕ. �

Remarks. The above proof suggests two additional facts: (1) The converse of

Proposition 2 is false, even for open U . (2) If X is a nonempty proper subset of

(M−D) which is a union of fibers Mλ, then there is no subset of D with cluster

set in (M−D) equal to X .

I shall leave the proof of these as an exercise for those interested.
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