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Generalized regression estimation for continuous

time processes with values in functional spaces

Bertrand Maillot, Christophe Chesneau

Abstract. We consider two continuous time processes; the first one is valued in
a semi-metric space, while the second one is real-valued. In some sense, we extend
the results of F. Ferraty and P. Vieu in “Nonparametric models for functional
data, with application in regression, time-series prediction and curve discrimi-
nation” (2004), by establishing the convergence, with rates, of the generalized
regression function when a real-valued continuous time response is considered.
As corollaries, we deduce the convergence of the conditional distribution function
as well as conditional quantiles. Note that a parametric rate of convergence in
probability is reached while working with a naive kernel.

Keywords: continuous time process; regression function estimation; conditional
distribution function

Classification: 62G07, 62C05, 62E20

1. Introduction

Prediction of variables is an important problem in statistics and particularly in

time series analysis. To this aim, the estimation of the conditional expectation,

which is not only useful for prediction, is a relevant solution which has been largely

studied for scalar and vectorial regressors and for discrete or continuous time pro-

cesses, see, for example, [28], [25], [27], [8], [21], [26] and [1]. Recently, functional

data have been more and more studied because of the wide fields of application.

The interest for functional data is not new, but authors first used discretization

of the functional data, see [17] for a survey. Then, the functional nature of the

data have been considered with models such as the linear functional models, see

[23], [5], [6] and the references therein, and later on, general nonparametric ap-

proaches have been developed, see [12], [22] and [16]. An important application

is the prediction of a continuous time process, but all the works performed on the

subject interpreted the continuous time process as a functional variable observed

at discrete time, see, e.g., [3].
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In this paper, we consider a function of a real valued stochastic variable and

an explanatory variable taking values in a semi-metric vectorial space, both ob-

served at a continuous time. Functional data that are observables at continuous

time are frequent in practice. As an example, we quote the isotherm or isobar

curves in meteorology. Our aim in this paper is to study the convergence, with

rates, of the generalized regression function estimator and to deduce corollaries

on the convergence of the conditional distribution function and the conditional

quantile function estimators. Under stronger conditions on the dependence struc-

ture, we reach the parametric rate of convergence in probability while working

with a naive kernel. This rate of convergence has been already obtained by [7] in

the nonparametric statistical framework.

The contents of the paper are organized as follows: we present the statistical

framework and hypotheses in Section 2. The results are provided in Section 3, with

discussions. Some examples of applications are developed in Section 4. Section 5

is devoted to the proofs. A summary section is given in Section 6.

2. Statistical framework and assumptions

This section presents the overall mathematical setting of the study.

2.1 Statistical framework. Let {Xt, Yt}t∈R+ be a continuous time process de-

fined on a probability space (Ω,F , P ) and observed for t ∈ [0, T ], where Yt is real

valued and Xt takes values in a semi-metric vectorial space H equipped with

the semi-metric d(·, ·). We suppose that the law of (Xt, Yt) does not depend on t

and that there exists a regular version of the conditional probability distribution

of Yt given Xt, see [19], [20] and [18] for conditions giving the existence of the

conditional probability. Throughout this paper, C denotes a compact set of H

and S is a compact of R. Let Ψ be a real valued Borel function defined on S ×R

and consider for any y ∈ S the generalized regression function, supposed to exist

for any x ∈ C, and defined by

r(x, y) = E(Ψ(y, Y0)|X0 = x).

In the sequel, we use a positive bounded kernel K with support [0, 1], a band-

width hT decreasing to 0 and define the generalized regression function estimate

by

r̂T (x, y) =

∫ T

t=0
Ψ(y, Yt)K(h−1

T d(x,Xt)) dt∫ T

t=0
K(h−1

T d(x,Xt)) dt
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when the denominator is not null, otherwise, we take

r̂T (x, y) =

∫ T

t=0 Ψ(y, Yt) dt

T
.

2.2 Assumptions. For x ∈ H and h > 0, we denote by B(x, h) the ball of

center x and radius h. In the following, for a real variable Z we use the notation

‖Z‖p :=
(
E(|Z|p)

)1/p
and ‖Z‖∞ := sup{x ∈ R : P (Z > x) > 0}.

We first introduce a local Hölderian condition on the generalized regression

function r which is needed for all our results.

There exist three constants c1 > 0, C < ∞, and η > 0, such that for any

x ∈ C, any (u, v) ∈ B(x, c1)
2 and any y ∈ S

(1) |r(u, y)− r(v, y)| ≤ Cd(u, v)η.

Since most of the useful properties related to the process under study are

needed only locally, the constant c1 introduced above is used below to set several

hypotheses. As usual, in order to obtain uniform results, we need an hypothesis

on the compact C. We suppose that there exists two positive constants C1 and

d1 such that

(2) ∀ ν ∈ ]0, 1[ , C can be covered by Lν ≤
C1

νd1
balls of radius ν.

Since the notion of density is not so natural for semi-metric-space valued

random variable as compared to the random vector case (even if it can be de-

fined and estimated for functional variables, see [9] or [10]), an hypothesis upon

the probability of small balls is fundamental to establish properties and results.

Throughout this paper, we assume that there exists a function ϕ and two con-

stants (β1, β2) ∈ R2
+ such that for any x ∈ C and any h ∈ ]0, c1],

(3) 0 < β1ϕ(h) ≤ P (X0 ∈ B(x, h)) ≤ β2ϕ(h).

In the following set of hypotheses on the distribution of the processes for a set

A, 1IA is the indicator function.

(D.1) (a) There exists M1 > 0 such that for any (s, t) ∈ R2
+, x ∈ C, and y ∈ S,

we have E(|Ψ(y, Ys)Ψ(y, Yt)|1IB(x,c1)2(Xs, Xt)|Xs, Xt) ≤ M1.

(b) There exist p ∈ ]4,∞] and Q > 0, such that for any n ∈ N, and

any u > 0, P (supt∈[n,n+1[ supy∈S |Ψ(y, Yt)| > u) ≤ Qu−p and

‖ supy∈S Ψ(y, Y0)‖p < ∞.

(c) There exist c2 > 0, η1 > 1/2, γ > 0, and a constant p′ such that for

any y ∈ S and u ≤ c2, ‖ supy′∈[y−u,y+u]∩S Ψ(y, Yt) − Ψ(y′, Yt)‖p′ ≤

γuη1 . And one of the two following conditions is fulfilled:
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(⋆) p′ > 2.

(⋆⋆) For any y ∈ R, Ψ(·, y) is an increasing (or decreasing) function

and p′ = η1 = 1.

(d) There exist β3 > 0 and δ > 0 such that for any (s, t) ∈ R2
+ with

|s − t| > δ for any x ∈ C and any h ∈ ]0, c1], P (Xs ∈ B(x, h),

Xt ∈ B(x, h)) ≤ β3ϕ(h)
2.

(e) The process (Xt, Yt)t≥0 is α-mixing, see [4] for a presentation of

mixing conditions, and mixing coefficient verifies α(u) ≤ cu−a where

c ≥ 1, and a > max(3p/(p− 4), p′/(p′ − 2)).

(K) The positive kernelK, with support [0,1], is differentiable and has a bound-

ed derivative.

Finally, we impose the following condition upon the bandwidth:

(H) (a) For any n ∈ N, the bandwidth hT is continuous and differentiable on

the interval [n, n+ 1[ , where

∣∣∣
dhT

dT

hT

∣∣∣ =
∣∣∣h

′
T

hT

∣∣∣ = O
( 1

T

)
and

ϕ(hT )T

ln(T )

is increasing.

(b) We choose hT such that

ϕ(hT )T > ln(T )ξ
(T d1+p1+2

hd1

T

)2(a+p)/((a+1)p)

where p, a and d1 are defined in the conditions (D.1) (b), (D.1) (e)

and (2), respectively, ξ > 1 and p1 > 2/(2η1 − 1).

Let us now discuss the hypotheses above. Usually, while studying the regression

function in continuous time framework, authors assume that the process of interest

is bounded, see [2]. Here, we consider hypotheses (D.1) (a)–(b) to control the

covariance terms and to avoid imposing the process to be bounded when we

handle the discretization phase.

Hypothesis (D.1) (c) is a regularity condition upon the function Ψ. It is nec-

essary to obtain a uniform result over the compact S.

The condition (D.1) (d) introduces a constraint on the joint distribution of the

process X when considered in small balls.

In the condition (D.1) (e), we impose a polynomial decreasing mixing coefficient

which is less restricting than the geometrically decreasing one.

The condition (K) is very standard in nonparametric function estimation.

The constraints with respect to the bandwidth hT along with its relationship

to the function ϕ are considered in the conditions (H) (a)–(b). As compared to

the vectorial process case, the hypothesis (H) (a) seems to be natural, see [2]. The
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condition (H) (b) allows us to have a small enough variance of the generalized

regression estimator.

3. Results

We are now in position to present the main results of the study, beginning with

the convergence of r̂T (x, y).

Theorem 3.1. Under the conditions (1), (2), (3), (D.1), (H) and (K) there exists

a constant L > 0 such that

(4) lim sup
T→∞

sup
y∈S

sup
x∈C

|r̂T (x, y)− r(x, y)|

hη
T +

√
ln(T )/(Tϕ(hT ))

≤ L a.s.

The paper [13] obtained the convergence of the regression function estimator

when both the response variable and the explanatory one are functional while

working with discrete and independent variables: we extended their results to

(continuous) α-mixing processes, even if the form of our response variable is a lit-

tle less general than theirs, which takes values in a general abstract Banach space.

When S is reduced to one point and the response is a scalar, our result can be

compared to the discrete time version obtained by F. Ferraty and P. Vieu, see

Theorem 3.1 in [15]. We can note that an alternative method of prediction has

been studied for α-mixing processes with a functional valued predictor: [11] in-

vestigated the conditional mode estimation.

We now stress our attention on the conditional distribution function

F (y|x) = P
(
Y0 ≤ y|X0 = x

)
where y ∈ R and x ∈ C

which can be estimated by

(5) F̂T (y|x) := r̂T (x, y) with Ψ(y, Yt) = 1I ]−∞,y](Yt).

Corollary 3.1. Under the conditions of Theorem 3.1, there exists a constant

L1 > 0 such that

(6) lim sup
T→∞

sup
y∈S

sup
x∈C

|F̂T (y|x) − F (y|x)|

hη
T +

√
ln(T )/(Tϕ(hT ))

< L1 a.s.

When C is reduced to one point, [14] obtained a similar result while considering

a smoothed estimator of the conditional distribution function in the discrete time

process case.

An additional condition is required to define the conditional quantile and to

state the corollary involving the conditional quantiles estimator.
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(D.2) Suppose that there exists η2 ≥ 1, C′ > 0 and u0 < 1 such that for any

x ∈ C and any (u, u′) ∈ S2 with |u − u′| < u0, F (.|x) is continuous and

we have |F (u|x)− F (u′|x)| > C′|u− u′|η2 .

For θ in ]0, 1[ , define the conditional quantile uθ(x) by the following equation

F (uθ(x)|x) = θ.

The conditional quantile estimator is then defined by

(7) ûθ(x) = sup
u∈R

(u, F̂ (u|x) < θ).

Corollary 3.2. Assume that condition (D.2) holds with S = [a1, b1]. Under

conditions of Theorem 3.1, whenever a1 < infx∈C uθ1(x) ≤ supx∈C uθ2(x) < b1
for some (θ1, θ2) ∈ ]0, 1[ , there exists a constant L2 such that,

(8) lim sup
T→∞

sup
θ∈[θ1,θ2]

sup
x∈C

∣∣ûθ(x)− uθ(x)
∣∣

(
hη
T +

√
ln(T )/(Tϕ(hT ))

)1/η2
≤ L2 a.s.

Remark 3.1. When θ1 = θ2 and C = x, the paper [14] has already obtained the

convergence of the quantile estimator for discrete time processes. Here, we do not

have to suppose that F is differentiable and Corollary 3.2 is still valid when η2 is

not an integer.

In order to present the conditions under which the parametric rate is reached,

we need to introduce the following notation:

(9) For any t ≥ 0 εt(y) := Ψ(y, Yt)− E(Ψ(y, Yt)|Xt).

While working with random vectors, we usually impose conditions on the joint

density to obtain the parametric rate. Hereafter, we express the same kind of

dependence structure with the probability of small balls.

(D.3) (a) There exists c2 > 0 and a function g0 integrable on ]0,∞[ such that

for any x ∈ C, any s > t ≥ 0, and any h ∈ [0, c2], |P ((Xt, Xs) ∈

B(x, h)2)− P (Xt ∈ B(x, h))2| ≤ g0(s− t)ϕ(h)2.

(b) There exists an integrable function g1 on [0,∞[ such that for any

y ∈ S and any (s, t) ∈ R+2

max{|E(εs(y)|Xs, Xt)|, |E(εs(y)εt(y)|Xs, Xt)|} ≤ g1(|s− t|).

Now, for any integerm > 1, set lnm(·) := ln(| lnm−1(·)|) with ln1(·) = ln(·). Theo-

rem 3.2 and Corollaries 3.3–3.4 give parametric rates of convergence in probability

for the estimators defined above.



Generalized regression estimation for continuous time processes 467

Theorem 3.2. Under (1), (2), (3) and (D.3) if we choose K = 1I[0,1] and hT =

T− ln2(⌊T⌋) then for any integer m ≥ 1, any x ∈ C and y ∈ S, we have

(10) lim
T→∞

√
T

lnm(T )
|r̂T (x, y)− r(x, y)|

p
→ 0.

The following corollaries are direct consequences of Theorem 3.2.

Corollary 3.3. Under the conditions of Theorem 3.2 for any integer m ≥ 1, any

x ∈ C and any y ∈ S, we have

(11) lim
T→∞

√
T

lnm(T )

∣∣F̂T (y|x)− F (y|x)
∣∣ p
→ 0.

Corollary 3.4. Let S = [a1, b1]. Assume that conditions of Theorem 3.2 and

the hypothesis (D.2) hold. If a1 < infx∈C uθ1(x) ≤ supx∈C uθ2(x) < b1 for some

(θ1, θ2) ∈ ]0, 1[ , then for any integer m ≥ 1, any x ∈ C, any y ∈ S, and any

θ ∈ [θ1, θ2], we have

(12) lim
T→∞

(√
T

lnm(T )

)1/η2 ∣∣ûθ(x)− uθ(x)
∣∣ p
→ 0.

4. Examples

Before anything else, since we do not impose a stationarity hypothesis, let us

point out that, excepted the parametric rates, our results remain valid in the

discrete time setting. In fact, it suffices to take (Xt, Yt) := (Ui, Vi) whenever

t ∈ [i, i + 1[ , where (Ui, Vi) is the discrete time process of interest. Therefore,

examples given in [15] still hold in the framework of this paper. Moreover, taking

the abstract space as Rn with n ∈ N \ 0, our results are also valid for vectorial

processes.

The rest of this section is divided into several examples related to our main re-

sults, namely functional parametric rate, time series prediction and autoregressive

process.

4.1 Functional parametric rate. At first, we give an example of functional

valued continuous time process that satisfies the main condition necessary to

obtain the parametric rate, that is the condition (D.3) (a). Let Υ be an unknown

real valued function defined on Rn × [0, 1] and let (Zt)t∈R+ be a non observed

Rn-valued process fulfilling condition H in [2, page 116]. Now, denote by f the

bounded density function of the random variable Zt, and by fs,t the joint density

function of the random vector (Zs, Zt). For any (x, y) ∈ R2n, set gs,t(x, y) :=
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fs,t(x, y)− f(x)f(y). Let (E , d) be the semi-metric space of real valued functions

defined on [0, 1], with the underlying semi-metric d(·, ·). For any t ∈ [0, T ], the

observed process is given by Xt := (Υ(Zt, u))u∈[0,1]. It is obvious that for any

x ∈ Rn, Υ(x, ·) ∈ E and so, (Xt) is a functional valued continuous time process.

We define the function υ: x 7→ Υ(x, ·). Let C be a compact set of Rn. Suppose

that for any x ∈ C and any x0 ∈ Rn such that d(Υ(x, ·),Υ(x0, ·)) < δ then

a‖x− x0‖Rn ≤ d(Υ(x, ·),Υ(x0, ·)) ≤ b‖x− x0‖Rn ,

where a, b and δ are positive constants and ‖·‖Rn stands for the euclidean norm

on Rn. Then, we have

∣∣P ((Xt, Xs) ∈ B(υ(x), h)2)− P (Xt ∈ B(υ(x), h))2
∣∣

=
∣∣P ((Zt, Zs) ∈ υ−1(B(υ(x), h))2)− P

(
Zt ∈ υ−1(B(υ(x), h))

)2∣∣

=

∫

υ−1(B(υ(x),h))2
|gs,t(x, y)| dxdy

≤ ‖gs,t‖∞
πn(2h)2n

Γ(n/2 + 1)2a2n
,

where Γ is the Euler’s gamma function. Moreover, if f is bounded from below

by a positive constant in a neighborhood of C, then there exists two positive

constants β1 and β2 such that

0 < β1ϕ(h) ≤ P (X0 ∈ B(x, h)) ≤ β2ϕ(h),

and it is obvious that condition (D.3) (a) is fulfilled with ϕ(h) = hn.

4.2 Time series prediction. Let (Zt, Yt) be a bivariate continuous time pro-

cess. Here, we aim at predicting Yt given the past of the process Zt, say

(Zu)u∈[t−a;t] or (Zu − Zt−a)u∈[t−a;t]. Despite the fact that it seems natural and

useful to study the relation between the two processes for any t, this topic has been

considered only at discrete times. Setting for any t, Ut := (Zu − Zt−1)u∈[t−1;t],

we can apply our results to the process (Ut, Yt). Considering the sup-norm on the

functional space, if Zt is a bilateral Wiener process, we have for any t ∈ R,

P (Ut ∈ B(0, h)) = exp
(−π2

8h2
(1 + o(1))

)
.

Moreover, whenever |t− s| > 1,

P ((Us, Ut) ∈ B(0, h)2) = P (Ut ∈ B(0, h))2,

and conditions (3) and (D.1) (d) are satisfied for ϕ(h) = exp(−π2/8h2).
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4.3 Autoregressive process. We give now an example of autoregressive func-

tional valued continuous time process. Consider the Hilbert space L2([0, 1]), and

denote by L the space of continuous linear operator from L2([0, 1]) to L2([0, 1]),

equipped with the usual norm ‖·‖L. Let εt be a continuous time process valued

in L2([0, 1]), such that for some h > 0 and any t ∈ R, the discrete time process

(εt−ih)i∈N is a white noise, see [3] for a definition of Hilbertian white noise. It is

obvious that such a process exists since the (Ut) in the last example verifies such

a property. Then, for any ̺ ∈ L such that ‖̺‖L < 1, the process

Xt :=
∞∑

i=0

̺i(εt−ih)

defines almost surely an autoregressive process which is the solution of the equa-

tion

Xt := ̺(Xt−ih) + εt.

5. Proofs

To prove our results, we will establish a sequence of lemmas splitting up the

whole proof into several steps. Set

∆T,t(x) = K(h−1
T d(x,Xt))

and introduce the notations

r̂1,T (x) :=
1

TE(∆T,0(x))

∫ T

t=0

∆T,t(x) dt,

r̂2,T (x, y) :=
1

TE(∆T,0(x))

∫ T

t=0

Ψ(y, Yt)∆T,t(x) dt

and

sT (x, y) =

∫

(s,t)∈[0,T ]2
|Cov(Ψ(y, Ys)∆T,s(x),Ψ(y, Yt)∆T,t(x))| ds dt.

Then, one can observe that, when r̂1,T (x) 6= 0,

r̂T (x, y) =
r̂2,T (x, y)

r̂1,T (x)
.

The following lemmas will be useful to prove our main result. In particular,

Lemma 5.1 studies the behavior of the bias of the generalized regression function

estimator. It is useful to prove both Theorem 3.1 and Theorem 3.2. Lemma 5.2
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is needed to prove Theorem 3.1 and Lemma 5.3 provides an upper bound for

the generalized regression function estimator variance under conditions of Theo-

rem 3.2.

Lemma 5.1. Under conditions (1) and (3), we have for T large enough,

(13) sup
y∈S

sup
x∈C

|Er̂2,T (x, y)− r(x, y)| ≤ Chη
T ,

where η and C are introduced in Hypothesis 1.

Lemma 5.2. Under assumptions of Theorem 3.1, we have

(14) sup
x∈C

sup
y∈S

sT (x, y) = O(Tϕ(hT )).

Lemma 5.3. Under the conditions of Theorem 3.2, we have

(15) sup
x∈C

(
sup
y∈S

(
Var(r̂2,T (x, y))

)
+Var(r̂1,T (x))

)
= O

( 1

T

)
.

In the proofs of Lemmas 5.1–5.3, we fix (x, y) ∈ B × S and when no confusion

is possible, use the notation Ψt, ∆T,t and sT instead of Ψ(y, Yt), ∆T,t(x) and

sT (x, y).

Proof of Lemma 5.1: Observe that

Er̂2,T (x, y) =
E(Ψ0∆T,0)

E∆T,0
=

E(E
(
r(X0, y) + ε0(y)|X0

)
∆T,0)

E∆T,0

=
E(r(X0, y)∆T,0)

E∆T,0
.

Thus, making use of hypothesis (1), we have the desired relation, i.e.,

|Er̂2,T (x, y)− r(x, y)| ≤
E(|r(X0, y)− r(x, y)|∆T,0(x))

E∆T,0(x)

≤ sup
u∈B(x,h)

E(|r(u, y)− r(x, y)|∆T,0(x))

E∆T,0(x)
≤ Chη

T .

Lemma 5.1 is proved. �
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Proof of Lemma 5.2: Set Γ := [0, T ]2 and vT := ϕ(hT )
−1. Below, we give

a decomposition of the upper bound of sT into three terms, and treat these terms

separately

sT ≤

∫

Γ∩{|t−s|<δ}

|Cov(Ψt∆T,t,Ψs∆T,s)| dt ds

+

∫

Γ∩{δ≤|t−s|≤vT }

|Cov(Ψt∆T,t,Ψs∆T,s)| dt ds

+

∫

Γ∩{vT<|t−s|}

|Cov(Ψt∆T,t,Ψs∆T,s)| dt ds

=: W1 +W2 +W3.

Considering the first term, we can write

W1 ≤

∫

Γ∩{|t−s|<δ}

Var(Ψt∆T,t) dt ds ≤

∫

Γ∩{|t−s|<δ}

E(Ψt∆T,t)
2 dt ds.

Using conditions (3) and (D.1) (a), we have

E(Ψt∆T,t)
2 = E(E(Ψ2

0|X0)∆
2
T,i) ≤ β2M1‖K‖2∞ϕ(hT ).

Thus,

W1 ≤ 2δTϕ(hT )β2M1‖K‖2∞ .

Considering the term W2, we can write

|W2| ≤

∫

Γ∩{δ≤|t−s|≤vT }

(|E(ΨsΨt∆T,s∆T,t)|+ (E(Ψ0∆T,0))
2) ds dt.

Then conditions (3) and (D.1) (a) imply that

|E(Ψ0∆T,0)| = |E(E(Ψ0|X0)∆T,0)| ≤ (M1+1)E(∆T,0) ≤ (M1+1)β2‖K‖∞ϕ(hT ).

Moreover, for T large enough and for |t− s| ≥ δ, we have

E(ΨsΨt∆T,s∆T,t) = E(E(ΨsΨt|Xs, Xt)∆T,s∆T,t) ≤ M1E(∆T,s∆T,t)

≤ β3M1‖K‖2∞ϕ(hT )
2.

Therefore, for some constant C2 > 0 independent of x, we obtain

W2 ≤ C2Tϕ(hT ).
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Finally, by Davydov’s inequality, see (1.10) in [2], and the assumptions

(D.1) (e) and (H) (b), it follows that

W3 ≤ 2
p2(p−2)/p‖Ψ0∆T,0‖

2
p

(p− 2)

∫

Γ∩{vT<|t−s|}

α(|t− s|)(p−2)/p dt ds

≤ 2
cp2(p−2)/p‖Ψ0‖

2
p‖K‖2∞

(p− 2)

∫

Γ∩{vn<|t−s|}

|s− t|−a(p−2)/p dt ds

≤ 4
cp22(p−2)/p‖Ψ0‖

2
p‖K‖2∞Tv

(p−a(p−2))/p
T

(a(p− 2)− p)(p− 2)

≤ 4
cp22(p−2)/p‖Ψ0‖

2
p‖K‖2∞Tϕ(hT )

(a(p− 2)− p)(p− 2)
.

Thus, there exists a constant C3 > 0 such that

(16) sT ≤ C3Tϕ(hT ),

ending the proof Lemma 5.2. �

Proof of Lemma 5.3: In order to simplify the notations, we set R(Xt) :=

E
(
Ψt|Xt

)
and r(x) := r(x, y). Observe that, by Fubini’s theorem,

Var(r̂2,T (x)) =
1

T 2E(∆0)2

∫ T

t=0

∫ T

s=0

Cov(Ψs∆T,s(x),Ψt∆T,t(x)) dt ds.

The covariance term can be expended as follows:

Cov(Ψs∆T,s(x),Ψt∆T,t(x)) = E(∆T,s(x)∆T,t(x)R(Xs)R(Xt))

+ E
(
∆T,s(x)∆T,t(x)(R(Xs)E(εt|Xs, Xt) +R(Xt)E(εs|Xs, Xt))

)

+ E(∆T,s(x)∆T,t(x)E(εsεt|Xs, Xt))− E
(
∆T,s(x)(R(Xs))

)2
.

Taking dt = R(Xt)− r(x), we have

Cov(Ψs∆T,s(x),Ψt∆T,t(x)) = E(∆T,s(x)∆T,t(x)r(x)r(x))

+ E(∆T,s(x)∆T,t(x)r(x)dt) + E(∆T,s(x)∆T,t(x)r(x)ds)

+ E(∆T,s(x)∆T,t(x)dtds)

+ E
(
∆T,s(x)∆T,t(x)(r(x)E(εt |Xs, Xt) + r(x)E(εs|Xs, Xt))

)

+ E
(
∆T,s(x)∆T,t(x)(dsE(εt|Xs, Xt) + dtE(εs|Xs, Xt))

)

+ E(∆T,s(x)∆T,t(x)E(εsεt|Xs, Xt))− E
(
∆T,s(x)(r(x))

)2

− E(∆T,s(x)ds)
2 − 2r(x)E(∆T,s(x)ds)E(∆T,s(x)).
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From conditions (1) and (D.3) (b), we obtain

|Cov(Ψs∆T,s(x),Ψt∆T,t(x))| ≤ r(x)2|E(∆T,s(x)∆T,t(x)) − E(∆T,s(x))
2|

+ (2|r(x)|Chη + C2h2η + (2(|r(x)| + Chη) + 1)g1(|s− t|))

× E(∆T,s(x)∆T,t(x))

+ (2r(x)Chη + C2h2η)E(∆T,s(x))
2.

Thus, making use of hypothesis (D.3) (a), we have

|Cov(Ψs∆T,s(x),Ψt∆T,t(x))| ≤ r(x)2g0(|s− t|)ϕ(h)2

+ (2|r(x)|Chη + C2h2η + (2(|r(x)| + Chη) + 1)g1(|s− t|))

× (β2 + g0(|s− t|))ϕ(h)2

+ (2r(x)Chη + C2h2η)β2
2ϕ(h)

2 =: GT (|s− t|).

This allows us to write

Var(r̂2,T (x)) ≤
2

T 2E(∆0)2

∫ T

t=0

∫ T

s=t

GT (s− t) dt ds

≤
2

TE(∆0)2

∫ T

s=0

GT (s) ds.

So, since g0 and g1 are integrable and hη = o(1/T ), there exists a constant M0

such that

Var(r̂2,T (x)) ≤
M0

T
.

This last inequality concludes the proof of Lemma 5.3. �

Proof of Theorem 3.1: We will establish the proof under condition D.1 (c) (⋆),

and only make a remark about the case when D.1 (c) (⋆⋆) is satisfied.

We will first show that

lim sup
T→∞

sup
y∈S

sup
x∈C

∫ T

t=0
|Ψ(y, Yt)∆T,t − E(Ψ(y, Yt)∆T,t)| dt

VT
≤ L′ a.s.,

where VT :=
√
Tϕ(hT ) ln(T ).

Making use of the condition (H) (a), we have

(17)
∣∣∣∂∆T,t

∂T

∣∣∣ =
∣∣∣h

′
T

h2
T

d(x,Xt)K
′(h−1

T d(x,Xt))
∣∣∣ ≤ h′

T

hT
‖K ′‖∞ = O

( 1

T

)
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which subsequently implies that there exists a constant C4 > 0 such that for any

n ∈ N∗, any x ∈ C and any T ′ ∈ [n, n+ 1[

(18) |∆T ′,t(x)−∆n,t(x))| ≤
C4

n
.

So, for any positive constant A and for n ∈ N large enough, we have, by condition

(D.1) (a),

sup
y∈S

sup
x∈C

sup
T ′∈[n,n+1[

n

Vn
|E(Ψ(y, Yt)∆n,t(x)) − E(Ψ(y, Yt)∆T ′,t(x))| <

A

4
.

Thus, since VT is an increasing function of T , we can write

P

(
sup
y∈S

sup
x∈C

sup
T ′∈[n,n+1[

∣∣∣∣
1

VT ′

∫ T ′

0

Ψ(y, Yt)∆T ′,t(x)− E(Ψ(y, Yt)∆T ′,t(x)) dt

∣∣∣∣ > A

)

≤ P

(
sup
y∈S

sup
x∈C

sup
T ′∈[n,n+1[

1

Vn

∫ n

0

|Ψ(y, Yt)(∆T ′,t(x) −∆n,t(x))| dt >
A

4

)

+ P

(
sup
y∈S

sup
x∈C

∣∣∣∣
1

Vn

∫ n

0

Ψ(y, Yt)∆n,t(x)− E(Ψ(y, Yt)∆n,t(x)) dt

∣∣∣∣ >
A

4

)

+ P

(
sup
y∈S

sup
x∈C

sup
T ′∈[n,n+1[

1

Vn
|Ψ(y, Yt)∆T ′,t(x)− E(Ψ(y, Yt)∆T ′,t(x))| >

A

4

)

= A1 +A2 +A3.

The relation (18) yields the following upper bound for A1

A1 ≤ P

(
C4

nVn

∫ n

0

sup
y∈S

|Ψ(y, Yt)| dt >
A

4

)
.

From Davydov’s inequality, under the conditions (D.1), there exists a constant

C5 > 0 such that

Var

(∫ n

0

sup
y∈S

|Ψ(y, Yt)| d

)

≤ 2
p

p− 2
2(p−2)/p

∥∥∥ sup
y∈S

Ψ(y, Yt)
∥∥∥
2

p

∫

[0,n]2
min

(
(c|s− t|)−a(p−2)/p,

1

4

)
ds dt

≤ C5n.

That is for n large enough, we have

C4E
( ∫ n

0
supy∈S |Ψ(y, Yt)| dt

)

nVn
≤

A

8
.
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So, using the Bienaymé–Tchebychev inequality we obtain

(19) A1 ≤
64C5C

2
4

V 2
n nA

2
.

From the condition (2), we can cover the compact C with Ln = (n/hn)
d1 balls of

center xk, k ∈ [1, Ln], and radius νn ≤
(
C

1/d1

1 hn/n
)
. We easily observe that the

relation (18) implies for n large enough that

sup
y∈S

sup
k∈[1,Ln]

sup
x∈B(xk,νn)

∣∣∣∣
1

Vn

∫ n

0

E
(
Ψ(y, Yt)(∆n,t(xk)−∆n,t(x))

)
dt

∣∣∣∣ <
A

12
.

So, we can write

A2 ≤ P

(
sup
y∈S

sup
k∈[1,Ln]

sup
x∈B(xk,Ln)

∣∣∣∣
1

Vn

∫ n

0

Ψ(y, Yt)(∆n,t(xk)−∆n,t(x)) dt

∣∣∣∣ >
A

12

)

+ P

(
sup
y∈S

sup
k∈[1,Ln]

∣∣∣∣
1

Vn

∫ n

0

Ψ(y, Yt)∆n,t(xk)

− E(Ψ(y, Yt)∆n,t(xk)) dt

∣∣∣∣ >
A

12

)

=: B1 +B2.

From the condition (K), it is easily seen for some m > 0 that the kernel K is

a m-Lipschitz function. Therefore, since |∆n,t(xk) −∆n,t(x)| ≤ mνn/hn for any

x ∈ B(xk, νn), following the calculations made for A1, we obtain

(20) B1 = O
( 1

V 2
n n

)
.

We can cover S with L′
n = np1 intervals of center yk′ , k′ ∈ [1, L′

n] and length

2l ≤ C6/L
′
n where C6 is independent of n. Moreover, condition (D.1) (c) implies

that for a large enough n

(21)

sup
k′∈[1,L′

n
]

sup
k∈[1,Ln]

sup
y∈[y

k′±l]

∣∣∣ 1

Vn

∫ n

0

E
(
∆n,t(xk)(Ψ(y, Yt)

−Ψ(yk′ , Yt))
)
dt
∣∣∣ < A

12
.



476 B. Maillot, Ch. Chesneau

So, we can decompose the term B2 as follows:

B2 ≤ P

(
sup

k′∈[1,L′
n
]

sup
k∈[1,Ln]

sup
y∈[y

k′±l]

∣∣∣∣
1

Vn

∫ n

0

∆n,t(xk)(Ψ(y, Yt)

−Ψ(yk′ , Yt)) dt

∣∣∣∣ >
A

12

)

+ P

(
sup

k′∈[1,L′
n
]

sup
k∈[1,Ln]

∣∣∣∣
1

Vn

∫ n

0

Ψ(yk′ , Yt)∆n,t(xk)

− E(Ψ(yk′ , Yt)∆n,t(xk)) dt

∣∣∣∣ >
A

12

)

=: B′
1 +B′

2.

Taking the first term, we have

B′
1 ≤

L′

n∑

k′=1

P

(
‖K‖∞
Vn

∫ n

0

sup
y∈[y

k′±l]

|Ψ(y, Yt)−Ψ(yk′ , Yt)| dt >
A

12

)
.

As for the term A1, in the setting of conditions (D.1) (c) and (D.1) (e), we make

use of Davydov’s and Bienaymé–Tchebychev’s inequalities to obtain

(22) B′
1 ≤

C7n
1−p1(2η1−1)

V 2
n

,

where C7 is a positive constant.

To treat the term B′
2, we introduce the following constant

C8 = 8
p

2p− 1
(2ac)(p−1)/(a+p),

where c is defined in (D.1) (e). First, remark that the kernel K is bounded, so

condition (D.1) (b) implies that there exists a constant Q2 > 0 such that for any

λ > 0,

P

(∣∣∣∣

∫ n

0
Ψ(yk′ , Yt)∆n,t(xk)− E

(
Ψ(yk′ , Yt)∆n,t(xk)

)
dt

Q2

∣∣∣∣ > λ

)
≤ λ−p.

So, a simple discretization of our estimator allows us to apply the Fuk–Nagaev

inequality, see [24, formula (6.19 a)], to obtain for any y ∈ S, any x ∈ C and any

z ≥ 1, that

(23)

P

(∣∣∣∣
1

Vn

∫ n

0

Ψ(yk′ , Yt)∆n,t(xk)− E(Ψ(yk′ , Yt)∆n,t(xk)) dt

∣∣∣∣ >
A

12

)

≤ C8

((
1 +

A2V 2
n

482zsnQ2
2

)−z/2

+
n

z

(48zQ2

AVn

)(a+1)p/(a+p))
.
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In view of (16), under condition (H) (b), choosing A large enough and z = ln(n),

there exists C9 > 0 such that for some ξ′ > 1

(24) B′
2 ≤

C9

n ln(n)ξ′
.

Thus, from (20), (22), (24) for A large enough there exists C10 > 0 such that

(25) A2 ≤
C10

n ln(n)ξ′
.

Finally, the hypothesis (D.1) (b) leads to

(26) A3 = O(V −p
n ).

So from (19), (25) and (26), using the Borel–Cantelli lemma, we have for a con-

stant L′ > 0

lim sup
T→∞

sup
y∈S

sup
x∈C

√
Tϕ(hT )

ln(T )
|r̂2,T (x, y)− E(r̂2,T (x, y))| ≤ L′ a.s.

Since Er̂1,T (x) = 1, we have for some L′′ > 0

(27) lim sup
T→∞

sup
y∈S

sup
x∈C

√
Tϕ(hT )

ln(T )
|r̂1,T (x)− 1| ≤ L′′ a.s.

The statement (27) implies that, almost surely, there exists T0 ∈ R+ such that

for all T > T0

r̂T (x, y) =
r̂2,T (x, y)

r̂1,T (x)
.

Then, the use of the following decomposition concludes the proof of Theorem 3.1:

r̂2,T (x, y)

r̂1,T (x)
− r(x, y) =

r(x, y)

r̂1,T (x)

(
1− r̂1,T (x)

)

+
1

r̂1,T (x)

((
r̂2,T (x, y)− E(r̂2,T (x, y))

)

−
(
r(x, y) − E(r̂2,T (x, y))

))
.

�

Remark 5.1. Under D.1 (c) (⋆⋆), this proof is valid except the calculation of

a bound for B′
2. We just have to remark that under D.1 (c) (⋆⋆), the term B′

2

can be bounded by making use of inequalities (21) and (24).

Proof of Corollary 3.1: Note that Corollary 3.1 follows as a direct appli-

cation of Theorem 3.1. It suffices to take Ψ(y, Y ) = 1I[−∞,y](Y ). �



478 B. Maillot, Ch. Chesneau

Proof of Corollary 3.2: From Corollary 3.1 and Hypothesis (D.2), almost

surely, we have for T large enough

sup
x∈C

F̂T (a1|x)− θ1(x) < 0, sup
x∈C

(
θ2(x)− F̂T

(
ûb1(x)|x

))
< 0.

So, it follows that almost surely for T large enough,

ûθ(x) ∈ S for any (θ, x) ∈ [θ1, θ2]× C.

Set WT = L1(h
η
T +

√
ln(T )/Tϕ(hT )). By Corollary 3.1, we obtain that, almost

surely for T large enough,

(28) sup
x∈C

sup
θ∈[θ1,θ2]

∣∣F̂T

(
ûθ(x)|x

)
− F

(
ûθ(x)|x

)∣∣ ≤ WT

and

sup
x∈C

sup
θ∈[θ1,θ2]

lim
u→ûθ(x),u<ûθ(x)

∣∣F̂T (u|x)− F (u|x)
∣∣ ≤ WT .

But, in view of (7), we always have

θ ∈
[

lim
u→ûθ(x),u<ûθ(x)

F̂T (u), F̂T

(
ûθ(x)

)]
.

Therefore, since F is continuous, almost surely we have for T large enough

(29) sup
x∈C

sup
θ∈[θ1,θ2]

∣∣F̂T

(
ûθ(x)|x

)
− θ

∣∣ ≤ 2WT .

Condition (D.2) implies that for any x ∈ C and any θ ∈ [θ1, θ2] we have

(30)
∣∣F (uθ(x)|x) − F

(
ûθ(x)|x

)∣∣ > min
(
C′, C′

∣∣uθ(x)− ûθ(x)
∣∣η2

)
.

Making use of the following decomposition

∣∣F (uθ(x)|x) − F
(
ûθ(x)|x

)∣∣ ≤
∣∣F (uθ(x)|x) − F̂T

(
ûθ(x)|x

)∣∣

+
∣∣F̂T

(
ûθ(x)|x

)
− F

(
ûθ(x)|x

)∣∣

and the statements (28) and (29), it is easily seen that almost surely we have for

T large enough

sup
x∈C

sup
θ∈[θ1,θ2]

∣∣F (uθ(x)|x) − F
(
ûθ(x)|x

)∣∣ ≤ 3WT .

This last inequality, in view of (30), achieves the proof. �

Proof of Theorem 3.2: Using the decomposition (28), in view of Lemma 5.1

and Lemma 5.3, Theorem 3.2 follows by Bienaymé–Tchebychev’s inequality. �
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Proof of Corollary 3.3: The proof is a straightforward consequence of The-

orem 3.2. �

Proof of Corollary 3.4: Fix x ∈ C, θ ∈ [θ1, θ2], ε > 0 and set VT :=√
lnm(T )/T , u′ := uθ(x) + (ε/2)V

1/η2

T , and u′′ := uθ(x) + εV
1/η2

T . We begin the

proof by establishing the upper bound that is

(31) lim
T→∞

P
(
ûθ(x)− uθ(x) > εV

1/η2

T

)
= 0.

In this respect, observe that

P
(
ûθ(x)− uθ(x) > εV

1/η2

T

)
= P

(
ûθ(x) −

ε

2
V

1/η2

T > u′
)

≤ P
(
F̂T (ûθ(x)−

ε

2
V

1/η2

T |x)− F̂T (u
′|x) ≥ 0

)

≤ P
(
F̂T (ûθ(x)−

ε

2
V

1/η2

T |x)− F (u′|x) ≥ −C′
(ε
2

)η2

VT

)

+ P
(
F (u′|x)− F̂T (u

′|x) ≥ C′
(ε
2

)η2

VT

)
.

Since F̂T

(
ûθ(x) − (ε/2)V

1/η2

T |x
)
< θ = F (uθ(x)|x), from the condition (D.2) we

obtain for T large enough

P
(
F̂T

(
ûθ(x) −

ε

2
V

1/η2

T |x
)
− F (u′|x) ≥ −C′

(ε
2

)η2

VT

)
= 0.

Moreover, Corollary 3.3 leads to the following result

lim
T→∞

P
(
F (u′|x)− F̂T (u

′|x) ≥ C′
(ε
2

)η2

VT

)
= 0,

which proves the statement (31). It is easily seen that the same arguments lead

to the following lower bound

lim
T→∞

P
(
ûθ(x)− uθ(x) < −εV

1/η2

T

)
= 0.

In view of (31), this last result concludes the proof of Corollary 3.4. �

6. Summary

In this paper, we determined the convergence rates associated with the gener-

alized regression function through the use of kernel estimation techniques. Several

specific results follow, including the convergence of the conditional distribution

function and the conditional quantiles. Discussions on their applications to func-

tional parametric rate, time series prediction and autoregressive process are pro-

vided. In particular, some important results of [15] are extended and full proofs
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are given. We hope that the current theoretical work will serve as a basis for

applied purposes in the field.
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