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Abstract. A new model is proposed to mimic the response of a class of seemingly vis-
coplastic materials. Using the proposed model, the steady, fully developed flow of the fluid
is studied in a cylindrical pipe. The semi-inverse approach is applied to obtain an analytical
solution for the velocity profile. The model is used to fit the shear-stress data of several
supposedly viscoplastic materials reported in the literature. A numerical procedure is de-
veloped to solve the governing ODE and the procedure is validated by comparison with the
analytical solution.
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1. Introduction

The response of many materials, such as crude oil, drilling mud, mineral slurries,

suspensions, paint, pastes, and meat extract are usually considered to be viscoplastic

materials. These viscoplastic materials are used to describe applications in the fields

of petroleum engineering, civil engineering, food processing, biophysics, meteorology,

and hydraulic engineering. Numerous constitutive relations have been proposed to

describe the response of viscoplastic materials, namely those due to Bingham [1],

Herschel-Bulkley [6], Casson [4] and others. A detailed review of viscoplastic fluids

can be found in Bird, Dai and Yarusso [2], Mitsoulis [8], and Huilgol [7]. The

quintessential feature of such materials is that they seem to exhibit a “yield stress”
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and then flow like a fluid. While these materials seem to exhibit a “yield stress” it

is possible that this is a consequence of the experimental methodology as to how the

fluid under question is subject to external stimuli, in this case the traction applied

to the experimental apparatus. Whether indeed one has a material that exhibits

a “yield stress” or flows with the application of shear stress, however small the shear

stress might be, could be an artifice of the time scale and length scale of observation,

and the extent of force applied1.

We have referred to the constitutive relations developed by Bingham, Herschel-

Bulkley, Casson and others as materials other than a “fluid” as we would like the term

“fluid” to define the class of materials which are incapable of resisting shear stress

and we would like to develop a constitutive relation that in some sense is “close”

to capturing what seems to be observed in materials which are modeled as having

a “yield stress”. The Queensland experiment described in the footnote suggests that

if one just observed the experiment on asphalt for, say one hour, one might incorrectly

conclude that the material in question has a “yield stress” as definitely even under

the stress produced by gravity it does not seem to flow. However, such a conclusion

would be incorrect for if the person waited long enough, the fluid would eventually

flow just under the force of gravity. The viscosity of the fluid close to zero shear rate

is so large and its resistance to flow is such that the shear rate is too small to be

observed by the recording instrument, just our visual observation, in question. Thus,

a fluid model that has an exceedingly high viscosity close to zero shear rate would be

a reasonable approximation of the situation that is described by assuming a “yield

stress”. The different viscoplastic materials such as the “Bingham fluid”, “Herschel-

Bulkley fluid” and “Casson fluid” differ in the way they flow after the shear stress

exceeds the “yield stress”. “The Bingham fluid” flows like a Navier-Stokes fluid once

the shear stress exceeds the “yield stress”, while the others flow like power-law fluids.

However, none of the above models are fluids in the sense that they are unable to

resist shear. We are interested in developing a fluid constitutive relation and thus

the model should have the ability to display an arbitrarily large slope with regard to

the shear stress-shear rate curve and be able to capture the flow of the fluids under

consideration. The materials that we want to describe, kaolin-water, meat extract

and paint, seem to be reasonably well described by the constitutive relation that we

consider. The constitutive relation is characterized by two constants, α1 and α2 (see

1Of course, it depends on the time of observation with regards to which the material does
not seem to flow. It is possible if the observer were to wait a very long time the material
might flow. In the classic experiment in Queensland (see [5]) on asphalt, it took as many
as nine years for a drop of asphalt to fall. Thus, even if the observer had waited for one
year it might have looked as though no flow was taking place. It also depends on the
length scale of observation. If viewed under a tunneling electron microscope one might
be able to detect movement which one cannot see with the naked eye.
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the model (2.1)–(2.4)) with the shear stress τ tending to the asymptotic limit
√
2α1 as

the shear rate κ increases, that is τ →
√
2α1 as κ → ∞. Thus, the fluid is a limiting

shear stress fluid. Moreover, the initial slope of the shear stress versus shear rate

curve is dτ
dκ (0) = α1α2, and thus we have flexibility to pick α1 sufficiently large. The

question is whether we can fit the experimental data, and our study shows that we

can do so reasonably well. The model that we propose should only be considered as a

first attempt at trying to approximate materials, that are described as materials with

a “yield stress”, by fluid models. It is possible to obtain better models with regard to

predicting data by just adding one additional parameter as the two constants, that

define our model, just fix the initial slope and the final asymptotic value.

Recently, Blechta et al. [3] have provided a thorough classification of incompress-

ible fluids that span the gamut from Euler fluids, Navier-Stokes fluids, classical and

stress power-law fluids, as well as fluids that have a variety of yield conditions that

they refer to as activated fluids. Activated fluids are not fluids if one were to in-

terpret fluids as we have done in this paper. The fluid under consideration here is

a sub-class of a generalized Stokesian fluid and falls within the classification provided

by Blechta et al. [3].

The fact that the material has “yield condition” makes the numerical study of

general three dimensional problems most challenging. As observed earlier, we have

an expression for the kinematics in terms of stress in the case of such fluids. In fact,

such an approach is in keeping with the demands of causality (see [9]). However,

one cannot substitute such an expression for the symmetric part of the velocity

gradient in terms of the stress into the balance of linear momentum and get a partial

differential equation for the velocity as in the case of the stress being expressed in

terms of the symmetric part of the velocity gradient. Thus, the balance of linear

momentum and the constitutive relation have to be solved simultaneously, and in

the case of an incompressible fluid this leads to a system of ten unknowns (pressure,

three components of the velocity and six components of the stress) and ten partial

differential equations (conservation of mass that reduces to the constraint that the

motion be isochoric, the balance of linear momentum and the six scalar constitutive

relations relating the symmetric part of the velocity gradient and the stress). This is

a very daunting task. In this paper, we develop a constitutive relation for the stress

in terms of the velocity gradient. The stress can then be directly substituted into the

balance of linear momentum to obtain a partial differential equation for the velocity,

thereby simplifying the solution procedure for the problem. Of course, providing

a constitutive relation for the stress goes against the demands of causality. The

present work focuses on the flow features for a particular boundary value problem

that has relevance to a problem of importance in engineering practice, namely steady

fully-developed flow in a cylindrical pipe.
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The paper is organized as follows. The new constitutive model is described in

Section 2. The flow problem, namely steady fully developed flow in a cylindrical

pipe, is introduced and the governing equations developed for the same in Section 3.

An analytical solution is obtained by assuming a special form for the velocity field

for the flow in an infinite straight cylindrical pipe in Section 4. The determination of

the material parameters that describe the model, by comparison with experimental

data, is carried out in Section 5, and the analytical solution and numerical solution

are compared. We summarize the results and discuss future work in Section 6.

2. Constitutive model

We consider a constitutive relation for the Cauchy stress tensor T that is given by

(2.1) T = −pI+ 2µ(‖D‖)D,

where

(2.2) D =
1

2
[∇v + (∇v)⊤],

and

(2.3) ‖D‖ =
√

trace(D2).

In (2.1)–(2.3), −pI is the indeterminate part of the stress due to the constraint

of incompressibility (p is the mean value of the stress and is also the mechanical

pressure, that is (− 1
3 ) trace(T)) and µ(‖D‖) is the generalized viscosity which is

dependent on the symmetric part of the velocity gradient D, v denotes the velocity,

and ‖D‖ is the Frobenius norm of the symmetric part of the velocity gradient.
We assume that µ(‖D‖) is given by

(2.4) µ(‖D‖) = α1

‖D‖ − α1 exp(−α2‖D‖)
‖D‖ ,

where α1 and α2 are positive constants. Unlike the constitutive relations for vis-

coplasticity, our proposed constitutive relation does not exhibit a “yield stress”.

Moreover, when a shear stress is applied, however small it might be, the body de-

scribed by the constitutive relation will flow. With regard to a real material, as

mentioned earlier, whether it flows or not might depend on the time scale of obser-

vation, and thus it is far from clear whether the materials that are currently described

by the viscoplastic constitutive model do truly exhibit a “yield stress”. Our belief
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is that the proposed model holds promise as an alternative to a class of viscoplastic

materials, especially those that seem to exhibit an asymptotic value for the stress as

the shear rate increases. We verify that this is indeed the case by comparison with

experimental data.

3. Problem formulation

We consider the fluid defined by (2.1)–(2.4) flowing in a cylindrical pipe. The flow

is assumed to be steady, axisymmetric, and fully developed. The schematic of the

flow domain with the coordinates marked is given in Figure 1.

R

V =0

V =0

r

z

Figure 1. Schematic representation of fully developed flow in a cylindrical pipe.

The balance equations of mass and linear momentum are given by

∂̺

∂t
+ div(̺v) = 0,(3.1)

divT+ ̺b = ̺
Dv

Dt
,(3.2)

where ∂/∂t is the partial derivative with respect to time, ̺ is the density of the fluid,

div(·) denotes the divergence operator, and v = vrer + vθeθ + vzez is the velocity

vector with the components of the velocity in the directions r, θ, and z as vr, vθ,

and vz , respectively. Further, b is the body force, and D(·)/Dt is the Lagrangian

time derivative, which is given by ∂(·)/∂t+ grad(·)v.
In the cylindrical polar coordinate system, (3.1)–(3.2) can be expressed as given

below.

Mass balance equation:

(3.3)
∂̺

∂t
+

1

r

∂

∂r
(̺rvr) +

1

r

∂

∂θ
(̺vθ) +

∂

∂z
(̺vz) = 0.

Momentum balance equation in each coordinate direction is given below:
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In the r-coordinate direction:

(3.4) ̺
(∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z

− v2θ
r

)

=
[1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
(τθr) +

∂

∂z
(τzr)−

τθθ
r

]

− ∂p

∂r
+ ̺gr,

In the θ-coordinate direction:

(3.5) ̺
(∂vθ

∂t
+ vr

∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

)

=
[ 1

r2
∂

∂r
(r2τrθ) +

1

r

∂

∂θ
(τθθ) +

∂

∂z
(τzθ)

]

+
[τθr − τrθ

r

]

− 1

r

∂p

∂θ
+ ̺gθ,

In the z-coordinate direction:

(3.6) ̺
(∂vz

∂t
+ vr

∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)

=
[1

r

∂

∂r
(rτrz) +

1

r

∂

∂θ
(τθz) +

∂

∂z
(τzz)

]

− ∂p

∂z
+ ̺gz.

4. Analytical solution

We use a semi-inverse method for solving the problem analytically for steady, fully

developed flow in a cylindrical pipe geometry.

We assume the velocity field and the pressure field are of the form

(4.1) v = vz(r)ez , p = p(r, z),

i.e., the flow is in z-direction and ez denotes the unit vector in the z-coordinate

direction.

Using the assumed flow field and neglecting gravity, (3.4)–(3.6) simplify to

−∂p

∂r
= 0,(4.2)

−1

r

∂p

∂θ
= 0,(4.3)

1

r

∂

∂r
(rτrz)−

∂p

∂z
= 0.(4.4)

The boundary condition for the velocity is

(4.5) no-slip condition: vz = 0 at r = R.
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We augment the boundary condition with a symmetry condition, namely,

(4.6) symmetry condition:
dvz
dr

= 0 at r = 0.

The governing equations for the flow for the proposed constitutive relation are

obtained by substituting the simplified Cauchy stress tensor into (4.2), (4.3), (4.4).

For the assumed flow field, the symmetric part of the velocity gradient D simpli-

fies to

(4.7) D =
1

2









0 0
dvz
dr

0 0 0
dvz
dr

0 0









.

Subsequently, for the assumed flow field, the Cauchy stress tensor (2.1) is expressed

as

(4.8) T =











−p 0 µ(‖D‖)dvz
dr

0 −p 0

µ(‖D‖)dvz
dr

0 −p











.

Thus

(4.9) τrz = µ(‖D‖)dvz
dr

.

In order to describe the solution characteristics clearly, the governing equations are

non-dimensionalized and the solution is expressed in terms of dimensionless variables.

The dimensionless quantities that are used in this procedure are

p∗ =
pR

µ0u0
, z∗ =

z

R
, r∗ =

r

R
, α∗

1 =
α1R

µ0u0
,

α∗
2 =

α2u0

R
, v∗z =

vz
u0

, µ∗(‖D‖) = µ(‖D‖)
µ0

,

where R is the radius of the pipe, µ0 is the reference viscosity, and u0 is the reference

velocity.

In terms of dimensionless variables, the equations (4.2)–(4.4) are written as

−∂p∗

∂r∗
= 0,(4.10)

− 1

r∗
∂p∗

∂θ∗
= 0,(4.11)

1

r∗
∂

∂r∗
(r∗τ∗rz)−

∂p∗

∂z∗
= 0.(4.12)
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In terms of dimensionless variables, (4.5)–(4.6) are expressed as

v∗z = 0 at r∗ = 1,(4.13)

dv∗z
dr∗

= 0 at r∗ = 0.(4.14)

From (4.10)–(4.11), we note that the pressure is a function of z only. This, taken

along with (4.12), implies that dp∗/dz∗ = constant. Upon integration, (4.12) leads

to

(4.15) τ∗rz =
(dp∗

dz∗

)r∗

2
+

c1
r∗

,

where dp∗/dz∗ is a constant and c1 is the integration constant.

At r∗ = 0, τ∗rz is finite, which implies that c1 = 0. Hence, (4.15) simplifies to

(4.16) τ∗rz =
(dp∗

dz∗

)r∗

2
.

In terms of the dimensionless form, (4.9) is expressed as

(4.17) τ∗rz = µ∗(‖D‖)dv
∗
z

dr∗
.

From (2.2) and (2.3),

(4.18) ‖D‖ =
√

trace(D2) =
1√
2

∣

∣

∣

dvz
dr

∣

∣

∣
=

1√
2

u0

R

∣

∣

∣

dv∗z
dr∗

∣

∣

∣
.

Now, by equating (4.16) and (4.17), we get

(4.19)
(dp∗

dz∗

)r∗

2
= µ∗(‖D‖)dv

∗
z

dr∗
.

By substituting (2.4), (4.18) in (4.19), we obtain

(4.20)
(dp∗

dz∗

)r∗

2
=

[

−
√
2α∗

1 +
√
2α∗

1 exp
(

− α∗
2

1√
2

∣

∣

∣

dv∗z
dr∗

∣

∣

∣

)]

,

which, as α∗
1 is assumed to be non-zero, can be rearranged as

(4.21) 1 +
1

2
√
2α∗

1

(dp∗

dz∗

)

r∗ = exp
(

− α∗
2

1√
2

∣

∣

∣

dv∗z
dr∗

∣

∣

∣

)

.
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Applying the natural logarithm on both sides, we obtain

ln
(

1 +
1

2
√
2α∗

1

(dp∗

dz∗

)

r∗
)

= −α∗
2

1√
2

∣

∣

∣

dv∗z
dr∗

∣

∣

∣
,(4.22)

∣

∣

∣

dv∗z
dr∗

∣

∣

∣
= −dv∗z

dr∗
= −

√
2

α∗
2

ln
(

1 +
1

2
√
2α∗

1

(dp∗

dz∗

)

r∗
)

,(4.23)

v∗z =

√
2

α∗
2

(
∫

ln
(

1 +
1

2
√
2α∗

1

(dp∗

dz∗

)

r∗
)

dr∗
)

+ k.(4.24)

Equation (4.24) gets simplified (with the application of integration by parts) to

(4.25) v∗z =
1

α∗
2

ln
(

1 +
1

2
√
2α∗

1

(dp∗

dz∗

)

r∗
)[√

2r∗ +
4α∗

1

dp∗/dz∗

]

−
√
2r∗

α∗
2

+ k.

The boundary and symmetry conditions are applied to (4.25) to obtain the final

velocity profile, which is expressed as

(4.26) v∗z =

√
2

α∗
2

ln
(

1 +
1

2
√
2α∗

1

(dp∗

dz∗

))

[

− 1 +
r∗ln

(

1 + (dp∗/dz∗)r∗

2
√
2α∗

1

)

ln
(

1 + dp∗/dz∗

2
√
2α∗

1

)

]

+
4α∗

1

(dp∗/dz∗)α∗
2

ln

[1 + (dp∗/dz∗)r∗

2
√
2α∗

1

1 + dp∗/dz∗

2
√
2α∗

1

]

+

√
2

α∗
2

(1− r∗).

5. Model corroboration and comparison

In this section, the parameters α1 and α2, that define the proposed model (given in

(2.1)–(2.4)) are determined by corroborating against experimental data using MAT-

LAB 2018a. We fit the proposed model with the experimental data for shear-stress

versus shear-rate reported in the literature. We then compare the analytical and

numerical solutions for the proposed model.

The expression for the generalized viscosity µ(‖D‖) is determined by (2.4) and
the norm of the symmetric part of the velocity gradient D is determined by

‖D‖ =
1√
2

dvz
dr

.

We obtain the non-linear equation for µ(‖D‖) to be solved at each value, in terms
of dvz/ dr:

(5.1) µ(‖D‖) =
√
2α1

dvz/dr
−

√
2α1 exp(− α2√

2
(dvz/dr))

dvz/dr
.
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The equation for the absolute shear stress (for given dvz/dr) is thus

(5.2) τrz =
√
2α1 −

√
2α1 exp

(

− α2√
2

dvz
dr

)

.

The experimental data for the (absolute value) shear stress versus shear rate are

reported for kaolin-water suspension, meat extract and paint in [2] and [8], respec-
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Figure 2. Shear stress as a function of shear rate fitted to experimental data for (a) kaolin-
water [2], (b) meat extract [2], and (c) paint [8].
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tively. We use the above expression for the shear stress and corroborate against

experimental data at the same shear rate. The curve fitting tool (cftool) in MAT-

LAB 2018a is used to determine α1 and α2 for the best fit. The agreement of the

predictions of the model with data for the selected fluids is shown in Figures 2(a)–(c).

However, we can claim that the model is effective only if we can corroborate data for

a totally different experiment with the same values for the material constants, and

this will be a part of our future work. The constants obtained are (for kaolin-water:

α1 = 1.44×102N/m2, α2 = 1.58×10−3 s), (for meat extract: α1 = 1.54×102N/m2,

α2 = 1.03 × 10−1 s), and (for paint: α1 = 1.90 × 10−1N/m2, α2 = 1.07 × 102 s),

respectively. The fitted model is a smooth function for the shear stress in terms of

the shear rate that ensures that the fluid will flow, however small the shear stress.

5.1. Comparison of the exact solution and the numerical solution for

the model. We test our numerical solution against the predictions of the analytical

solution to make sure that the numerical procedure is not incorrect. The non-linear

(non-dimensional) second-order ODE

(5.3)
d2v∗z
dr∗2

=
1

α∗
1α

∗
2

(dp∗

dz∗
+

√
2α∗

1

r∗

)

exp
(

− α∗
2√
2

dv∗z
dr∗

)

−
√
2

r∗α∗
2

is solved numerically and its validity tested against the analytical solution defined

earlier. The above ordinary differential equation is solved subject to no-slip and

symmetry boundary conditions. The numerical method given below is used to solve

the equation governing steady fully developed flow in a pipe.

The numerical method uses subroutines ode45 and fsolve of MATLAB, and imple-

ments the shooting method. This reduces the boundary value problem to an initial

value problem as mentioned below. In this method the second-order ODE is con-

verted to a system of two first-order ODEs. We solve for d2v∗z/dr
∗2 at each radius (r)

that satisfies the above equation and the symmetry condition (dv∗z/dr
∗ = 0). The

iteration proceeds until the velocity at the pipe wall tends to zero. With the help of

input parameters (α∗
1 and α∗

2 for the fluid model that has been proposed, obtained

from fitting experimental data, and the pressure gradient dp∗/dz∗), the equation is

solved iteratively and the velocity profiles are constructed. The programs are coded

in MATLAB R2018a software and executed on an Intel-Xeon 2.30 GHz workstation

(Model Fujitsu R-920).

The numerical procedure is validated by comparing the solution with the analytical

solution: see Figure 3. We observe that the velocity profiles generated numerically

match exactly with the analytical solution.
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Figure 3. Fully developed velocity profiles of fluids in a cylindrical pipe flow of radius 0.1m
for (a) kaolin-water [2], (b) meat extract [2], and (c) paint [8].

6. Conclusion

We have developed a new model as an alternative for a class of viscoplastic models

(that is, models that exhibit a yield stress). We have studied the flow behavior of the

proposed model for the boundary value problem (BVP) of steady fully developed flow

in a cylindrical pipe. The (non-dimensional) governing equation is solved analytically
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with the help of the semi-inverse approach and the velocity profile is obtained. We

chose material parameters for our model that fitted the shear stress data reported

for real fluids. In order to determine the predictive capability of the above model, we

have to use the material parameters that we have used to fit the data and corroborate

against a new set of experiments. This will be a part of our future work. We

developed a numerical method to solve the ODE equation governing the BVP and the

solution compared well against the analytical solution thus validating the numerical

method.

The advantages of the proposed model are that it is consistent with the definition

of a fluid, in the body under consideration cannot resist shear stresses, and allows

for a smooth variation of viscosity from zero shear rate onwards. In future work,

we will study the model for other flow problems, and also consider modifications to

the model so that we can obtain a better description of the response of the bodies

under consideration.
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