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Abstract. There has been much interest in studying symmetric cone complementarity
problems. In this paper, we study the circular cone complementarity problem (denoted by
CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct
two smoothing functions for the CCCP and show that they are all coercive and strong
semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed
algorithm generates an infinite sequence such that the value of the merit function converges
to zero. Moreover, we show that the iteration sequence must be bounded if the solution
set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm
has local superlinear or quadratical convergence under some assumptions which are much
weaker than Jacobian nonsingularity assumption. Some numerical results are reported
which demonstrate that our algorithm is very effective for solving CCCPs.
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1. Introduction

The second-order cone in R
n, also called the Lorentz cone, is defined as

K
n = {x = (x1, x̄) ∈ R× R

n−1 ; ‖x̄‖ 6 x1},

where ‖·‖ denotes the Euclidean norm. The second-order cone Kn is a special sym-

metric cone and it is self-dual, i.e., Kn = (Kn)∗, where (Kn)∗ is the dual cone of Kn
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defined by

(Kn)∗ = {s ∈ R
n ; 〈s, x〉 > 0 ∀x ∈ K

n},

in which 〈·, ·〉 denotes the Euclidean inner product. In recent years, optimization
problems with second-order cone constraints, such as second-order cone program-

ming (SOCP) and second-order cone complementarity problem (SOCCP), have re-

ceived considerable attention from researchers for its wide range of applications in

many fields such as engineering, optimal control and design, machine learning, robust

optimization and combinatorial optimization and so on (see [1], [6], [24]).

In this paper, we are interested in the circular cone, which is a type of nonsymmet-

ric cone. The circular cone is a pointed closed convex cone having hyper-spherical

sections orthogonal to its axis of revolution about which the cone is invariant to

rotation. Let its half-aperture angle be θ with θ ∈ (0, π/2). Then the n-dimensional

circular cone denoted by Cn
θ can be expressed as

C
n
θ = {x = (x1, x̄) ∈ R× R

n−1 ; ‖x‖ cos θ 6 x1}
= {x = (x1, x̄) ∈ R× R

n−1 ; ‖x̄‖ 6 x1 tan θ}.

The circular cone Cn
θ becomes the second-order cone K

n when θ = π/4. Zhou and

Chen [37] proved that the dual cone of Cn
θ denoted by (C

n
θ )

∗ can be expressed as

(Cn
θ )

∗ = {x = (x1, x̄) ∈ R× R
n−1 ; ‖x‖ sin θ 6 x1}

= {x = (x1, x̄) ∈ R× R
n−1 ; ‖x̄‖ 6 x1 ctan θ}.

Thus, when θ 6= π/4, the circular cone Cn
θ is not self-dual and hence it is not a sym-

metric cone. Many authors investigated theoretical properties of the circular cone.

Alzalg [2] analyzed the algebraic structure of the circular cone. Zhou et al. [37],

[38], [39] studied circular cone convexity, second order regularity of the circular cone

and spectral factorization associated with the circular cone, and conducted varia-

tional analysis of circular cone programs. In [40], Zhou et al. studied the parabolic

second-order directional derivative in the Hadamard sense of a vector-valued function

associated with the circular cone.

Recently, many numerical algorithms have been studied for solving various opti-

mization problems over the circular cone. Bai et al. [3], [4], Kheirfam and Wang [22]

and Ma et al. [25] studied interior-point methods for circular cone programming.

Chi et al. [13], [14] investigated nonmonotone smoothing Newton algorithms for cir-

cular cone programming. Chi et al. [12] proposed a regularized inexact smoothing

Newton method for circular cone complementarity problem. Ke et al. [21] estab-

lished a class of relaxation modulus-based matrix splitting iteration methods for

circular cone nonlinear complementarity problems. Pirhaji et al. [29] studied a path
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following interior-point method for circular cone linear complementarity problems.

Miao et al. [27] proposed a generalized Newton method for absolute value equations

associated with circular cones. Lately, Miao et al. [26] constructed some complemen-

tarity functions and merit functions for the circular cone complementarity problem

(CCCP), which finds (x, y) ∈ R
n × R

n such that

(1.1) (CCCP) x ∈ C
n
θ , y ∈ (Cn

θ )
∗, 〈x, y〉 = 0, y = F (x),

where F : R
n → R

n is a continuously differentiable function. When the half-aperture

angle θ = π/4, the CCCP reduces to the SOCCP. Thus, the CCCP can be viewed as

the generalization of the SOCCP. Notice that when θ 6= π/4, the circular cone Cn
θ is

not symmetric and in this case the CCCP is a type of nonsymmetric cone comple-

mentarity problem.

On the other hand, there has been much interest in smoothing-type algorithms

for solving optimization problems over the circular cone and the second-order cone

(e.g., [8], [9], [11], [10], [13], [14], [12], [16], [34], [33]). The main idea of this class of

algorithms is to use a smoothing function to reformulate the problem concerned as

a system of smooth nonlinear equations and then solve it by Newton’s method. It is

worth pointing out that to obtain local fast convergence rate, all these smoothing-

type algorithms need the Jacobian nonsingularity assumption, which seems to be

unnecessarily restrictive.

In this paper we aim to construct two smoothing functions and design a smooth-

ing algorithm for the CCCP given in (1.1). Specifically, based on the relationship

between the second-order cone and the circular cone, we introduce two smoothing

functions for the CCCP and show that they are coercive and strong semismooth. By

using these smoothing functions, we reformulate the CCCP as a system of smooth

nonlinear equations and propose a smoothing algorithm to solve it. Different with

existing smoothing-type algorithms, the proposed algorithm adopts a new line search

technique, which is well-defined and easy to implement. We show that any accumu-

lation point of the iteration sequence generated by this algorithm is a solution of the

CCCP. Moreover, we prove that if the solution set of the CCCP is nonempty and

bounded, then the generated iteration sequence must be bounded. At last, we prove

that the proposed algorithm has local superlinear or quadratical convergence rate

under some assumptions, which are much weaker than Jacobian nonsingularity as-

sumption. We also give some numerical results which demonstrate that the proposed

algorithm is very effective for solving CCCPs.

The paper is organized as follows. In the next section, we give some preliminary

results. In Section 3, we introduce two smoothing functions for the CCCP. In Sec-

tion 4, we reformulate the CCCP as a system of smooth nonlinear equations. In
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Section 5, we propose a smoothing algorithm for solving the CCCP and show its

well-definedness. The global and local superlinear/quadratical convergence of our

algorithm are analyzed in Section 6. Numerical results are reported in Section 7.

Some conclusions are given in Section 8.

Throughout the paper, Rn denotes the space of n-dimensional real column vectors

and R
n
+ (or R

n
++) denotes the nonnegative (or positive) orthant in R

n. For conve-

nience, we write (u⊤
1 , . . . , u

⊤
m)⊤ as (u1, . . . , um) for any vectors ui ∈ R

n. Further Im
represents the m×m identity matrix and ‖·‖ denotes the Euclidean norm. For any
x, y ∈ R

n, we write x �Kn y (or x ≻Kn y) if x − y ∈ K
n (or x − y ∈ int Kn, where

int Kn denotes the interior of Kn). For a given set S ⊂ R
n, conv(S) denotes the

convex hull of S. For any a, b > 0, a = O(b) (or a = o(b)) means that a/b is uniformly

bounded (or tends to zero) as b → 0.

2. Preliminaries

For any vectors x = (x1, x̄) ∈ R×R
n−1 and y = (y1, y) ∈ R×R

n−1, in the setting

of Kn, the Jordan product of x and y is defined by

x ◦ y = (x⊤y, x1y + y1x̄).

The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative.
The identity element under this product is e := (1, 0, . . . , 0)⊤ ∈ R

n. For any x and y

in R
n, from [17], Proposition 2.1, we have

x ∈ K
n, y ∈ K

n, x ◦ y = 0 ⇔ x ∈ K
n, y ∈ K

n, 〈x, y〉 = 0.

For any x = (x1, x̄) ∈ R× R
n−1, its spectral decomposition with respect to Kn is

(2.1) x = λ1(x)c1 + λ2(x)c2,

where λ1(x), λ2(x) are spectral values and c1, c2 are spectral vectors, which are de-

fined by

(2.2) λi(x) = x1 + (−1)i‖x̄‖, ci =















1

2

(

1, (−1)i
x̄

‖x̄‖
)

, x̄ 6= 0,

1

2
(1, (−1)iω), x̄ = 0,

i = 1, 2

with any ω ∈ R
n−1 such that ‖ω‖ = 1.
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For any x = (x1, x̄) ∈ R×R
n−1 with its spectral decomposition given in (2.1)–(2.2),

we define

x2 := λ1(x)
2c1 + λ2(x)

2c2.

Moreover, if x ∈ K
n, then λ2(x) > λ1(x) > 0 and we define

√
x :=

√

λ1(x)c1 +
√

λ2(x)c2.

It is easy to verify that x2 = x ◦ x and x =
√
x ◦ √x.

For any x = (x1, x̄) ∈ R× R
n−1, we define the symmetric matrix

Lx :=

[

x1 x̄⊤

x̄ x1In−1

]

.

Here Lx can be viewed as a linear mapping from R
n to Rn given by Lxy = x ◦ y for

any x, y ∈ R
n. Notice that Lx is positive semidefinite (or positive definite) if and

only if x ∈ K
n (or x ∈ int Kn).

Now we introduce the definition of (strong) semismoothness. Let H : R
n → R

m

be a locally Lipschitz continuous function. Then H is differentiable almost every-

where by Rademacher’s theorem. Let DH ⊆ R
n be the set of points at which H is

differentiable.

The limiting Jacobian of H at x defined by

∂BH(x) :=
{

V ∈ R
m×n ; V = lim

xk→x
H ′(xk), {xk} ⊆ DH

}

is called the B-subdifferential of H at x. The Clarke’s generalized Jacobian of H

at x is ∂H(x) := conv(∂BH(x)). We say H is directionally differentiable at x along

the direction d if

H ′(x; d) := lim
t↓0

H(x+ td)−H(x)

t

exists, where H ′(x; d) is called the directional derivative of H at x along the direc-

tion d and H is directionally differentiable at x if H is directionally differentiable

at x along any direction d 6= 0.

Definition 2.1. Let H : R
n → R

m be a locally Lipschitz continuous function

around x ∈ R
n. We say that H is semismooth at x if H is directionally differentiable

at x and for any y → x and V ∈ ∂H(y),

H(y)−H(x)− V (y − x) = o(‖y − x‖).

H is further said to be strongly semismooth at x if H is semismooth at x and for

any y → x and V ∈ ∂H(y),

H(y)−H(x)− V (y − x) = O(‖y − x‖2).
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3. Smoothing functions for the CCCP

For any θ ∈ (0, π/2) we denote A :=

[

tan θ 0

0 In−1

]

. Then A is positive definite

with its inverse matrix A−1 :=

[

ctan θ 0

0 In−1

]

. Zhou and Chen characterized the

relationship between the circular cone Cn
θ and the second-order cone K

n as follows

(see [37], Theorem 2.1):

(3.1) C
n
θ = A−1

K
n and ACn

θ = K
n.

Thus, by noticing (Cn
θ )

∗ = C
n
π/2−θ, for any x, y ∈ R

n, we have

(3.2) x ∈ C
n
θ ⇔ Ax ∈ K

n, y ∈ (Cn
θ )

∗ ⇔ A−1y ∈ K
n.

Based on relationship (3.2), we now construct two smoothing functions ϕi : R×R
n×

R
n → R

n (i = 1, 2) for the CCCP which are defined by

ϕ1(µ, x, y) = (1 + µ)(Ax +A−1y)−
√

(1− µ)2(Ax−A−1y)2 + 2µ2e,(3.3)

ϕ2(µ, x, y) = (1 + µ)(Ax +A−1y)(3.4)

−
√

(Ax+ µA−1y)2 + (µAx +A−1y)2 + 2µ2e,

where the square and square root of the vector are all defined under Jordan prod-

uct “◦” associated with the second-order cone Kn in Section 2. It is worth pointing

out that the functions ϕ1 and ϕ2 are regularized versions of Chen-Harker-Kanzow-

Smale (CHKS) smoothing function and Fischer-Burmeister (FB) smoothing function

proposed in [26], which are denoted by

ϕCHKS(µ, x, y) = Ax+A−1y −
√

(Ax−A−1y)2 + 2µ2e,

ϕFB(µ, x, y) = Ax+A−1y −
√

(Ax)2 + (A−1y)2 + 2µ2e.

Moreover, when θ = π/4, the functions ϕ1 and ϕ2 reduce to smoothing functions

over the second-order cone studied in [11], [10].

Theorem 3.1. The functions ϕi (i = 1, 2) defined by (3.3) and (3.4) satisfy

(3.5) ϕi(0, x, y) = 0 ⇔ x ∈ C
n
θ , y ∈ (Cn

θ )
∗, 〈x, y〉 = 0.

P r o o f. From [17], Propositions 4.1 and 4.2 we have for any i = 1, 2,

ϕi(0, x, y) = 0 ⇔ Ax ∈ K
n, A−1y ∈ K

n, 〈Ax,A−1y〉 = 0.

This together with (3.2) and 〈Ax,A−1y〉 = 〈A−1Ax, y〉 = 〈x, y〉 gives (3.5). �
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Theorem 3.2. The functions ϕi (i = 1, 2) defined by (3.3) and (3.4) are contin-

uously differentiable at any (µ, x, y) ∈ R++ × R
n × R

n with

(ϕ1)
′
µ = Ax+A−1y − L−1

w1
[−(1− µ)(Ax −A−1y)2 + 2µe],(3.6)

(ϕ1)
′
x = (1 + µ)A− (1− µ)2L−1

w1
LAx−A−1yA,(3.7)

(ϕ1)
′
y = (1 + µ)A−1 + (1− µ)2L−1

w1
LAx−A−1yA

−1,(3.8)

where w1 :=
√

(1− µ)2(Ax −A−1y)2 + 2µ2e, and

(ϕ2)
′
µ = Ax+A−1y − L−1

w2
(LAx+µA−1yA

−1y + LµAx+A−1yAx+ 2µe),(3.9)

(ϕ2)
′
x = (1 + µ)A− L−1

w2
(LAx+µA−1y + µLµAx+A−1y)A,(3.10)

(ϕ2)
′
y = (1 + µ)A−1 − L−1

w2
(µLAx+µA−1y + LµAx+A−1y)A

−1,(3.11)

where w2 :=
√

(Ax+ µA−1y)2 + (µAx +A−1y)2 + 2µ2e.

P r o o f. It is easy to see that ϕi(µ, x, y) (i = 1, 2) are continuously differentiable

at any (µ, x, y) ∈ R++ × R
n × R

n. For any (µ, x, y) ∈ R++ × R
n × R

n, from

the definition of w1 we have w1 ∈ int Kn and therefore Lw1
is invertible. Since

w2
1 = (1− µ)2(Ax −A−1y)2 + 2µ2e, it follows from [7], Lemma 3.1 that

(w1)
′
µ = L−1

w1
[−(1− µ)(Ax −A−1y)2 + 2µe],

(w1)
′
x = (1− µ)2L−1

w1
LAx−A−1yA,

(w1)
′
y = −(1− µ)2L−1

w1
LAx−A−1yA

−1.

This gives (3.6)–(3.8). In the similar way, we can prove (3.9)–(3.11). �

The next theorems show that the smoothing functions ϕi (i = 1, 2) defined by (3.3)

and (3.4) are all coercive and strong semismooth. These properties play important

roles in analyzing global and local convergence properties of smoothing-type algo-

rithms.

Theorem 3.3. Let ϕi (i = 1, 2) be defined by (3.3) and (3.4) and a1, a2 ∈ R++

with a1 < a2. Let {(µk, x
k, yk)} ⊂ R++ × R

n × R
n be a sequence satisfying

(c1) µk ∈ [a1, a2], {(xk, yk)} is unbounded; and
(c2) there is a bounded sequence {(pk, qk)} such that {〈xk −pk, yk − qk〉} is bounded

below.

Then {ϕi(µk, x
k, yk)} (i = 1, 2) are unbounded.
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P r o o f. Since A is positive definite for any θ ∈ (0, π/2) and

〈Axk −Apk, A−1yk −A−1qk〉 = 〈xk − pk, yk − qk〉,

by condition (c2), {(Apk, A−1qk)} is bounded and 〈Axk − Apk, A−1yk − A−1qk〉 is
bounded below. Note that by letting X := Ax and Y := A−1y, the functions ϕi

(i = 1, 2) can be written as

ϕ1(µ, x, y) = ϕ1(µ,X, Y ) := (1 + µ)(X + Y )−
√

(1− µ)2(X − Y )2 + 2µ2e,

ϕ2(µ, x, y) = ϕ2(µ,X, Y ) := (1 + µ)(X + Y )−
√

(X + µY )2 + (µX + Y )2 + 2µ2e.

Let Xk := Axk and Y k := A−1yk. Then the sequence {(µk, X
k, Y k)} satisfies that

µk ∈ [a1, a2] and {(Xk, Y k)} is unbounded, and there exists a bounded sequence
{(P k, Qk)}, where P k := Apk and Qk := A−1qk such that {〈Xk − P k, Y k −Qk〉} is
bounded below. Hence, from [19], Theorem 4.1, ϕ1(µk, X

k, Y k) is unbounded and

so is {ϕ1(µk, x
k, yk)}, and from [12], Theorem 3.4, ϕ2(µk, X

k, Y k) is unbounded and

so is {ϕ2(µk, x
k, yk)}. �

Theorem 3.4. The functions ϕi (i = 1, 2) defined by (3.3) and (3.4) are strongly

semismooth on R
1+2n.

P r o o f. Since the composition of strongly semismooth functions is strongly semis-

mooth, by [9], Theorem 4.2 and [32], Theorem 3.2, we have the desired results. �

4. Smooth reformulation of the CCCP

Let z := (µ, x, y) ∈ R× R
n × R

n. By using the smoothing functions ϕi (i = 1, 2)

in (3.3) and (3.4), we define the function Hi : R
1+2n → R

1+2n as

(4.1) Hi(z) :=





µ

F (x)− y

ϕi(µ, x, y)



 , i = 1, 2.

Then, by Theorem 3.1, we have

Hi(z) = 0 (i = 1, 2) ⇔ µ = 0 and (x, y) is the solution of the CCCP.

Thus, instead of solving the CCCP, one may apply some descent methods to solve

the system of equations Hi(z) = 0 (i = 1, 2) and make µ → 0+ so that a solution of

the CCCP can be found.
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According to Theorem 3.2, the function Hi(z) (i = 1, 2) is continuously differen-

tiable at any z ∈ R++ × R
n × R

n with its Jacobian

(4.2) H ′
i(z) =





1 0 0

0 F ′(x) −In
(ϕi(µ, x, y))

′
µ (ϕi(µ, x, y))

′
x (ϕi(µ, x, y))

′
y



 ,

where (ϕi(µ, x, y))
′
µ, (ϕi(µ, x, y))

′
x and (ϕi(µ, x, y))

′
y (i = 1, 2) are given in equa-

tions (3.6)–(3.11), respectively. In smoothing-type algorithms, it is essential that

the Jacobian H ′
i(z) (i = 1, 2) is invertible, because the descent direction should be

well-defined and unique to solve Hi(z) = 0 (i = 1, 2). For this purpose, in this paper

we assume that the function F is monotone, i.e.,

(4.3) 〈F (x) − F (y), x− y〉 > 0 ∀ (x, y) ∈ R
n × R

n.

This monotonic assumption is very standard and has been extensively used to design

smoothing-type algorithms for the SOCCP (e.g., [8], [9], [18], [34], [33]). Miao et

al. [26] also used the monotonicity of F to analyze properties of bounded level sets

of merit functions for the CCCP.

Lemma 4.1 ([35], Lemma 2.6). Let a, b, u, v ∈ R
n with a ≻Kn 0, b ≻Kn 0,

a ◦ b ≻Kn 0. If 〈u, v〉 > 0 and a ◦ u+ b ◦ v = 0, then u = v = 0.

Theorem 4.1. If F is monotone, then the Jacobian H ′
i(z) (i = 1, 2) defined

by (4.2) is invertible at any z ∈ R++ × R
n × R

n.

P r o o f. We first show that H ′
1(z) is invertible at any z ∈ R++ × R

n × R
n. For

any z ∈ R++ × R
n × R

n, let ∆z := (∆µ,∆x,∆y) ∈ R × R
n × R

n be any vector

which satisfies H ′
1(z)∆z = 0. It suffices to prove ∆z = 0. By (4.2), we have from

H ′
1(z)∆z = 0 that

∆µ = 0,(4.4)

F ′(x)∆x −∆y = 0,(4.5)

(ϕ1(µ, x, y))
′
µ∆µ+ (ϕ1(µ, x, y))

′
x∆x+ (ϕ1(µ, x, y))

′
y∆y = 0.(4.6)

By (4.5) and the monotonicity of F , we have 〈∆x,∆y〉 = 〈∆x, (F ′(x)∆x)〉 > 0,

which gives

(4.7) 〈A∆x + µA−1∆y, µA∆x+A−1∆y〉
= µ(‖A∆x‖2 + ‖A−1∆y‖2) + (1 + µ2)〈∆x,∆y〉 > 0.
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By (3.7), (3.8), (4.4) and (4.6), we have

(1 + µ)(A∆x +A−1∆y)− L−1
w1

[(1− µ)2(Ax−A−1y) ◦ (A∆x−A−1∆y)] = 0,

where w1 :=
√

(1− µ)2(Ax −A−1y)2 + 2µ2e, which yields

Lw1
((1 + µ)(A∆x +A−1∆y))− (1− µ)2(Ax−A−1y) ◦ (A∆x−A−1∆y) = 0,

i.e.,

(4.8) [w1 − (1− µ)(Ax −A−1y)] ◦ (A∆x + µA−1∆y)

+ [w1 + (1− µ)(Ax −A−1y)] ◦ (µA∆x+A−1∆y) = 0.

By the definition of w1 and µ > 0, we have w1 ≻Kn 0 and w2
1 ≻Kn (1 − µ)2(Ax −

A−1y)2. Then from [17], Proposition 3.4, we have that

(4.9) w1 − (1− µ)(Ax −A−1y) ≻Kn 0, w1 + (1− µ)(Ax −A−1y) ≻Kn 0.

Also notice that

(4.10) [w1 − (1− µ)(Ax −A−1y)] ◦ [w1 + (1− µ)(Ax −A−1y)] = 2µ2e ≻Kn 0.

Thus, by (4.7)–(4.10) and Lemma 4.1, we have A∆x + µA−1∆y = 0 and µA∆x +

A−1∆y = 0. These two equalities imply that A∆x = 0 and A−1∆y = 0. Since A is

positive definite for any θ ∈ (0, π/2), we have ∆x = ∆y = 0. This proves that H ′
1(z)

is invertible at any z ∈ R++ × R
n × R

n. By a similar way, we can also prove that

H ′
2(z) is invertible at any z ∈ R++ × R

n × R
n. We complete the proof. �

Theorem 4.2. Suppose that F is monotone. Then the function Hi (i = 1, 2)

defined by (4.1) is coercive in (x, y) for each µ > 0, i.e.,

lim
‖(x,y)‖→∞

‖Hi(µ, x, y)‖ = ∞.

P r o o f. By using Theorem 3.3, similarly as in the proof of [19], Lemma 5.3, we

can prove the result. For brevity, we omit the details here. �

Theorem 4.3. The function Hi (i = 1, 2) defined by (4.1) is semismooth on

R
1+2n and it is strongly semismooth on R

1+2n if F ′ is locally Lipschitz.

P r o o f. The result holds by Theorem 3.4 and [30], Corollary 2.4. �
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5. A smoothing algorithm

In the following, for simplicity, we only give our algorithm to solve H1(z) = 0. All

results obtained still hold when we apply our algorithm to solve H2(z) = 0.

A l g o r i t hm 5.1 (A smoothing algorithm).

Step 1. Choose constants δ, β ∈ (0, 1), Λ0 > 0 and µ0 > 0. Choose γ ∈ (0, 1) such

that γ 6 µ0. Choose ξ ∈ (0, 1) such that ξ < 1 − γ. Choose (x0, y0) ∈
R

n × R
n and let z0 := (µ0, x

0, y0). Let ̺0 := γmin{1, ‖H1(z
0)‖2}. Let

p := (1, 0, . . . , 0) ∈ R
1+2n. Set k := 0.

Step 2. If ‖H1(z
k)‖ = 0, then stop.

Step 3. Compute ∆zk := (∆µk,∆xk,∆yk) by solving

(5.1) H ′
1(z

k)∆zk = −H1(z
k) + ̺kp.

Step 4. Set

(5.2) Uk := ‖H1(z
k)‖ + Λk, Vk := ‖H1(z

k)‖+ βΛk.

Let lk be the smallest nonnegative integer l satisfying

(5.3) ‖H1(z
k + δl∆zk)‖ 6 min{(1− ξδl)Uk, Vk}.

Set αk := δlk .

Step 5. Set zk+1 := zk + αk∆zk. Set

Λk+1 := (1− β)Λk,(5.4)

̺k+1 := γmin{1, ‖H1(z
k+1)‖2, ̺k}.(5.5)

Set k := k + 1 and go back to Step 2.

Different with existing smoothing-type algorithms, in Step 4, Algorithm 5.1 adopts

a new line search technique, which is easy to implement. It is easy to see that

inequality (5.3) holds for all sufficiently large l, because when l → ∞, the left-hand
side of (5.3) tends to ‖H1(z

k)‖ but the right-hand side tends to min{Uk, Vk} =

‖H1(z
k)‖ + βΛk. Hence, the new line search technique is well-defined. As will be

shown later, this new line search technique makes Algorithm 5.1 have encouraging

convergent properties and practical computational performances.

Theorem 5.1. If F is monotone, then Algorithm 5.1 is well-defined and generates

a sequence {zk = (µk, x
k, yk)} with µk > 0 for all k > 0.
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P r o o f. Suppose that zk = (µk, x
k, yk) ∈ R++ × R

n × R
n for some k, e.g., it is

satisfied for k = 0. From Theorem 4.1, H ′
1(z

k) is nonsingular and hence Step 3 is

well-defined. Since inequality (5.3) holds for all sufficiently large l, Step 4 is also

well-defined. Thus, we can get the (k+ 1)th iteration zk+1 = zk + αk∆zk in Step 5.

Moreover, by the first equation in (5.1), we have ∆µk = −µk + ̺k. Since µk > 0 and

̺k > 0, we have

(5.6) µk+1 = µk + αk∆µk = (1− αk)µk + αk̺k > 0.

So, we can conclude that if zk = (µk, x
k, yk) ∈ R++×R

n×R
n for some k, then zk+1 =

(µk+1, x
k+1, yk+1) can be generated by Algorithm 5.1 with zk+1 ∈ R++ × R

n × R
n.

This together with z0 = (µ0, x
0, y0) ∈ R++ ×R

n ×R
n implies that Algorithm 5.1 is

well-defined and generates a sequence {zk = (µk, x
k, yk)} with µk > 0. The proof is

completed. �

Lemma 5.1. Suppose that F is monotone. Let {zk} be the sequence generated by
Algorithm 5.1. Then there exist constants ̺∗ > 0 and U∗ > 0 such that lim

k→∞
̺k = ̺∗

and

lim
k→∞

Uk = lim
k→∞

Vk = lim
k→∞

‖H1(z
k)‖ = U∗.

Moreover, U∗ = 0 if ̺∗ = 0.

P r o o f. Since {̺k} is monotonically decreasing by its definition, there exists
̺∗ > 0 such that lim

k→∞
̺k = ̺∗. From Steps 4 and 5 in Algorithm 5.1 it follows

that for all k > 0,

‖H1(z
k+1)‖ 6 min{(1− ξαk)Uk, Vk} 6 Vk = ‖H1(z

k)‖+ βΛk.

By using this result, we have from (5.2) and (5.4) that for all k > 0,

(5.7) Uk+1 = ‖H1(z
k+1)‖ + Λk+1 = ‖H1(z

k+1)‖+ (1 − β)Λk

6 ‖H1(z
k)‖ + βΛk + (1− β)Λk = ‖H1(z

k)‖+ Λk = Uk.

This shows that {Uk} is also monotonically decreasing and hence, it is convergent.
So, there exists U∗ > 0 such that lim

k→∞
Uk = U∗. Moreover, by (5.4), we have

Λk = (1− β)kΛ0 and hence lim
k→∞

Λk = 0. Thus, from (5.2) it holds that

lim
k→∞

‖H1(z
k)‖ = lim

k→∞
(Uk − Λk) = U∗

and

lim
k→∞

Vk = lim
k→∞

(‖H1(z
k)‖+ βΛk) = U∗.

If ̺∗ = 0, then by the definition of ̺k, there exists a subsequence {zkn} of {zk} such
that lim

kn→∞
‖H1(z

kn)‖ = 0, which gives U∗ = 0. The proof is completed. �

220



Lemma 5.2. Suppose that F is monotone. Let {zk = (µk, x
k, yk)} be the se-

quence generated by Algorithm 5.1. Then µk > ̺k and µk > µk+1 for all k > 0.

Moreover, zk ∈ L(U0) for all k > 0, where

L(U0) := {z ∈ R++ × R
n × R

n ; ‖H1(z)‖ 6 U0}.

P r o o f. Notice that if µk > ̺k for some k, then from (5.6) it holds that µk+1 >

(1 − αk)̺k + αk̺k = ̺k > ̺k+1 because {̺k} is monotonically decreasing. This
together with µ0 > γ > ̺0 proves µk > ̺k for all k > 0. By this result, we can further

obtain from (5.6) that µk+1 6 (1 − αk)µk + αkµk = µk for all k > 0. Moreover, by

Theorem 5.1, (5.2) and (5.7), we have zk ∈ R++×R
n×R

n and ‖H1(z
k)‖ 6 Uk 6 U0

for all k > 0. This completes the proof. �

6. Global convergence analysis

Theorem 6.1. Suppose that F is monotone. Let {zk = (µk, x
k, yk)} be the

sequence generated by Algorithm 5.1. Then

(6.1) lim
k→∞

‖H1(z
k)‖ = 0.

P r o o f. By Lemma 5.1, there exists ̺∗ > 0 and U∗ > 0 such that

(6.2) lim
k→∞

̺k = ̺∗, lim
k→∞

Uk = U∗, lim
k→∞

‖H1(z
k)‖ = U∗.

Now we assume U∗ > 0. Then from Lemma 5.1 we have ̺∗ > 0. By Lemma 5.2,

there exists µ∗ > 0 such that lim
k→∞

µk = µ∗ and µ0 > µk > µ∗ > ̺∗ > 0. Thus, if

lim
k→∞

‖(xk, yk)‖ = ∞, then {‖H1(z
k)‖} must be unbounded by Theorem 4.2, which

contradicts Lemma 5.2. Hence, {zk = (µk, x
k, yk)} is bounded and it has at least

one accumulation point, denoted by z∗ := (µ∗, x∗, y∗). Without loss of generality,

we assume lim
k→∞

zk = z∗. From Steps 4 and 5 in Algorithm 5.1, for all sufficiently

large k,

(6.3) ‖H1(z
k+1)‖ 6 min{(1− ξαk)Uk, Vk} 6 (1− ξαk)Uk.

Since lim
k→∞

‖H1(z
k)‖ = lim

k→∞
Uk = U∗ > 0, by (6.3) we have lim

k→∞
αk = 0. Let

α̂k := αk/δ. Then lim
k→∞

α̂k = 0 and α̂k does not satisfy the line search criterion (5.3)

for any sufficiently large k, i.e.,

(6.4) ‖H1(z
k + α̂k∆zk)‖ > min{(1− ξα̂k)Uk, Vk}.
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Since min{θa, b} > θmin{a, b} holds for any a, b > 0 and θ ∈ (0, 1), from (6.4), for

any sufficiently large k,

‖H1(z
k + α̂k∆zk)‖ > (1 − ξα̂k)min{Uk, Vk} = (1 − ξα̂k)Vk

= (1 − ξα̂k)(‖H1(z
k)‖ + βΛk) > (1− ξα̂k)‖H1(z

k)‖.

It follows that for any sufficiently large k,

‖H1(z
k + α̂k∆zk)‖ − ‖H1(z

k)‖
α̂k

> −ξ‖H1(z
k)‖,

i.e.,

(6.5)
‖H1(z

k + α̂k∆zk)‖2 − ‖H1(z
k)‖2

α̂k

> −ξ‖H1(z
k)‖[‖H1(z

k + α̂k∆zk)‖+ ‖H1(z
k)‖].

Since z∗ ∈ R++ × R
n × R

n, ‖H1(z)‖2 is continuously differentiable at z∗. Thus, by
letting k → ∞ in (6.5), also using (6.2), we have

(6.6) H1(z
∗)⊤H ′

1(z
∗)∆z∗ > −ξ(U∗)2,

where ∆z∗ is the solution of H ′
1(z

∗)∆z∗ = −H1(z
∗) + ̺∗p. On the other hand,

from (5.1) we have

(6.7) H1(z
k)⊤H ′

1(z
k)∆zk = H1(z

k)⊤[−H1(z
k) + ̺kp] = −‖H1(z

k)‖2 + µk̺k

6 −(1− γ)‖H1(z
k)‖2,

where the inequality holds, because µk 6 ‖H1(z
k)‖ and ̺k 6 γmin{1, ‖H1(z

k)‖2} 6

γ‖H1(z
k)‖ for all k > 0. By letting k → ∞ in (6.7), also using (6.2), we have

(6.8) H1(z
∗)⊤H ′

1(z
∗)∆z∗ 6 −(1− γ)(U∗)2.

By combining (6.6) and (6.8), we have ξ(U∗)2 > (1 − γ)(U∗)2, which together with

U∗ > 0 gives ξ > 1 − γ. This contradicts ξ < 1 − γ in Step 1. Thus, U∗ = 0 and

by (6.2) we have (6.1). This completes the proof. �

Theorem 6.2. Suppose that F is monotone. Let {zk} be the sequence generated
by Algorithm 5.1. Then any accumulation point of {zk} is a solution of H1(z) = 0.

Moreover, if the solution set of the CCCP is nonempty and bounded, then {zk} is
bounded.

P r o o f. The first result holds by (6.1) and a simple continuity discussion. By

using Theorem 4.2 and Mountain Pass Theorem [28], Theorem 9.2.7, we can prove

the second result similarly as [15], Theorem 5.4 and [33], Theorem 5.2. �
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7. Local superlinear/quadratical convergence

Let z∗ be any accumulation point of the iteration sequence {zk} generated by
Algorithm 5.1. To obtain local fast convergence, existing smoothing-type algorithms

require the following Jacobian nonsingularity assumption:

All V ∈ ∂H1(z
∗) are nonsingular.

In this section, we establish the local superlinear/quadratical convergence of Algo-

rithm 5.1 under some assumptions, which are much weaker than Jacobian nonsingu-

larity assumption.

Assumption 7.1. There exist a neighborhood N(z∗, ε) := {z ∈ R× R
n × R

n ;

‖z − z∗‖ 6 ε} and a constant ξ > 0 such that

(7.1) ξ‖H1(z)‖ > ‖z − z∗‖ ∀ z ∈ N(z∗, ε).

Assumption 7.1 is a type of local error bound condition, which has been used to

analyze local convergence properties of smoothing Levenberg-Marquardt algorithms

(e.g., [20], [23]). The following lemma shows that Assumption 7.1 is weaker than

Jacobian nonsingularity assumption.

Lemma 7.1. If all V ∈ ∂H1(z
∗) are nonsingular, then Assumption 7.1 holds.

P r o o f. By [30], Proposition 3.1, there exist a neighborhood N(z∗, ε1) and a con-

stant c > 0 such that for any z ∈ N(z∗, ε1) and V ∈ ∂H1(z), V is nonsingular and

‖V −1‖ 6 c. Since H1 is semismooth at z
∗, there exists a neighborhood N(z∗, ε2)

such that for any z ∈ N(z∗, ε2) and V ∈ ∂H1(z),

‖H1(z)−H1(z
∗)− V (z − z∗)‖ 6

1

2c
‖z − z∗‖.

By Theorem 6.2, we have H1(z
∗) = 0. Let ε := min{ε1, ε2}. Then for any z ∈

N(z∗, ε) and V ∈ ∂H1(z) we have

‖z − z∗‖ 6 ‖z − z∗‖ − ‖V −1H1(z)‖+ c‖H1(z)‖
6 ‖V −1H1(z)− (zk − z∗)‖+ c‖H1(z

k)‖
6 ‖V −1‖‖H1(z)− V (zk − z∗)‖+ c‖H1(z)‖

6
1

2
‖(z − z∗)‖+ c‖H1(z)‖,

and hence ‖zk − z∗‖ 6 2c‖H1(z)‖. The proof is completed. �
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From Lemma 7.1, if Jacobian nonsingularity assumption holds at z∗, then As-

sumption 7.1 holds. However, the converse is not necessarily true. A simple coun-

terexample is H(z) = |z| = 0, where z ∈ R. It is easy to see that ξ‖H(z)‖ > |z − 0|
for any ξ > 1 and z ∈ R. But since ∂BH

′(0) = {1,−1}, we have 0 ∈ ∂H ′(0), which

implies that Jacobian nonsingularity assumption does not hold at z∗ = 0. Hence,

Assumption 7.1 is weaker than Jacobian nonsingularity assumption.

Assumption 7.2. There exist a neighborhoodN(z∗, ε) := {z ∈ R++×R
n×R

n ;

‖z − z∗‖ 6 ε} and constants t ∈ [0, 1) and C > 0 such that

(7.2) ‖H ′
1(z)

−1‖ 6
C

‖H1(z)‖t
∀ z ∈ N(z∗, ε).

For Assumption 7.2, we have the following remarks.

(i) From Theorem 4.1, H ′
1(z) is invertible for any z ∈ N(z∗, ε) and hence Assump-

tion 7.2 is reasonable.

(ii) If inequality (7.2) holds for t = 0, then Assumption 7.2 reduces to that the set

{‖H ′
1(z)

−1‖ ; z ∈ N(z∗, ε)} is bounded, which has been used in many literatures to
prove the local fast convergence of their algorithms (e.g., [5], [36]).

(iii) In Theorem 6.1, we proved that lim
k→∞

‖H1(z
k)‖ = 0. Hence, Assumption 7.2

allows ‖H ′
1(z

k)−1‖ → ∞ as k → ∞ when t ∈ (0, 1). In what follows, we will show

that our algorithm has local quadratical convergence if Assumption 7.2 holds for

t = 0, and it still has local superlinear convergence if ‖H ′
1(z

k)−1‖ → ∞ as k → ∞
and Assumption 7.2 holds for some t ∈ (0, 1).

(iv) From [30], Proposition 3.1, if Jacobian nonsingularity assumption holds at z∗,

then {‖H ′
1(z)

−1‖ ; z ∈ N(z∗, ε)} is bounded and hence Assumption 7.2 holds. How-
ever, the converse is also not necessarily true. See the example H(z) = |z| = 0

again. Since H ′(z)−1 = sgn(z)−1 for any z ∈ DH := {z 6= 0}, when z → 0, we

have ‖H ′(z)−1‖ = 1. However, Jacobian nonsingularity assumption does not hold at

z∗ = 0. Hence, Assumption 7.2 is also weaker than Jacobian nonsingularity assump-

tion.

Under Assumptions 7.1 and 7.2, we now give the local superlinear/quadratical

convergence of Algorithm 5.1 as follows.

Theorem 7.1. Suppose that F is monotone and F ′ is locally Lipschitz. Let z∗

be any accumulation point of the sequence {zk} generated by Algorithm 5.1. If

Assumptions 7.1 and 7.2 hold, then the whole sequence {zk} converges to z∗ and

‖zk+1 − z∗‖ = O(‖zk − z∗‖2−t) and ‖H1(z
k+1)‖ = O(‖H1(z

k)‖2−t), t ∈ [0, 1).
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P r o o f. By Theorems 6.1 and 6.2, we have lim
k→∞

‖H1(z
k)‖ = 0 and H1(z

∗) = 0.

Since H1 is strongly semismooth at z
∗, for all zk sufficiently close to z∗,

(7.3) ‖H1(z
k)−H1(z

∗)−H ′
1(z

k)(zk − z∗)‖ = O(‖zk − z∗‖2).

Since H1 is strongly semismooth at z
∗, H1 is locally Lipschitz continuous near z

∗.

Thus, for all zk sufficiently close to z∗,

(7.4) ‖H1(z
k)‖ = ‖H1(z

k)−H1(z
∗)‖ = O(‖zk − z∗‖).

By (5.5) and (7.4), for all zk sufficiently close to z∗,

(7.5) ̺k 6 γ‖H1(z
k)‖2 = O(‖H1(z

k)‖2) = O(‖zk − z∗‖2).

Then by (5.1), (7.3), (7.5) and Assumptions 7.1 and 7.2, for all zk sufficiently close

to z∗,

(7.6) ‖zk +∆zk − z∗‖ = ‖zk +H ′
1(z

k)−1[−H1(z
k) + ̺kp]− z∗‖

6 ‖H ′
1(z

k)−1‖[‖H1(z
k)−H1(z

∗)−H ′
1(z

k)(zk − z∗)‖+ ̺k]

6
C

‖H1(zk)‖t
O(‖zk − z∗‖2)

6
Cξt

‖zk − z∗‖tO(‖zk − z∗‖2)

= O(‖zk − z∗‖2−t).

So, zk + ∆zk is sufficiently close to z∗. Moreover, from Assumption 7.1, for all zk

sufficiently close to z∗,

(7.7) ‖zk − z∗‖ = O(‖H1(z
k)‖) = O(‖H1(z

k)−H1(z
∗)‖).

Thus, for all zk sufficiently close to z∗, it follows from (7.4), (7.6) and (7.7) that

(7.8) ‖H1(z
k +∆zk)‖ = O(‖zk +∆zk − z∗‖) = O(‖zk − z∗‖2−t)

= O(‖H1(z
k)−H1(z

∗)‖2−t) = O(‖H1(z
k)‖2−t).

By (7.8), for all zk sufficiently close to z∗,

‖H1(z
k +∆zk)‖ 6 (1− ξ)‖H1(z

k)‖,

which together with (5.2) implies that for all zk sufficiently close to z∗,

‖H1(z
k +∆zk)‖ 6 (1− ξ)min{Uk, Vk} 6 min{(1− ξ)Uk, Vk}.

This shows that for all zk sufficiently close to z∗, αk = 1 is always accepted in Step 4

of Algorithm 5.1. Thus, for all zk sufficiently close to z∗, zk+1 = zk + ∆zk, which

together with (7.6) and (7.8) proves the theorem. �
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8. Numerical experiments

In this section, we give some numerical results of Algorithm 5.1 for solving the

following CCCP:

(8.1) x ∈ Cθ, y ∈ C
∗
θ, 〈x, y〉 = 0, y = F (x),

where Cθ ⊂ R
n and (Cθ)

∗ ⊂ R
n are the Cartesian product of some Cm

θ and (Cm
θ )∗,

respectively, that is,

(8.2) Cθ = C
n1

θ × . . .× C
nr

θ , C
∗
θ = (Cn1

θ )∗ × . . .× (Cnr

θ )∗

with r, n1, . . . , nr > 1 and n =
r
∑

i=1

ni, x = (x1, . . . , xr)∈R
n and y = (y1, . . . , yr)∈R

n

with xi, yi ∈ R
ni and F : R

n → R
n is a continuously differentiable function.

All experiments are carried on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU

@ 3.60 GHz and RAM of 8.00GB. The program codes are written in MATLAB and

run in MATLAB R2018a environment. The parameters used in Algorithm 5.1 are

chosen as

µ0 = 10−3, γ = 10−4, ξ = 0.2, δ = 0.8, β = 0.5, Λ0 = 10.

Moreover, we use ‖Hi(z
k)‖ 6 10−6 (i = 1, 2) as the stopping criterion.

E x am p l e 8.1. Consider the CCCP (8.1), where Cθ = C
3
θ×C

2
θ and F : R

5 → R
5

is given by

F (x) =















24(2x1 − x2)
3 + exp(x1 − x3)− 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√

1 + (3x2 + 5x3)2 − 6x4 − 7x5

− exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1

−x1 + 7x2 − 5x3 + 2















.

Notice that F is monotone (see [18]). We apply Algorithm 5.1 to solve this example

with θ = π/3, π/4, π/5, π/6, respectively, by using x0 = y0 = (1, . . . , 1)⊤ as the

starting points. The obtained solutions are

(

θ =
π

3

)

x∗ ≈ (0.16058,−0.07313, 0.26550, 0.53213,−0.24303)⊤,
(

θ =
π

4

)

x∗ ≈ (0.23240,−0.07308, 0.22061, 0.53390,−0.53390)⊤,
(

θ =
π

5

)

x∗ ≈ (0.25645, 0.00637, 0.18622, 0.61957,−0.45014)⊤,
(

θ =
π

6

)

x∗ ≈ (0.26412, 0.05190, 0.14339, 0.61623,−0.35578)⊤.

226



Tables 1 and 2 show a sequence of the first three components of xk generated by

Algorithm 5.1 with Hi(z) (i = 1, 2) for this example with θ = π/3. From the values

of ‖H1(z
k)‖ and ‖H2(z

k)‖, we can clearly see the local fast, at least superlinear,
convergence of our algorithm.

k xk
1 xk

2 xk
2 ‖H1(z

k)‖
0 1.0000e + 00 1.0000e + 00 1.0000e + 00 3.3696e + 01

1 2.8956e− 01 −1.1600e− 01 1.7945e− 01 7.9149e + 00

2 2.0641e− 01 −8.8405e− 02 2.3495e− 01 2.0079e + 00

3 1.6896e− 01 −7.5926e− 02 2.5991e− 01 3.0480e− 01

4 1.6092e− 01 −7.3249e− 02 2.6527e− 01 1.2089e− 02

5 1.6058e− 01 −7.3134e− 02 2.6550e− 01 2.1646e− 05

6 1.6058e− 01 −7.3134e− 02 2.6550e− 01 6.9779e− 11

7 1.6058e− 01 −7.3134e− 02 2.6550e− 01 3.4164e− 15

Table 1. Numerical results of Algorithm 5.1 with H1(z) for Example 8.1.

k xk
1 xk

2 xk
2 ‖H2(z

k)‖
0 1.0000e + 00 1.0000e + 00 1.0000e + 00 3.3519e + 01

1 2.7284e− 01 −1.4614e− 01 1.5096e− 01 8.6764e + 00

2 2.0763e− 01 −9.1303e− 02 2.3215e− 01 2.0731e + 00

3 1.6978e− 01 −7.6230e− 02 2.5934e− 01 3.3478e− 01

4 1.6099e− 01 −7.3273e− 02 2.6522e− 01 1.4568e− 02

5 1.6058e− 01 −7.3134e− 02 2.6550e− 01 3.1413e− 05

6 1.6058e− 01 −7.3134e− 02 2.6550e− 01 1.4696e− 10

7 1.6058e− 01 −7.3134e− 02 2.6550e− 01 4.3620e− 15

Table 2. Numerical results of Algorithm 5.1 with H2(z) for Example 8.1.

E x am p l e 8.2. Consider the CCCP (8.1), where Cθ = C
n1

θ × . . . × C
nr

θ and

F (x) = Mx+ q with q ∈ R
n and M ∈ R

n×n being a positive semidefinite matrix.

We choose q = rand(n, 1) and generate the matrix M ∈ R
n×n by the following

procedure. We choose Ni = rand(ni, ni) for i = 1, 2, . . . , r and then let M be

the block diagonal matrix with N⊤
1 N1, . . . , N

⊤
r Nr as block diagonals, i.e., M =

diag{N⊤
i Ni}ri=1. In the experiments, we let r = 4 and ni = n/4 for any i = 1, 2, . . . , r.

Moreover, we take x0 = (1, 0, . . . , 0)⊤ and y0 = (1, . . . , 1)⊤ as the starting point.

First, we generate 10 problem instances for each size of the test problem with θ =

π/4, π/5, π/6, respectively. Numerical results are listed in Tables 3 and 4, where

n denotes the size of test problems, AIT and ACPU denote the average value of

iteration numbers and CPU time in seconds among the 10 testing, respectively. From
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θ =
π

4
θ =

π

5
θ =

π

6

n AIT ACPU AIT ACPU AIT ACPU

500 6.0 0.50 7.0 0.56 7.3 0.61

1000 7.0 2.71 7.8 2.99 8.5 3.28

1500 7.1 8.49 8.1 9.10 8.8 9.95

2000 7.9 18.18 8.4 18.95 9.2 21.22

2500 8.0 30.96 9.0 35.22 9.7 37.52

3000 8.0 53.56 9.0 57.83 9.9 62.32

Table 3. Numerical results of Algorithm 5.1 with H1(z) for Example 8.2.

θ =
π

4
θ =

π

5
θ =

π

6

n AIT ACPU AIT ACPU AIT ACPU

500 7.0 0.74 7.6 0.73 8.1 0.79

1000 7.7 3.46 8.5 3.74 9.4 4.29

1500 8.0 10.38 9.0 12.03 10.0 12.82

2000 8.0 21.82 9.3 24.59 10.4 26.68

2500 8.7 41.57 10.0 45.40 10.9 48.33

3000 9.0 66.86 10.0 74.50 11.2 80.47

Table 4. Numerical results of Algorithm 5.1 with H2(z) for Example 8.2.

Algorithm 5.1 Qi-Sun-Zhou’s method

n AIT ACPU AIT ACPU

H1(z) 500 5.3 0.43 6.7 0.48

1000 5.9 2.27 7.0 2.61

1500 6.0 6.52 7.7 8.46

2000 6.0 13.50 8.0 17.72

2500 6.0 23.53 8.0 30.45

3000 6.7 42.85 8.0 49.43

H2(z) 500 6.1 0.62 7.4 0.71

1000 6.0 2.61 8.0 3.35

1500 6.7 8.38 8.1 10.09

2000 7.0 17.68 9.0 22.95

2500 7.0 30.90 9.0 39.58

3000 7.0 52.04 9.0 61.24

Table 5. Comparison of Algorithm 5.1 and Qi-Sun-Zhou’s method.
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Tables 3 and 4 we can see that our algorithm is very effective for solving CCCPs.

Moreover, we observe that the performance of our algorithm based on the smoothing

function ϕ1 is better than that based on the smoothing function ϕ2. This is an

important new discovery and it is yet unknown whether similar phenomena happens

in other different algorithms.

Next, we generate 10 problem instances for the test problem with θ = π/3. For

the purpose of comparison, we also apply the Qi-Sun-Zhou’s smoothing Newton

method [31] to solve these problem instances. Numerical results are listed in Table 5

from which we may find that our algorithm needs less iteration numbers and CPU

time compared with Qi-Sun-Zhou’s method. This is probably due to the nonmono-

tone line search adopted in our algorithm.

9. Conclusions

In this paper we investigated the CCCP, which is a type of nonsymmetric cone

complementarity problem. We constructed two smoothing functions for the CCCP

and proved that they have coerciveness and strong semismoothness. Moreover, we

proposed a smoothing algorithm to solve the CCCP, which is designed based on a new

line search technique. The proposed algorithm is tractable because it can start from

an arbitrary point and it solves only one linear system of equations and performs only

one line search at each iteration. Under suitable assumptions, we proved that the

proposed algorithm has global convergence. Moreover, we established the local su-

perlinear/quadratical convergence of the proposed algorithm under Assumptions 7.1

and 7.2, which are much weaker than Jacobian nonsingularity assumption. By the

numerical results in Tables 1–5, we may find that our algorithm is very effective for

solving CCCPs.
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