Applications of Mathematics

Ahmad Kamandi; Keyvan Amini
A new nonmonotone adaptive trust region algorithm
Applications of Mathematics, Vol. 67 (2022), No. 2, 233-250

Persistent URL: http://dml.cz/dmlcz/149568

Terms of use:

© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/149568
http://dml.cz

67 (2022) APPLICATIONS OF MATHEMATICS No. 2, 233-250

A NEW NONMONOTONE ADAPTIVE TRUST REGION
ALGORITHM

AHMAD KAMANDI, Behshahr, KEYVAN AMINI, Kermanshah

Received April 29, 2020. Published online April 30, 2021.

Abstract. We propose a new and efficient nonmonotone adaptive trust region algorithm
to solve unconstrained optimization problems. This algorithm incorporates two novelties: it
benefits from a radius dependent shrinkage parameter for adjusting the trust region radius
that avoids undesirable directions and exploits a new strategy to prevent sudden increments
of objective function values in nonmonotone trust region techniques. Global convergence of
this algorithm is investigated under some mild conditions. Numerical experiments demon-
strate the efficiency and robustness of the proposed algorithm in solving a collection of
unconstrained optimization problems from the CUTEst package.
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global convergence; CUTEst package
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1. INTRODUCTION

Consider the unconstrained optimization problem

(1.1) min f(z),

where f: R™ — R is a differentiable function. We are interested in the case when the
number of variables is large. Despite the fact that the well-known trust region method
is a well-documented framework [5], [15] in numerical optimization for solving the
problem (1.1), its efficiency needs to be improved. The method itself or its variations
are frequently required in tackling emerged problems in extensive recent applications
3], [4], [12], [18].
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In order to minimize f(x), the trust region framework uses an approximation x
of a local minimizer to compute a trial step direction dj by solving the subproblem

1
1.2 i d d) = Td+ =d" Bid
( ) H;IHng%kmk( ); mk( ) fk+gk + 2 ks

where fr = f(zr), g = Vf(zk), dk is a positive parameter that is called the trust
region radius and By is an approximation to the Hessian of the objective function
at x. In the rest of the paper, ||-|| denotes the Euclidean norm.

Finding a global minimizer of subproblem (1.2) is often too expensive so that,
in practice, numerical methods are applied to find an approximation [9], [14], [21].
Global convergence of the classic trust region algorithm is proved provided that
the approximate solution djy of subproblem (1.2) satisfies the following reduction
estimation in the model function:

1 : gkl
1.3 mi(0) —mp(dy) > c= min < g,
(13) 4(0) = ma(de) > e llgell min {0, 5}
with ¢ € (0, 1).
Given a fixed trial direction di, define the ratio r; as

fe = o+ dp)
(1.4) Tk ‘= —mk(O) — mk(dk)'

In classical trust region methods, the kth iteration is called a successful iteration
if 7, > p for some p € (0,1). In this case, the trial point x + di is accepted
as a new approximation and the trust region radius is enlarged. Otherwise, the
iteration k is called an unsuccessful iteration; the trial point is rejected and the
trust region is shrunk. The efficiency of trust region methods strongly relies on the
generated sequence of radii. A large radius possibly increases the cost of solving
the corresponding subproblem and a small radius increases the number of iterations.
Hence, choosing an appropriate radius in each iteration is challenging in trust region
methods. In the effort to tackle this challenge, many authors have rigorously studied
the adaptive trust region methods [1], [8], [13], [19], [23].

Zhang et al. in [23] proposed the adaptive radius

(1.5) 0 = || gell |1 B,

where ¢ € (0,1), pi is a nonnegative integer and Ek = By + Ej is a safely positive
definite matrix based on a modified Cholesky factorization by Schnabel and Eskow
in [17]. Numerical results indicate that embedding this adaptive radius in a pure trust
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region increases the efficiency. But the formula (1.5) requires to calculate the inverse
matrix B,;l at each iteration and thus it is not suitable for large-scale problems. Shi
and Guo in [19] proposed another adaptive radius

.
. 9k 9k

(1.6) O = _Cpk—l—#HQIc“v
4 Brak

where ¢ € (0,1), pi is a nonnegative integer and g, is a vector satisfying

T
9k 9k

(1.7) —_—— =T

gkl - Ikl -

with 7 € (0, 1]. Moreover, Ek is generated by the procedure: Ek = By +il, where i
is the smallest nonnegative integer such that q,jgqu > 0. It is simple to see that
the radius (1.6), for px, = 0, estimates norm of the exact minimizer of the quadratic
model f + g,;rd + %dTgkd along the direction gy.

Motivated by this adaptive radius, Kamandi et al. proposed an efficient adaptive
trust region method in which the radius at each iteration is determined by using the
information gathered from the previous step [13]. Let dx_1 be the solution of the
subproblem in the previous step, for parameters 7 € (0,1) and v > 1 define

—(g)d
— gk ifk;:oorM <7,
. qi ‘= k k—1
(1.8) lgrllllde—1ll
dk,1 O0.W.
and
.
— I g, if k=0,
(1.9) . q;, Brax
. k= T
max{—%”%ﬂ, 751@71} if k> 1.
k

Then, the algorithm proposed in [13] for solving (1.1) is as follows:

Algorithm: (IATR) Improved adaptive trust-region algorithm

input: zo € R™, a positive definite matrix By € R**™, § > 0,
e,p€(0,1), 7€ (0,1),y>1and e > 0.
begin
k < 0, compute fy and gq.
while (Jlgel] > )
Compute g by (1.8) and si by (1.9),
set 0, = min{sy,d},
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re <— 0, p < 0.

while (1, < p)
5kp — Cpéko,
compute d, by solving (1.2) with radius dy,,;
compute 7 by (1.4),
p+—p+1.

end while

Tt1 & Tk + dg,,

update By by a quasi-Newton formula,

k+k+1.

end while
end

Despite it enjoys many advantages [13], this algorithm has several disadvantages.
First, setting a fixed value for the shrinkage parameter ¢ in the inner loop of the
TATR algorithm is not an intelligent choice. In order to see this, suppose that the
step direction dy,, the solution of the subproblem (1.2) with the radius dy,, is rejected
by the ratio test. In this case, the algorithm shrinks the radius dg, by the factor
¢ € (0,1). Hence, we have the new subproblem

1
(1.10) min  mg(d), mg(d) = fr + g, d+ =d' Byd.
lldll<edi, 2

Since ¢dx, < Jk,, it is clear that the feasible region of the subproblem (1.10) is
a subset of the feasible region of the subproblem (1.2). So, in case that ||dg, || < ¢d,,
dy, is also a solution of (1.10), although we know that it is rejected by the ratio test.
This means that the new step direction is rejected by the ratio test again without
any improvement; solving the new subproblem has redundant computational costs,
though.

Another drawback of a constant shrinkage parameter occurs when the trust region
radius is too large and the shrinkage parameter is close to one: the algorithm is forced
to solve the trust region subproblem several times until it finds a successful step.
So, using a shrinkage parameter close to one may increase the number of function
evaluations. On the other hand, using a small shrinkage parameter may cause to
shrink the trust radius too fast; in this case, the number of iterations increases.

Furthermore, the sequence of function evaluations generated by this algorithm is
decreasing and numerical results show that imposing monotonicity to trust region
algorithms may reduce the speed of convergence for some problems, specially in
the presence of a narrow valley. In order to overcome similar drawbacks, Grippo
et al. proposed a nonmonotone line search technique for Newton’s method [11]. By
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generalizing the technique to the trust region methods, the nonmonotone version of
these methods appeared in the literature [1], [2], [6], [16], [20], [24].

The basic difference between the monotone and nonmonotone trust region ap-
proaches is due to the definition of the ratio r;. In a nonmonotone trust region, the
ratio is defined by

» = Ok = f(@r +di)

(1.11) = mu(0) — ma(dy)

where C}, is a parameter greater than or equal to fx. In this paper, we call C} the
nonmonotone parameter. In different versions of nonmonotone algorithms, the non-
monotone parameter computation is based on different methodologies. A common
parameter for nonmonotone trust region methods is

(1.12) Ju = o208, fr—js
where Ny = 0 and N = min{k, N} for a fixed integer number N > 0.

Note that by taking maximum in the parameter (1.12), a potentially very good
function value can be excluded. Trying to tackle this drawback, Ahookhosh et
al. in [2] proposed the nonmonotone parameter

(1.13) Ry = mi fu,, + (1 — n&) frs

where Nk € [Nmins Pmax)s Pmin € [0,1) and Ymax € [Pmin, 1]. When 7y is close to one
the effect of nonmonotonicity is amplified. On the other hand, when 7y, is close to
zero the algorithm ignores the effect of the term f;, and behaves monotonically.

In 2019, Xue et al. proposed a nonmonotone version of the IATR algorithm based
on the nonmonotone parameter (1.13), see [22]. They also used a scaled memoryless
BFGS formula to update the approximation of the Hessian matrix. By analyzing the
numerical behavior of nonmonotone versions of IATR using the aforementioned non-
monotone parameters, we find out that in some problems, for example OSCIGRAD,
the difference between the current objective value f; and the nonmonotone param-
eter becomes too large and in this case a large increase is allowed to happen in the
next iteration. Another drawback of the above nonmonotone parameters is that they
strongly depend on the choice of the memory parameter Nj and the parameter 7,
and there is no specific rule to adjust them.

In this paper, by combining the idea of adaptive trust region and nonmonotone
techniques, we propose a new efficient nonmonotone trust region algorithm for solving
unconstrained optimization problems. In the new algorithm, a radius dependent
shrinkage parameter is used to adjust the trust region radius in rejected steps which
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addresses the first disadvantage of IATR. For resolving the second disadvantage,
a novel strategy is used to compute the nonmonotone parameter in this algorithm
which prevents a sudden increment in the objective values.

The paper is organized as follows: the new algorithm is proposed in the next
section. Section 3 is devoted to its convergence properties. The numerical results
of testing the new algorithm to solve a collection of the CUTEst test problems are
reported in Section 4. The last section includes the conclusion.

2. THE NEW ALGORITHM

In this section, we propose our algorithm for solving unconstrained optimization
problems.

As mentioned in the previous section, setting a fixed value for the shrinkage pa-
rameter c¢ in the inner loop of the IATR algorithm may impose some useless compu-
tational costs to this algorithm. Therefore, for resolving this issue, we propose the
radius dependent shrinkage parameter

(2.1) Ck, = c(0r, ),

where ¢(8) : (0,0] — [ap, 1] is a decreasing function where 0 < ag < a3 < 1 and §
is the maximum possible radius. Also, in order to exclude the rejected trial step d,,,
in the new algorithm we define the new radius as oy, , = cx, ||dx, ||-

Note that the radius dependent parameter (2.1) is close to ag for a large trust
region radius and is close to oy for a small one. Hence, this parameter shrinks the
trust region harshly for large trust region radii and helps the new algorithm to find
a successful step direction fast enough. Further, it shrinks the trust region mildly in
the case that the trust region radius is small.

Also numerical tests persuaded us to consider a radius dependent parameter v, =
~v(dk—1) based on the previous trust region radius and use it instead of the constant
parameter +y in (1.9). Similar to (2.1), v(dx—1) is a decreasing function bounded from
below by 1.

With the goal of overcoming the second disadvantage of the IATR, algorithm and
building an efficient nonmonotone version of it, we propose a new nonmonotone pa-
rameter C. This new parameter benefits from nonmonotonicity in an adaptive way
compared to the mentioned parameters. When a very good function value is found at
the iteration k, it is better to save that by forcing the algorithm to behave monoton-
ically for the next iteration. To this aim, we define a new nonmonotone parameter
using not only the simple parameter f;, defined by (1.12) but also considering its
relative difference from the current function value.
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For a positive parameter v, define sequences { My} and {Ij} as

0 if k=0or fi, — frx > v|fkl
My, =
Mk*l—’_l 0. W.
and
; 0 ifk=0or fr < fr_1,
ke Ik71+1 0. W.

Having the above sequences for fixed natural numbers N and I, we define the new

nonmonotone parameter C} as

max fr_; if I <1,
(2.2) Oy =  0sisn Jies :
fk O.W.

where nj, = min{ M, N}. Note that the sequence {I;} counts the number of con-
secutive increments in the objective function values. So, the nonmonotone param-
eter C defined by (2.2) prevents large increments in the objective function values
and guarantees at least one decrease for each Tth iteration. Also, the definition of
the sequence { M)} makes the new algorithm monotone when the relative difference
between f;, and the current function value is large and prevents a sudden increment
in the objective function values for the next iteration.

Now, we are ready to propose the new adaptive nonmonotone trust region algo-
rithm.

Algorithm: (NATR) Nonmonotone adaptive trust-region algorithm

input: zo € R™, a positive definite matrix By € R**™, § > 0,
a decreasing function ¢(d), p € (0,1), 7 € (0,1), v > 1, and € > 0.
begin
k < 0; compute fy and gq.
while (||gx] > )
Compute g by (1.8) and si, by (1.9),
set 0, = min{sy,d},
compute Cj by (2.2),
compute dy, by solving (1.2) with radius d, and 7 by (1.11)
and set p = 0.
while (7, < )
Compute ¢y, by (2.1),
Okysr = Chy [l I,
compute dy,, by solving (1.2) with radius é,,, and 7 by (1.11),
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p+—p+1.
end while
Tyl & Tp + dg,,
update By by a quasi-Newton formula,
k+k+1.
end while
end

In the next section, we propose the convergence properties of the new algorithm.

3. CONVERGENCE PROPERTIES

In this section, we analyze the global convergence of the new algorithm. To this
end, we need the following assumptions:

(H1) The objective function f(z) is continuously differentiable and has a lower
bound on the level set

L(zo) ={z € R"; f(z) < f(xo), wo € R"}.

(H2) The approximation matrix By is uniformly bounded, i.e., there exists a con-
stant M > 0 such that
1Bl < M VEkeN.

The following lemma is similar for both the IATR and NATR algorithms, so its
proof is omitted.

Lemma 3.1. Suppose that the sequence {x} is generated by the NATR algo-
rithm. Then

| (ek + di,) = mr(dr,))| = o(lld, |)-

Proof. See[15]. O

The next two lemmas guarantee the existence of some lower bounds for the trust
region radius dy, and the norm of the trial step di, at the iteration k generated by
the NATR algorithm.

Lemma 3.2. Suppose that &y, = min{sy,d} is the trust region radius at the
iteration k of the NATR algorithm such that sy, is defined by (1.9). Then

. llgell <
3.1 Ok, = minq 7 0 ¢
3.1 o 2 min {7 6
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Proof. Incased < sy, we have 6, = 6 and the inequality (3.1) is valid. Thus,
consider the case that s; < 6 and Ok, = Sk. The definition of s in (1.9) and the
Cauchy-Schwarz inequality yield that

T
—9 9k
(3.2) Oko = T
* 7 1Bl llgxll

By the definition of ¢ in (1.8) if gx = —gi, inequality (3.2) results in

llgwl

Oy = .
* Bkl

When g, = dj_1, we have —g, g > 7|gx|||lqx| so that inequality (3.2) implies

loell
2]

Okg = T

By the above explanation along with the fact that 7 € (0,1) we can conclude
that (3.1) is valid. O

Lemma 3.3. Suppose that dy, Is the solution of the subproblem (1.2) with ra-
dius dy,. Then

(3.3) Hdk0||2min{ lgell 5 }

Proof. By Theorem 4.1 of [15], when dy, lies strictly inside the feasible region

of subproblem (1.2), we must have Brdy, = —g such that the Cauchy-Schwarz
inequality yields
llgk |
lldio || = :
Bk

In the other case dj, lies on the boundary of the feasible region of the subprob-
lem (1.2) which implies ||dg, || = 0k,- So, from the above discussion we can conclude
that (3.3) is valid. O

By (3.1) and (3.3), we can also obtain a lower bound for d;,. Note that, at
the iteration k of the NATR algorithm, for any p > 1 the solution dy, lies on the
boundary of the region defined by d,. Since the objective is fixed for each iteration,
when the trial step di, is rejected by the ratio test, the new radius d,., is set to
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exclude dy, from the new region. Thus, by the contraction of the inner loop of the
NATR algorithm, we have

6kp = Ckyp_ Hdkp—l H = Ckp—lékp—l

= Chy_1 Chy_s ||k, o |l = Chy_ s Chy_ 5Ok,

dko”'

p—1
=1
i=0

This equation along with (3.1), (3.3) and the fact that aq is a lower bound and oy
an upper bound for ¢, for any i > 0 yield that

(3.4) ab min{T gl ,5} < 0k, < afd.
| Bl

In Lemma 3.4, we propose a lower bound for the denominator of the ratio 7

defined by (1.11) which is used in Lemma 3.5 to prove that the inner loop of the
NATR algorithm terminates in a finite number of inner iterations.

Lemma 3.4. Suppose that (H2) holds, the sequence {x\} is generated by the

NATR algorithm, and dy, is an approximate solution of subproblem (1.2) with ra-
dius 6y, that satisfies (1.3). Then,

1 o lgwll 5
(3.5) mi(0) = mi(de,) > 5eahgn mm{Tv,a} vk eN.

Proof. By (1.3), for dy, we have

1 . ll gkl
ms(0) — mi(de,) > e el min {5, 120
> 1Bl

This inequality along with the assumption (H2) and inequality (3.4) result in

1 _
ma(0) ~ mi(d,) > Seabllge] min {1220 5,

So, the proof is completed. O

Lemma 3.5. Suppose that the assumption (H2) holds. Then the inner loop of
the NATR algorithm is well-defined.
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Proof. By contradiction, assume that the inner loop of the NATR algorithm
at the iteration k is not well-defined. Since zj is not the optimum, ||gx|| > €.

Now, let dy, be the solution of subproblem (1.2) corresponding to p € N U {0}
at xy. It follows from Lemma 3.1 and (3.5) that

fzr) — f(og + dk,)

3 1‘ _ ‘f(xk) — far + di,) — (mi(0) — my(di,))
my(0) — my(dg,) my(0) — my(dy,)
o(lldx, 1)
= geat|gel| min{r| gy /M, 6}
< o(lldw, 1)

fcabemin{re/M, 5}

By (3.4), we have 05, < al. So, if the inner loop of the NATR algorithm cycles
infinitely many times (or p — 00), then dx, tends to zero. Thus, the feasibility of dy,,
ldk, || < Ok,, implies that the right-hand side of the above equation tends to zero.
This means that for a sufficiently large p, we get

fxw) — [ + di,) <
mk(O) — mk(dkp)

This inequality along with the fact that Cy > fi yield that

. Cp— f(zr +dy,)
= ma(0) — ma(di,) =1

which means that the inner cycle of the NATR algorithm is terminated in the finite

number of internal iterations. O

The following lemma illustrates some properties of the sequences {x} and {Cy},
generated by the NATR algorithm. The statement of this lemma is used to prove
the global convergence of the NATR, algorithm.

Lemma 3.6. Suppose that the assumption (H1) holds and the sequence {xy}
is generated by the NATR algorithm. Then fr11 < Cky1 < Cg. Therefore, the
sequence {x},} is contained in the level set L(xg) and the sequence {C}} is convergent.

Proof. By the NATR algorithm, at the successful iteration k, we have
Cr — fry1 = p(mg(0) — mk(dkp)) = 0.

This inequality along with (2.2) and the definition of the sequence { M} } imply that

Ckt1 = max {frp1-5} < max{fri1,Cr} = Ck.
0<j<nk+1
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Thus
(3.6) Jr1 < Cr1 < Cp < Cp = fo.

The last equation means that {z;} is contained in the level set L(xg). Accordingly,
the assumption (H1) and (3.6) yield that {C} } is decreasing and bounded from below.
Therefore, the sequence {C}} is convergent. O

Now, we are ready to present the global convergence theorem.
Theorem 3.1. Suppose that the assumptions (H1) and (H2) hold. Then the

NATR algorithm either terminates in a finite number of steps, or generates an infinite
sequence {x} such that

(3.7) lim inf ||gx|| = 0.
k—o0

Proof. Ifthe NATR algorithm terminates in a finite number of steps, then the
proof is trivial. Hence, assuming that the sequence {z\} generated by this algorithm
is infinite, we show that (3.7) holds. To this end, suppose that there exists a constant
€o > 0 such that

(3-8) llgrll = €0

for all k. Let Cy = f;,, where f;, = argmax{oéngx {fk_j}}. Then, by Lemma 3.6,
IINE

the sequence {f;, } is a convergent subsequence of { fi.}. By the fact that 7 > p, we
have

fi. = frar = p(mi(0) — mi(dg, ).
Next, by replacing k with i — 1, we conclude that
fiik—l - flk 2 :u‘(mikfl(o) - mikfl(d(’ik—l)p))'

This inequality along with Lemma 3.4 yield that

fis, o = fin 2 1 %caé’”gik_lﬂ min{r%,g}} > u[%cagso min {TE—J\;,S}]
Taking limit in this inequality when & — oo implies that
0=>pu [lcaggo min {7'6—0, SH ,
2 M
which is a contradiction. Thus, equation (3.7) is valid. O
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4. NUMERICAL RESULTS

In this part of the paper, we report some numerical experiments that indicate the
efficiency of the proposed algorithm. The results have been obtained by implement-
ing two versions of the NATR algorithm and the adaptive nonmonotone algorithm
proposed by Xue et al. [22] in MATLAB environment on a laptop (CPU Corei7-2.5
GHz, RAM 12 GB) and comparing the results of solving a collection of 228 un-
constrained optimization test problems from the CUTEst collection [10]. The test
problems and their dimensions are listed in Table 1.

In this section, we use the following notations:

> AINTR: The adaptive nonmonotone algorithm proposed by Xue et al. [22].

> NATRI1: Nonmnotone adaptive trust region method (the NATR algorithm)
based on the modified BFGS update formula used in [13].

> NATR2: Nonmnotone adaptive trust region method (the NATR algorithm)
based on the scaled memoryless BEGS update formula used in [22].

For the NATR algorithm we used the following radius dependent parameters:

1.5 if = <8<,

5 5 -
1.9 if = < -, ) if — <4,
9 i <4 5 0.3 i 0 <6<6
~v(0) = 0 5 and ¢(9) = . 6 5
2 f—=<d<g, 45 if 1 < —,
i 10 <4 3 045 if107% < 10
5 0.6 o.w.

3 if 10—6 6 < —,
1 < 10

3.5 o.w.

similar to [22], the other parameters are chosen as 7 = 0.01, N = 15, u = 0.07,
§ = 100, e = 107°||go|| and for the NATR algorithm the remaining parameters are
selected as N = 10, I = 6 and v = 10. The trust region subproblems are solved by
the Steihaug-Toint scheme [21].

To visualize the whole behaviour of the algorithms, we use the performance profiles
proposed by Dolan and More [7]. The results of 14 test problems (the red ones in
the table) are excluded from comparison because all the tested algorithms failed to
solve them. So, the comparison of the algorithms is based on the remaining 214
test problems. Among these 214 test problems, NATR1, NATR2 and AINTR faced
with 9, 42 and 49 failures, respectively.

The total number of function evaluations, the total number of iterations and the
running time of each algorithm are considered as performance indexes. Note that at
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Problem name Dim Problem name Dim

ARGLINA 100, 200 ARGLINB 100, 200

ARGLINC 100, 200 BDQRTIC 100, 500, 1000, 5000
BROWNAL 100, 200, 1000 BRYBND 100, 500
CHAINWOO 100 CURLY10 100

CURLY20 100 CURLY30 100

EIGENALS 110, 2550 EIGENBLS 110, 2550
EIGENCLS 462, 2652 EXTROSNB 100,1000
FREUROTH 100, 500, 1000, 5000 GENROSE 100, 500
LIARWHD 100, 500, 1000, 5000 MANCINO 100

MODBEALE 200, 2000 MSQRTALS 100, 529
MSQRTBLS 100, 529 NONDIA 100, 500, 1000, 5000
NONSCOMP 100, 500, 1000, 5000 OSCIGRAD 100, 1000
OSCIPATH 100, 500 PENALTY1 100, 500, 1000
PENALTY?2 100, 200 SENSORS 100, 1000
SPMSRTLS 100, 499, 1000, 4999 SROSENBR 100, 500, 1000, 5000
SSBRYBND 100 TQUARTIC 100, 500, 1000, 5000
VAREIGVL 100, 500, 1000, 5000 WOODS 100, 1000, 4000
ARWHEAD 100, 500, 1000, 5000 BOX 100, 1000
BOXPOWER 100, 1000 COSINE 100, 1000
CRAGGLVY 100, 500, 1000, 5000 TESTQUAD 1000, 5000
DIXMAANA 300, 1500, 3000 DIXMAANC 300, 1500, 3000
DIXMAAND 300, 1500, 3000 DIXMAANE 300, 1500, 3000
DIXMAANF 300, 1500, 3000 DIXMAANG 300, 1500, 3000
DIXMAANH 300, 1500, 3000 DIXMAANI 300, 1500, 3000
DIXMAANJ 300, 1500, 3000 DIXMAANK 300, 1500, 3000
DIXMAANL 300, 1500, 3000 DIXMAANM 300, 1500, 3000
DIXMAANN 300, 1500, 3000 DIXMAANO 300, 1500, 3000
DIXMAANP 300, 1500, 3000 DQRTIC 100, 500, 1000, 5000
EDENSCH 2000 ENGVAL1L 100,1000, 5000
FLETCBV2 100 FLETCHCR 100, 1000
FMINSRF2 121, 961, 1024 FMINSURF 121, 961, 1024
INDEFM 100, 1000, 5000 NCB20 110, 1010
NONCVXU2 100, 1000, 5000 NONCVXUN 100, 1000, 5000
NONDQUAR 100, 500, 1000, 5000 PENALTY3 100
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POWELLSG 100, 500, 1000, 5000 POWER 100, 500, 1000, 5000
QUARTC 100, 500, 1000, 5000 ~ SCHMVETT 100, 500, 1000, 5000

NCB20B 100,180,500,1000,2000 SPARSINE 100, 1000, 5000
SPARSQUR 100, 1000, 5000 TOINTGSS 100, 500, 1000, 5000
VARDIM 100, 200 DIXON3DQ 100, 1000

DQDRTIC 100, 500, 1000, 5000  TRIDIA 100, 500, 1000, 5000

BROYDN7D 100,500,1000,5000 SINQUAD 100, 500, 1000, 5000

Table 1. (continued).

each iteration of the considered algorithms, the gradient of the objective function is
computed just once, so the total number of iterations and the total number of the gra-
dient evaluations are the same. Figure 1 illustrates the performance profile of these
algorithms, where the performance index is the total number of function evaluations.
It can be seen that the NATRI is the best solver with the probability around 55%,
while the probability of solving a problem as the best solver is around 42% and 30%
for NATR2 and AINTR, respectively.

0.9
0.8
0.7+

0.6
0.5
0.4
0.3

0.2 — AINTR
' NATR1
0.1 NATR2

oLl I | | | | | | |
2 4 6 8 10 12 14 16 18920

Figure 1. Performance profiles for the number of function evaluations.

The performance index in Figure 2 is the total number of iterations. From this
figure, we observe that NATR1 obtains the most wins on approximately 58% of all
test problems and the probability of being the best solver is 41% and 29% for NATR2
and AINTR, respectively.
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Figure 2. Performance profiles for the number of iterations.

The performance profiles for the running times are illustrated in Figure 3. From
this figure, it can be observed that NATR] is the best algorithm. Another important
factor of these three figures is that the graph of the NATR1 algorithm grows up faster

than the others.

—— AINTR
NATRI1
NATR2

Figure 3. Performance profiles for the running times.
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From the presented results, we can conclude that the radius dependent shrinkage

parameter and the new nonmonotone procedure are effective to improve the efficiency

of the IATR algorithm [13] compared with the nonmonotone algorithm proposed

by Xue [22].
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5. CONCLUSION

In this paper, we have proposed a new nonmonotone adaptive trust region algo-
rithm to solve unconstrained optimization problems. The new algorithm incorporates
a recently proposed adaptive trust region algorithm with nonmonotone techniques.
We show that setting a constant shrinkage parameter for the adaptive trust region
may impose unnecessary additional computational costs to the algorithm that affect
its efficiency. Therefore, we consider a radius dependent shrinkage parameter in the
new algorithm. Further, we propose a new nonmonotone parameter that prevents
sudden increments in the objective function values.

The global convergence of the new algorithm is investigated under some mild
conditions. Numerical experiments show the efficiency and robustness of the new
algorithm in solving a collection of unconstrained optimization problems from the
CUTESst package. It is concluded that exploiting the new ideas is a practical means to
increase the efficiency of the nonmonotone adaptive trust region algorithms and these
ideas also can be used in other nonmonotone and adaptive trust region algorithms
which suffer from similar drawbacks mentioned in this paper.
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