Czechoslovak Mathematical Journal

Liqun Pu; Yuan Tang; Xiaoli Gao
Packing four copies of a tree into a complete bipartite graph

Czechoslovak Mathematical Journal, Vol. 72 (2022), No. 1, 39-57

Persistent URL: http://dml.cz/dmlcz/149572

Terms of use:

© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

PACKING FOUR COPIES OF A TREE INTO A COMPLETE BIPARTITE GRAPH

Liqun Pu, Yuan Tang, Xiaoli Gao, Zhengzhou

Received June 18, 2020. Published online December 13, 2021.

Abstract

In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree T of order n and each integer $k \geqslant 2$, there is a k-packing of T in a complete bipartite graph B_{n+k-1} whose order is $n+k-1$. We prove the conjecture is true for $k=4$.

Keywords: packing; bipartite packing; embedding
MSC 2020: 05C05, 05C70

1. Introduction

We discuss only finite simple graphs and use standard terminology and notation from [6] except as indicated. For any graph G we use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of G, respectively. A forest is a graph without cycles. A tree is a connected forest. We use B_{n} (or $K_{t, n-t}$) to represent a complete bipartite graph of order n. A bipartite graph G admits (a, b)-bipartition if G has a bipartition (X, Y) such that $|X|=a$ and $|Y|=b$. Note that up to isomorphism, $B_{n}\left(K_{t, n-t}\right)$ is not uniquely defined for $n \geqslant 4$ and $t \geqslant 1$.

An isomorphism from a simple graph G to a simple graph H is a bijection f : $V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$. We say that G is isomorphic to H, written as $G \cong H$. By an embedding σ of a bipartite graph G in B_{n}, we mean that σ is an injection from $V(G)$ into $V\left(B_{n}\right)$ such that $\sigma\left(V_{0}\right) \subseteq X_{0}$ and $\sigma\left(V_{1}\right) \subseteq X_{1}$, where $\left(V_{0}, V_{1}\right)$ and $\left(X_{0}, X_{1}\right)$ are the given bipartitions of G and B_{n}, respectively. A k-packing of T in the graph G is a partition of edges of subgraph of the

The research has been supported by the Education Department of Henan Province, under Grant No. 14A110026.
graph G such that each element of the partition induces a subgraph isomorphic to T, where k is the number of the elements in the partition. (Later, denote the subgraph of G by G^{\prime}. Let σ_{i} be a bijection satisfying $\sigma_{i}\left(G^{\prime}\right) \simeq T$ for $1 \leqslant i \leqslant k$.) There have been some results found on k-packing of T in G for various k, T and G. When T is a path and G is a complete bipartite graph, some results can be found in [7], [8]. Hobbs, Bourgeois and Kasiraj in [2] proved that any two trees of order m and n with $m<n$ can be packed into a complete bipartite graph $K_{n-1,\left[\frac{1}{2} n\right\rceil}$. It is proved in [1], [5] that for any disconnected forest F of order n, there is a 2-packing of F in a complete bipartite graph B_{n}. Wang in [3] showed that any two forests of order n admitting the same (a, b)-bipartition can be packed into a complete bipartite graph of order at most $n+1$. Wang in [4] also proved that for any tree T of order n a 3 -packing of T in some B_{n+2} can be found. Wang gives a conjecture in paper (see [4]): For any tree T of order n and each integer $k \geqslant 2$, there is a k-packing of T in some B_{n+k-1}. The conjecture is true for $k=2$ and $k=3$ by the results in [3], [4], [5]. We will show it is true for $k=4$.

Theorem 1.1. For each tree T of order n, there is a 4 -packing of T in some B_{n+3}.
Its proof can be found in Section 3 while in Section 2, some lemmas, which are important for the proof of the main theorem, are given.

2. Preliminary

We first give some terminology and notation. Given a bipartite graph G, we say that two vertices of G are strongly independent if they are not adjacent and they do not have any common neighbor either. A node of G is a vertex of G that is adjacent to an endvertex of G. A supernode of G is a vertex x of G such that, with one exception, every neighbor of x is an endvertex of G. If G is a tree but not a star, we readily see that G has at least two distinct supernodes by observing a longest path of G. If (X, Y) is the given bipartition of G, then any subgraph H of G has $(X \cap V(H), Y \cap V(H))$ as its given bipartition. For a 4-packing (b, g, r, s) of G in B_{n}, we say that a vertex x is 4-placed if $b(x), g(x), r(x)$ and $s(x)$ are distinct. A linear forest is a forest such that each of its components is a path. By adopting the method in [4], we give Lemmas 2.1 and 2.2, which are important for the proof of the main theorem. Let $P=$ $x_{i} x_{i+1} \ldots x_{i+l}$ denote a path of length l with vertex set $V(P)=\left\{x_{i+t}: 0 \leqslant t \leqslant l\right\}$ and edge set $E(P)=\left\{x_{i+t-1} x_{i+t}: 1 \leqslant t \leqslant l\right\}$. Let $K_{s, t}\left(V_{s}, V_{t}\right)$ denote a bipartite graph with vertex set $V\left(K_{s, t}\right)=V_{s} \cup V_{t}$ and edge set $E\left(K_{s, t}\right)=\left\{a b: a \in V_{s}, b \in V_{t}\right\}$.

Lemma 2.1. Let x, y, z and p be four strongly independent endvertices in the same partite of a tree T. If there is a 4-packing of $T-x-y-z-p$ in B_{n}, then there is a 4-packing of T in B_{n+4}.

Proof. Let $\{u, v, w, q\} \subseteq V(T)$ be such that $\{x u, y v, z w, p q\} \subseteq E(T)$. Let $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ be a 4 -packing of $T-x-y-z-p$ in B_{n}. For $i \in\{1,2,3,4\}$, let $A_{i}=\left\{\sigma_{i}(u), \sigma_{i}(v), \sigma_{i}(w), \sigma_{i}(q)\right\}$. Obviously $\left|A_{i}\right|=4$. Note that $\bigcup_{i=1}^{4} A_{i}$ is contained in one partite of B_{n}. Let $V\left(B_{n+4}\right)=V\left(B_{n}\right) \cup\{x, y, z, p\}$ such that $\{x, y, z, p\}$ is in the partite that does not contain $\bigcup_{i=1}^{4} A_{i}$. For each $i \in\{1,2,3,4\}$ we add a set E_{i} consisting of four independent edges between $\{x, y, z, p\}$ and A_{i} to $\sigma_{i}(T-x-y-z-p)$ to obtain a copy of T in B_{n+4}. Note that $\left|\bigcup_{i=1}^{4} E_{i}\right|=16$ and $4 \leqslant\left|\bigcup_{i=1}^{4} A_{i}\right| \leqslant 20$. The edges in $\bigcup_{i=1}^{4} E_{i}$ comes from the complete bipartite graph M with partite sets $\{x, y, z, p\}$ and $\bigcup_{i=1}^{4} A_{i}$. Obviously $|E(M)| \geqslant 16$. It is easy to choose $E_{i}(1 \leqslant i \leqslant 4)$ satisfying $E_{i} \cap \stackrel{i=1}{E_{j}}=\varphi$ for $1 \leqslant i<j \leqslant 4$. Thus, we extend each σ_{i} to an embedding of T in B_{n+4} such that $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ becomes a 4 -packing of T in B_{n+4}.

Lemma 2.2. Let H be a subgraph of a tree T such that each vertex of $T-V(H)$ is an endvertex of T. If there is a 4-packing of H in B_{n} such that each vertex x of H with $x y \in E(T)$ for some $y \in V(T)-V(H)$ is 4-placed, then there is a 4-packing of T in B_{n+m}, where $m=|V(T)|-|V(H)|$.

Proof. Let $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ be a 4-packing of H in B_{n} so that if $x y \in E(T)$ with $y \in V(T)-V(H)$, then x is 4-placed. Note that $\sigma_{1}(x), \sigma_{2}(x), \sigma_{3}(x)$ and $\sigma_{4}(x)$ are in the same partite for all $x \in V(H)$. We obtain B_{n+m} by adding each $y \in V(T)-V(H)$ to B_{n} so that if $x y \in E(T)$, then y and $\sigma_{1}(x)$ are in the opposite partites. Then for each $i \in\{1,2,3,4\}$ we extend σ_{i} to an embedding of T in B_{n+m} so that $\sigma_{i}(y)=y$ for each $y \in V(T)-V(H)$. Then $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ is a 4 -packing of T in B_{n+m}.

We also need the following lemmas in order to prove our main theorem.
Lemma 2.3. The following two statements hold:
(1) If P is a linear forest of order $2 k$ with $k \geqslant 8$, then there is a 4-packing of P in $K_{k, k}$ such that each vertex of P is 4-placed.
(2) If P is a path of order $2 k$ with $k \in\{5,6,7\}$, then there is a 4-packing of P in $K_{k+1, k+2}$ such that each vertex of P is 4-placed.

Proof. To prove (1), without loss of generality, suppose $P=x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k}$ is a path with $\left(\left\{x_{1}, \ldots, x_{k}\right\},\left\{y_{1}, \ldots, y_{k}\right\}\right)$ as its bipartition. The subscript modulo k is in $\{1,2, \ldots, k\}$. Define a 4-packing (b, g, r, s) of P in $K_{k, k}\left(\left\{x_{1}, \ldots, x_{k}\right\},\left\{y_{1}, \ldots, y_{k}\right\}\right)$ as follows. For all $z \in V(P)$, let $b(z)=z$; for $i=\{1,2, \ldots, k\}$, let $g\left(x_{i}\right)=x_{i+1}$ and $g\left(y_{i}\right)=y_{i+3} ; r\left(x_{i}\right)=x_{i+2}$ and $r\left(y_{i}\right)=y_{i+6} ; s\left(x_{i}\right)=x_{i+3}$ and $s\left(y_{i}\right)=y_{i+1}$.

To prove (2), let $\left(\left\{x_{1}, \ldots, x_{k}, w_{1}\right\},\left\{y_{1}, \ldots, y_{k}, w_{2}, w_{3}\right\}\right)$ be the bipartition of $K_{k+1, k+2}$. Say $P=x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k}$. In $K_{\left\{x_{1}, \ldots, x_{k}, w_{1}\right\},\left\{y_{1}, \ldots, y_{k}, w_{2}, w_{3}\right\}}$, i.e., $K_{k+1, k+2}$, we define four embeddings (b, g, r, s) of P with b being identity embedding as follows.

If $k=5$, define g, r and s such that $g(P)=x_{2} y_{3} x_{5} w_{3} w_{1} w_{2} x_{1} y_{5} x_{3} y_{1}, r(P)=$ $x_{3} y_{4} w_{1} y_{3} x_{1} w_{3} x_{2} w_{2} x_{4} y_{2}, s(P)=x_{4} w_{3} x_{3} w_{2} x_{5} y_{1} w_{1} y_{2} x_{1} y_{4}$, with $g\left(x_{1}\right)=x_{2}, r\left(x_{1}\right)=$ x_{3} and $s\left(x_{1}\right)=x_{4}$.

If $k=6$, define g, r and s such that $g(P)=x_{2} y_{4} x_{6} w_{2} w_{1} y_{6} x_{5} w_{3} x_{4} y_{2} x_{1} y_{5}, r(P)=$ $x_{3} y_{5} x_{4} y_{6} x_{2} w_{3} x_{6} y_{1} w_{1} y_{3} x_{5} w_{2}, s(P)=x_{6} y_{2} x_{5} y_{1} x_{3} w_{2} x_{2} y_{3} x_{1} y_{4} w_{2} w_{3}$, with $g\left(x_{1}\right)=x_{2}$, $r\left(x_{1}\right)=x_{3}$ and $s\left(x_{1}\right)=x_{6}$.

If $k=7$, define g, r and s such that $g(P)=x_{2} y_{3} x_{5} y_{6} w_{1} w_{3} x_{1} y_{5} x_{7} w_{2} x_{3} y_{1} x_{4} y_{2}$, $r(P)=x_{3} y_{4} x_{7} y_{1} x_{5} w_{2} x_{2} y_{6} x_{1} y_{7} w_{1} y_{2} x_{6} w_{3}, s(P)=x_{5} y_{7} x_{3} y_{5} x_{2} y_{4} x_{6} w_{2} w_{1} w_{3} x_{7} y_{3} x_{1} y_{6}$, with $g\left(x_{1}\right)=x_{2}, r\left(x_{1}\right)=x_{3}$ and $s\left(x_{1}\right)=x_{5}$.

Lemma 2.4. Let P be a path of order n from x to y. The following three statements hold:
(1) If $n \in\{4,6,8\}$, there is a 4-packing (b, g, r, s) of P in B_{n+3} such that z is 4-placed for each $z \in V(P)-\{y\}$.
(2) If $n=5$, there is a 4-packing (b, g, r, s) of P in B_{n+3} such that z is 4-placed for each $z \in V(P)-\{x, y\}$. Furthermore,

$$
\{b(x), g(x), r(x), s(x)\} \cap\{b(y), g(y), r(y), s(y)\}=\emptyset
$$

(3) If $n \in\{7,9\}$, there is a 4-packing (b, g, r, s) of P in B_{n+3} such that z is 4-placed for each $z \in V(P)$.
Proof. To prove (1), when $n=4$, let $P=x_{1} x_{2} x_{3} x_{4}$. Set $V_{0}=\left\{x_{1}, x_{3}\right\}$ and $V_{1}=\left\{x_{2}, x_{4}\right\}$. Let $\left(V_{0}, V_{1}\right)$ be the partition of P and $\left(V_{0} \cup\left\{x_{5}, x_{7}\right\}, V_{1} \cup\left\{x_{6}\right\}\right)$ be the bipartition of B_{7}. Define the required 4-packing (b, g, r, s) of P in B_{7} with b being identity embedding as follows: $g(P)=x_{3} x_{6} x_{1} x_{4}, r(P)=x_{7} x_{4} x_{5} x_{6}$ and $s(P)=$ $x_{5} x_{2} x_{7} x_{6}$ with $g\left(x_{1}\right)=x_{3}, r\left(x_{1}\right)=x_{7}$ and $s\left(x_{1}\right)=x_{5}$.

When $n=6$, let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$. Set $V_{0}=\left\{x_{1}, x_{3}, x_{5}\right\}$ and $V_{1}=\left\{x_{2}, x_{4}, x_{6}\right\}$. Let $\left(V_{0}, V_{1}\right)$ be the partition of P and $\left(V_{0} \cup\left\{x_{7}\right\}, V_{1} \cup\left\{x_{8}, x_{9}\right\}\right)$ be the bipartition of B_{9}. Define the required 4-packing (b, g, r, s) of P in B_{9} with b being identity embedding as follows: $g(P)=x_{7} x_{4} x_{1} x_{8} x_{3} x_{6}, r(P)=x_{3} x_{9} x_{5} x_{2} x_{7} x_{6}$ and $s(P)=x_{5} x_{8} x_{7} x_{9} x_{1} x_{6}$ with $g\left(x_{1}\right)=x_{7}, r\left(x_{1}\right)=x_{3}$ and $s\left(x_{1}\right)=x_{5}$.

When $n=8$, let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}, V_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\}$ and $V_{1}=$ $\left\{x_{2}, x_{4}, x_{6}, x_{8}\right\}$. Let $\left(V_{0}, V_{1}\right)$ be the partition of P and $\left(V_{0} \cup\left\{x_{9}\right\}, V_{1} \cup\left\{x_{10}, x_{11}\right\}\right)$ be the bipartition of B_{11}. Define the required 4-packing (b, g, r, s) of P in B_{11} with b being identity embedding as follows: $g(P)=x_{1} x_{11} x_{5} x_{10} x_{7} x_{2} x_{9} x_{4}, r(P)=$ $x_{1} x_{10} x_{9} x_{6} x_{3} x_{8} x_{5} x_{2}$ and $s(P)=x_{7} x_{4} x_{1} x_{8} x_{9} x_{11} x_{3} x_{10}$ with $g\left(x_{1}\right)=x_{1}, r\left(x_{1}\right)=x_{1}$ and $s\left(x_{1}\right)=x_{7}$.

To prove (2), let $P=x_{1} x_{2} x_{3} x_{4} x_{5}$. Set $V_{0}=\left\{x_{1}, x_{3}, x_{5}\right\}$ and $V_{1}=\left\{x_{2}, x_{4}\right\}$. Let (V_{0}, V_{1}) be the partition of P and $\left(V_{0} \cup\left\{x_{7}\right\}, V_{1} \cup\left\{x_{6}, x_{8}\right\}\right)$ be the bipartition of B_{8}. Define the required 4-packing (b, g, r, s) of P in B_{8} with b being identity embedding as follows: $g(P)=x_{7} x_{6} x_{5} x_{8} x_{3}, r(P)=x_{1} x_{4} x_{7} x_{2} x_{5}$ and $s(P)=x_{7} x_{8} x_{1} x_{6} x_{3}$ with $g\left(x_{1}\right)=x_{7}, r\left(x_{1}\right)=x_{1}$ and $s\left(x_{1}\right)=x_{7}$.

To prove (3), when $n=7$, let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}$. Set $V_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\}$ and $V_{1}=\left\{x_{2}, x_{4}, x_{6}\right\}$. Let $\left(V_{0}, V_{1}\right)$ be the partition of P and $\left(V_{0} \cup\left\{x_{8}, x_{9}\right\}, V_{1} \cup\left\{x_{10}\right\}\right)$ be the bipartition of B_{10}. Define the required 4-packing (b, g, r, s) of P in B_{10} with b being identity embedding as follows: $g(P)=x_{3} x_{6} x_{8} x_{10} x_{7} x_{2} x_{9}, r(P)=$ $x_{7} x_{4} x_{9} x_{6} x_{1} x_{10} x_{3}$ and $s(P)=x_{9} x_{10} x_{5} x_{2} x_{8} x_{4} x_{1}$ with $g\left(x_{1}\right)=x_{3}, r\left(x_{1}\right)=x_{7}$ and $s\left(x_{1}\right)=x_{9}$.

When $n=9$, let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9}$. Set $V_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}, x_{9}\right\}$ and $V_{1}=$ $\left\{x_{2}, x_{4}, x_{6}, x_{8}\right\}$. Let $\left(V_{0}, V_{1}\right)$ be the partition of P and $\left(V_{0} \cup\left\{x_{11}\right\}, V_{1} \cup\left\{x_{10}, x_{12}\right\}\right)$ be the bipartition of B_{12}. Define the required 4-packing (b, g, r, s) of P in B_{12} with b being identity embedding as follows: $g(P)=x_{3} x_{8} x_{11} x_{6} x_{9} x_{10} x_{1} x_{4} x_{7}, r(P)=$ $x_{5} x_{10} x_{7} x_{2} x_{11} x_{4} x_{9} x_{12} x_{1}$ and $s(P)=x_{7} x_{12} x_{5} x_{8} x_{1} x_{6} x_{3} x_{10} x_{11}$ with $g\left(x_{1}\right)=x_{3}$, $r\left(x_{1}\right)=x_{5}$ and $s\left(x_{1}\right)=x_{7}$.

To state Lemma 2.5, we define graphs $G_{i}(1 \leqslant i \leqslant 18$ and $i \neq 8,13$ or 17) to be the subgraphs of $K_{8,8}\left(V_{0}, V_{1}\right)$, where $V_{0}=\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{15}\right\}$ and $V_{1}=$ $\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{16}\right\}$. Let G_{8} be the graph $K_{4,6}\left(U_{0}, U_{1}\right)$, where $U_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\} \subset$ V_{0} and $U_{1}=\left\{x_{2}, x_{4}, x_{6}, x_{8}, x_{9}, x_{10}\right\} \subset V_{1}$. Let G_{13} be the graph $K_{6,7}\left(U_{0}, U_{1}\right)$, where $U_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}, x_{9}, x_{11}\right\} \subset V_{0}$ and $U_{1}=\left\{x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12}, x_{13}\right\} \subset V_{1}$, and G_{17} be the graph $K_{7,8}\left(U_{0}, U_{1}\right)$, where $U_{0}=\left\{x_{1}, x_{3}, x_{5}, x_{7}, x_{9}, x_{11}, x_{13}\right\} \subset V_{0}$ and $U_{1}=\left\{x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12}, x_{14}, x_{15}\right\} \subset V_{1}$. Let

$$
G_{1}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \cup x_{3} x_{8} x_{7},
$$

where $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$ is a path of length 5 with edges $x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{6}$.

$$
\begin{aligned}
& G_{2}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{3} x_{8} x_{9}, \\
& G_{3}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{3} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11}, \\
& G_{4}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{3} x_{8} x_{9} x_{10} x_{11}, \\
& G_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{3} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11} x_{12} x_{13}, \\
& G_{6}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{3} x_{8} x_{9} x_{10} x_{11} x_{12} x_{13}, \\
& G_{7}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \cup x_{5} x_{10} x_{11} x_{12} x_{13}, \\
& G_{8}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{3} x_{6} x_{7}, \\
& G_{9}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11} x_{12} x_{13} \cup x_{3} x_{14} x_{15},
\end{aligned}
$$

$$
\begin{aligned}
G_{10} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11} \cup x_{3} x_{12} x_{13} x_{14} x_{15}, \\
G_{11} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \cup x_{5} x_{10} x_{11} x_{12} x_{13} x_{14} x_{15}, \\
G_{12} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \cup x_{3} x_{10} x_{11} x_{12} x_{13} x_{14} x_{15}, \\
G_{13} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \cup x_{9} x_{10} x_{3} x_{8} x_{7}, \\
G_{14} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{11} x_{10} x_{3} x_{8} x_{9}, \\
G_{15} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{13} x_{12} x_{3} x_{8} x_{9} x_{10} x_{11}, \\
G_{16} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \cup x_{13} x_{12} x_{3} x_{10} x_{11}, \\
G_{17} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \cup x_{7} x_{8} x_{3} x_{10} x_{9} \cup x_{3} x_{12} x_{11}, \\
G_{18} & =x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \cup x_{9} x_{8} x_{3} x_{10} x_{11} \cup x_{3} x_{12} x_{13} .
\end{aligned}
$$

Lemma 2.5. The following statements hold:
(1) There is a 4-packing of G_{1} in B_{11} such that, except x_{1}, x_{6} and x_{7}, every vertex of G_{1} is 4-placed.
(2) There is a 4-packing of G_{2} in B_{12} such that, except x_{7} and x_{9}, every vertex of G_{2} is 4-placed.
(3) There is a 4-packing of G_{3} in B_{14} such that every vertex of G_{3} is 4-placed.
(4) There is a 4-packing of G_{4} in B_{14} such that every vertex of G_{4} is 4-placed.
(5) There is a 4-packing of G_{5} in B_{16} such that every vertex of G_{5} is 4-placed.
(6) There is a 4-packing of G_{6} in B_{16} such that every vertex of G_{6} is 4-placed.
(7) There is a 4-packing of G_{7} in B_{16} such that every vertex of G_{7} is 4-placed.
(8) There is a 4-packing of G_{8} in B_{10} such that, except x_{1}, x_{5} and x_{7}, every vertex of G_{8} is 4-placed.
(9) There is a 4-packing of G_{9} in B_{18} such that every vertex of G_{9} is 4-placed.
(10) There is a 4-packing of G_{10} in B_{18} such that every vertex of G_{10} is 4-placed.
(11) There is a 4-packing of G_{11} in B_{18} such that every vertex of G_{11} is 4-placed.
(12) There is a 4-packing of G_{12} in B_{18} such that every vertex of G_{12} is 4-placed.
(13) There is a 4-packing of G_{13} in B_{13} such that, except x_{1}, x_{6} and x_{9}, every vertex of G_{13} is 4-placed.
(14) There is a 4-packing of G_{14} in B_{14} such that every vertex of G_{14} is 4-placed.
(15) There is a 4-packing of G_{15} in B_{16} such that every vertex of G_{15} is 4-placed.
(16) There is a 4-packing of G_{16} in B_{16} such that every vertex of G_{16} is 4-placed.
(17) There is a 4-packing of G_{17} in B_{15} such that every vertex of G_{17} is 4-placed.
(18) There is a 4-packing of G_{18} in B_{16} such that every vertex of G_{18} is 4-placed.

The proof can be found in Appendix (I).

To state Lemma 2.6, we define graphs $F_{i}(1 \leqslant i \leqslant 8)$ to be the subgraphs of $K_{10,9}$ $\left(V_{0}, V_{1}\right)$, where $V_{0}=\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{19}\right\}$ and $V_{1}=\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{18}\right\}$. Let

$$
\begin{aligned}
& F_{1}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{8}, \\
& F_{2}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{12} x_{11} x_{8}, \\
& F_{3}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{14} x_{13} x_{12} x_{11} x_{8}, \\
& F_{4}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{16} x_{15} x_{14} \cup x_{8} x_{11} x_{12} x_{13}, \\
& F_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{8} x_{11} x_{12}, \\
& F_{6}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{14} x_{13} x_{8} x_{11} x_{12}, \\
& F_{7}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{3} x_{16} x_{15} x_{14} x_{13} x_{8} x_{11} x_{12}, \\
& F_{8}=x_{1} x_{2} x_{3} x_{4} x_{5} \cup x_{6} x_{7} x_{8} x_{9} x_{10} \cup x_{15} x_{14} x_{13} x_{8} x_{11} x_{12} \cup x_{3} x_{18} x_{17} x_{16} .
\end{aligned}
$$

Lemma 2.6. The following statements hold:
(1) There is a 4-packing of F_{1} in B_{13} such that, except x_{10}, every vertex of F_{1} is 4-placed.
(2) There is a 4-packing of F_{2} in B_{15} such that every vertex of F_{2} is 4-placed.
(3) There is a 4-packing of F_{3} in B_{17} such that every vertex of F_{3} is 4-placed.
(4) There is a 4-packing of F_{4} in B_{16} such that, except x_{1} and x_{5}, every vertex of F_{4} is 4-placed.
(5) There is a 4-packing of F_{5} in B_{15} such that every vertex of F_{5} is 4-placed.
(6) There is a 4-packing of F_{6} in B_{17} such that, except x_{6} and x_{12}, every vertex of F_{6} is 4-placed.
(7) There is a 4-packing of F_{7} in B_{19} such that every vertex of F_{7} is 4-placed.
(8) There is a 4-packing of F_{8} in B_{18} such that every vertex of F_{8} is 4-placed.

The proof can be found in Appendix (II).

3. Proof of the main theorem

Now we are in the position to prove our main result Theorem 3.1.

Theorem 3.1. For each tree T of order n, there is a 4 -packing of T in some B_{n+3}.
Proof. To avoid considering many classes of non-isomorphic trees with the same order n, the theorem is proved by contradiction. Let T be a tree with the smallest order such that the theorem fails for T. Say $|V(T)|=n$. By Lemma 2.1, T does not contain four strongly independent endvertices in the same partite. Thus, T contains at most six supernodes. Clearly, $n \geqslant 4$ and T is not a star. By observing a longest
path, we see that T has at least two supernodes. We need to consider only the trees of order n with t supernodes $(2 \leqslant t \leqslant 6)$. We divide the proof into several cases by the numbers of supernodes of T. In every case, we manage to define a subgraph H of T. Then from the 4 -packing of H in B_{n}, we shall obtain a 4 -packing of T in B_{n+3}.

Case 1: T has exactly two supernodes.
In this case, let $P=x_{1} x_{2} \ldots x_{t}$ be a longest path. Then every vertex of $T-V(P)$ is an endvertex of T. If $t=2 k$ and $k \notin\{3,4\}$, then by Lemma 2.3 (1) and (2), there is a 4-packing of P in $B_{2 k+3}$ such that each vertex of P is 4-placed, and thus the theorem holds by Lemma 2.2. If $k \in\{3,4\}$, we apply Lemma 2.4 (1) to P and Lemma 2.2 to T, and see that the theorem holds. If $t=2 k+1$, let $P^{\prime}=P-x_{2 k+1}$. For the same reason, if $k \notin\{3,4\}$, then the theorem holds. If $k \in\{3,4\}$, we apply Lemma 2.4 (3) to P and Lemma 2.2 to T, and see that the theorem holds.

Case 2: T has at least three but at most six supernodes.
In this case, T has a vertex-cut U with $|U| \leqslant 3$ such that no component of $T-U$ contains two distinct supernodes of T. We choose such a vertex-cut U with $|U|$ minimal. Let w_{1}, w_{2} and w_{3} be three distinct vertices not in T. In the following, we shall define a subgraph H of T. Then from a 4 -packing of H we shall obtain a 4-packing of T in B_{n+3} with $V\left(B_{n+3}\right)=V(T) \cup\left\{w_{1}, w_{2}, w_{3}\right\}$. We divide this case into the following three subcases.

Figure 1. $|U|=1$. (The larger dots are supernodes.)

Subcase 2.1: $|U|=1$. Say $U=\{u\}$. As T has at least three supernodes, there exists a path $Q_{1}=x_{1} x_{2} \ldots x_{k}$ in T such that x_{1} and x_{k} are two endvertices while x_{2} and x_{k-1} are two distinct supernodes. Furthermore, $u=x_{i_{0}}$ for some $i_{0} \in\{3,4, \ldots, k-2\}$. Let x_{1} and x_{k} be two endvertices in the opposite partites when T has at least four supernodes. In this situation, k is even and $k \geqslant 6$. Let $Q_{2}=y_{1} y_{2} \ldots y_{s}$ be a path vertex-disjoint from Q_{1} such that $x_{i_{0}} y_{1} \in E(T)$ and y_{s-1}
is a supernode of T. Thus, y_{s} is an endvertex of T. If T has four supernodes, let $Q_{3}=z_{1} z_{2} \ldots z_{t}$ be the path vertex-disjoint from $Q_{1} \cup Q_{2}$ such that $x_{i_{0}} z_{1} \in E(T)$ and z_{t-1} is a supernode of T. If T has five supernodes, let $Q_{4}=a_{1} a_{2} \ldots a_{p}$ be the path vertex-disjoint from $Q_{1} \cup Q_{2} \cup Q_{3}$ such that $x_{i_{0}} a_{1} \in E(T)$ and a_{p-1} is a supernode of T. If T has six supernodes, let $Q_{5}=b_{1} b_{2} \ldots b_{q}$ be the path vertex-disjoint from $Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}$ such that $x_{i_{0}} b_{1} \in E(T)$ and b_{q-1} is a supernode of T, see Figure 1.

Subcase 2.1.1: We suppose that T has exactly three distinct supernodes. In this situation, let $H=Q_{1} \cup Q_{2}$. If x_{1}, x_{k} and y_{s} are in the opposite partites, we may assume that $\left\{x_{1}, x_{i_{0}}, y_{s}\right\} \subseteq V_{0}, x_{k} \in V_{1}$. Then $|V(H)|=2 h$ for some $h \geqslant 4$. It is easy to see that each vertex of $T-V(H)$ is an endvertex of T, for otherwise T would have four distinct supernodes. Since H does not contain the edge $x_{i_{0}} y_{1}$, each of Q_{1} and Q_{2} is a component of H, i.e., H is a linear forest. Assume for the moment $h \geqslant 8$. By Lemma $2.3(1)$, there is a 4 -packing (b, g, r, s) of H in $B_{2 h}$ such that each vertex of H is 4 -placed. We may assume that b is the identity embedding. We extend the embeddings b, g, r, s to $H+x_{i_{0}} y_{1}$ in $B_{2 h+3}$ by adding w_{1}, w_{2} and w_{3} and defining $b\left(x_{i_{0}}\right)=x_{i_{0}}, g\left(x_{i_{0}}\right)=w_{1}, r\left(x_{i_{0}}\right)=w_{2}$ and $s\left(x_{i_{0}}\right)=w_{3}$. By Lemma 2.2 there is a 4 -packing of T in B_{n+3}. Therefore, $h=4,5,6$ or 7 . If $h=4$, then $T[V(H)] \cong G_{1}$. If $h=5$, then $k=6$ or $k=8$. Furthermore, we see that if $k=6$, then $T[V(H)]-x_{6} \cong G_{2}$, and if $k=8$, then $T[V(H)]-x_{8} \cong G_{2}$. If $h=6$, then $k=6,8$, or 10 . Furthermore, we see that if $k=6$, then $T[V(H)]-x_{6} \cong G_{3}$, if $k=8$, then $T[V(H)]-x_{8} \cong G_{4}$, and if $k=10$, then $T[V(H)]-x_{10} \cong G_{3}$ or G_{4}. If $h=7$, then $k=6,8,10$ or 12 . Furthermore, we see that if $k=6$, then $T[V(H)]-x_{6} \cong G_{5}$, if $k=8$, then $T[V(H)]-x_{8} \cong G_{6}$, if $k=10$, then $T[V(H)]-x_{10} \cong G_{6}$ or G_{7}, and if $k=12$, then $T[V(H)]-x_{12} \cong G_{5}$ or G_{6}. By Lemma 2.2 and Lemma 2.5 (1)-(7), there is a 4-packing of T in B_{n+3}.

If x_{1}, x_{k} and y_{s} are in the same partite, we may assume that $\left\{x_{1}, x_{k}, y_{s}\right\} \subseteq V_{0}$. Thus $x_{i_{0}} \in V_{0}$ or V_{1}. Without loss of generality, we assume that $x_{i_{0}} \in V_{0}$, then $|V(H)|=2 h+1$ for some $h \geqslant 3$. If $h \geqslant 8$, let $H^{\prime}=H-y_{s}$, then we prove the theorem as above. Therefore $h=3,4,5,6$ or 7 . If $h=3$, then $k=5, s=2$, and $T[V(H)] \cong G_{8}$. If $h=4$, then $k=5, s=4$, or $k=7, s=2$, and $T[V(H)] \cong G_{2}$. If $h=5$, then $k=5, s=6$, or $k=7, s=4$, or $k=9, s=2$, and $T[V(H)] \cong G_{3}$ or G_{4}. If $h=6$, then $k=5, s=8$, or $k=7, s=6$, or $k=9, s=4$, or $k=11, s=2$, and $T[V(H)] \cong G_{5}, G_{6}$ or G_{7}. If $h=7$, then $k=5, s=10$, or $k=7, s=8$, or $k=9$, $s=6$, or $k=11, s=4$, or $k=13, s=2$, and $T[V(H)] \cong G_{9}, G_{10}, G_{11}$ or G_{12}. By Lemma 2.2 and Lemma 2.5 (2)-(12), there is a 4 -packing of T in B_{n+3}.

Subcase 2.1.2: We suppose that T has exactly four distinct supernodes. In this case, without loss of generality, say $\left\{x_{1}, x_{i_{0}}\right\} \subseteq V_{0}$. As T does not contain four strongly independent endvertices of the same partities, we may assume that $y_{s} \in V_{0}$
and $z_{t} \in V_{0}$ or V_{1}. Let $H=Q_{1} \cup Q_{2} \cup Q_{3}$, and $t^{\prime}=t$ if $z_{t} \in V_{0}$. Let $H=$ $Q_{1} \cup Q_{2} \cup Q_{3}-z_{t}$, and $t^{\prime}=t-1$ if $z_{t} \in V_{1}$. Then $|V(H)|=2 h$ for some $h \geqslant 5$. We can see that each vertex of $T-V(H)$ is an endvertex of T, for otherwise T would have four strongly independent endvertices in the same partite. Clearly, H is a linear forest. If $h \geqslant 8$, the proof is the same as that in Subcase 2.1.1. Therefore, $h=5,6$ or 7 . If $h=5$, then $k=6, s=2$ and $t^{\prime}=2$, and $T[V(H)] \cong G_{13}$. If $h=6$, then $k=6$ or $k=8$. Furthermore, we see that if $k=6$ then $s=4, t^{\prime}=2$, or $s=2, t^{\prime}=4$, and $T[V(H)]-x_{6} \cong G_{14}$. If $k=8$, then $s=2, t^{\prime}=2$, and $T[V(H)]-x_{8} \cong G_{14}$. If $h=7$, then $k=6,8$ or 10 . Furthermore, we see that if $k=6$, then $s=2, t^{\prime}=6$, or $s=4, t^{\prime}=4$, or $s=6, t^{\prime}=2$, and $T[V(H)]-x_{6} \cong G_{15}$ or G_{16}. If $k=8$, then $s=4$, $t^{\prime}=2$, or $s=2, t^{\prime}=4$, and $T[V(H)]-x_{8} \cong G_{15}$. If $k=10$, then $s=2, t^{\prime}=2$, and $T[V(H)]-x_{10} \cong G_{15}$ or G_{16}. By Lemma 2.2 and Lemma 2.5 (13)-(16), there is a 4-packing of T in B_{n+3}.

Subcase 2.1.3: We suppose that T has exactly five distinct supernodes. Without loss of generality, say $\left\{x_{1}, x_{i_{0}}\right\} \subseteq V_{0}$. As T does not contain four strongly independent endvertices in the same partite, we may assume that $y_{s} \in V_{0}, z_{t} \in V_{1}$ and $a_{p} \in V_{0}$ or V_{1}. Let $H=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}$ if $a_{p} \in V_{1}$, and let $H=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}-z_{t}$ if $a_{p} \in V_{0}$. Then $|V(H)|=2 h$ for some $h \geqslant 6$. It is easy to see that each vertex of $T-V(H)$ is an endvertex of T, for otherwise T would have four strongly independent endvertices in the same partite. Clearly, H is a linear forest. If $h \geqslant 8$, the proof is the same as that in Subcase 2.1.1. Therefore, $h=6$ or 7 . If $h=6$, then $k=6, s=2$, $t-1=2, p=2$, and $T[V(H)] \cong G_{17}$. If $h=7$, then $k=6$ or $k=8$. Furthermore, we see that if $k=6$, then $s=2, t=3, p=3$, or $s=2, t-1=2, p=4$, or $s=2$, $t-1=4, p=2$, and $T[V(H)]-z_{3}-a_{3} \cong G_{17}$ or $T[V(H)]-x_{6} \cong G_{18}$. If $k=8$, then $s=2, t-1=2, p=2$, and $T[V(H)]-x_{8} \cong G_{18}$. By Lemma 2.2 and Lemma 2.5 (17) and (18), there is a 4 -packing of T in B_{n+3}.

Subcase 2.1.4: We suppose that T has exactly six distinct supernodes. As T does not contain four strongly independent endvertices in the same partite, we may assume that $\left\{x_{1}, y_{s}, z_{t}\right\} \subseteq V_{0}$, and $\left\{x_{k}, a_{p}, b_{q}\right\} \subseteq V_{1}$. Let $H=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \cup Q_{5}$. Then $|V(H)|=2 h$ for some $h \geqslant 8$. The proof is the same as that in Subcase 2.1.1.

Subcase 2.2: $|U|=2$. Say $U=\{u, v\}$. In this case, T has at least four supernodes, there are two pairwise vertex-disjoint paths $Q_{1}=x_{1} x_{2} \ldots x_{k}$ and $Q_{2}=y_{1} y_{2} \ldots y_{s}$ such that x_{2}, x_{k-1}, y_{2} and y_{s-1} are supernodes of T. Without loss of generality, say $u=x_{i_{0}}$ and $v=y_{j_{0}}$ for some $i_{0} \in\{3,4, \ldots, k-2\}$ and $j_{0} \in\{3,4, \ldots, s-2\}$. Let $Q_{3}=z_{1} z_{2} \ldots z_{t}$ be the path vertex-disjoint from $Q_{1} \cup Q_{2}$ such that $\left\{x_{i_{0}} z_{1}, y_{j_{0}} z_{t}\right\} \subseteq$ $E(T)$. We divide this case into the following three subcases, see Figure 2.

Subcase 2.2.1: We suppose that T has exactly four distinct supernodes. In this case, T has at most two another nodes. Set $m_{1}=k+s+t$. Without loss of generality, we assume that $\left\{x_{1}, x_{k}\right\} \subseteq V_{0}$. Let $H=Q_{1} \cup Q_{2}$ if $\left\{y_{1}, y_{s}\right\} \subseteq V_{1}$ and let
$H=Q_{1} \cup Q_{2}-y_{1}$ if $y_{1} \in V_{0}, y_{s} \in V_{1}$. Then H is a linear forest and $|V(H)|=2 h$. Assume for the moment that $h \geqslant 8$, by Lemma 2.3 (1), there is a 4-packing (b, g, r, s) of H in $B_{2 h}$ such that each vertex of H is 4 -placed. For even t, let $Q_{3}^{\prime}=Q_{3}$. For odd t, let $Q_{3}^{\prime}=Q_{3}-z_{t}$ if z_{1} and z_{t} are not nodes or z_{1} is a node, let $Q_{3}^{\prime}=Q_{3}-z_{1}$ if z_{t} is a node, and let $Q_{3}^{\prime}=Q_{3}+d$ if z_{1} and z_{t} are both nodes, where d is an endvertex which is adjacent to z_{t}. If there is a 4-packing $\left(b_{1}, g_{1}, r_{1}, s_{1}\right)$ of Q_{3}^{\prime} in $B_{\left|V\left(Q_{3}^{\prime}\right)\right|+3}$ such that each vertex of Q_{3}^{\prime} is 4-placed, we can see that a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)\right]$ in $B_{m_{1}+3}$ is obtained from $\left(b \cup b_{1}, g \cup g_{1}, r \cup r_{1}, s \cup s_{1}\right)$ by defining $c\left(z_{t}\right)=z_{t}$ for each $c \in\left\{b_{1}, g_{1}, r_{1}, s_{1}\right\}$ when $Q_{3}^{\prime}=Q_{3}-z_{t}$ or by defining $c\left(z_{1}\right)=z_{1}$ for each $c \in\left\{b_{1}, g_{1}, r_{1}, s_{1}\right\}$ when $Q_{3}^{\prime}=Q_{3}-z_{1}$. Furthermore, each node of T is 4-placed in this packing. Then by Lemma 2.2 the theorem holds. Thus, there is no such a 4-packing of Q_{3}^{\prime}.

Figure 2. $|U|=2$. (The larger dots are supernodes.)
Therefore, by Lemma 2.3, we see that $t \leqslant 9$ when z_{1} and z_{t} are not nodes. If $t \in\{7,9\}$, by Lemma 2.4 (3), there is a 4 -packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of Q_{3} in B_{t+3} such that each vertex of Q_{3} is 4 -placed. If $t \in\{4,6,8\}$, by Lemma 2.4 (1), there is a 4-packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of Q_{3} in B_{t+3} such that each vertex of Q_{3} is 4-placed except z_{t}. If $t=5$, by Lemma 2.4 (2), there is a 4-packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of Q_{3} in B_{t+3} such that each vertex of Q_{3} is 4 -placed except z_{1} and z_{t}. Then $\left(b \cup b_{2}, g \cup g_{2}\right.$, $\left.r \cup r_{2}, s \cup s_{2}\right)$ is a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)\right]$ in $B_{m_{1}+3}$ such that each node of T is 4 -placed. By Lemma 2.2 the theorem holds. Hence, we must have $t \leqslant 3$. Let $w_{0}=x_{i_{0}}$ if $t=0$. Let $w_{0}=z_{1}$ if $t=1$. Let $w_{0}=z_{2}$ if $t \in\{2,3\}$. We define or redefine the values of $b\left(w_{0}\right), g\left(w_{0}\right), r\left(w_{0}\right)$ and $s\left(w_{0}\right)$ as: $b\left(w_{0}\right)=w_{0}, g\left(w_{0}\right)=w_{1}, r\left(w_{0}\right)=w_{2}$ and $s\left(w_{0}\right)=w_{3}$. Let $b(x)=g(x)=r(x)=s(x)$ for all $x \in V(T)-V\left(Q_{1} \cup Q_{2}\right)-\left\{w_{0}\right\}$. Then (b, g, r, s) is a 4 -packing of T in B_{n+3}.

When z_{1} is a node, we see that $t \leqslant 9$ by Lemma 2.3. If $t \in\{1,2,4,6,7,8,9\}$, we prove the theorem as above. Let $Q_{3}^{\prime \prime}=Q_{3}+e$ when $t \in\{3,5\}$, where e is an endvertex which is adjacent to z_{1}. Then by Lemma 2.4 (1), there is a 4-packing
$\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$ such that each vertex of $Q_{3}^{\prime \prime}$ is 4-placed except e. Then $\left(b \cup b_{2}, g \cup g_{2}, r \cup r_{2}, s \cup s_{2}\right)$ is a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)\right]$ in $B_{m_{1}+3}$ such that each node of T is 4-placed. By Lemma 2.2 the theorem holds.

When z_{t} is a node, the proof is the same as the case when z_{1} is a node.
When z_{1} and z_{t} are both nodes, we see that $t \leqslant 8$ by Lemma 2.3. If $t \in\{1,7\}$, we prove it as above. Let $Q_{3}^{\prime \prime}=Q_{3}+d+e$ if $t \in\{2,4,6,8\}$, and let $Q_{3}^{\prime \prime}=Q_{3}+d$ if $t \in\{3,5\}$, where d and e are the endvertices which are adjacent to z_{t} and z_{1}, respectively. Then by Lemma 2.3 (2) and Lemma 2.4 (1), there is a 4 -packing ($b_{2}, g_{2}, r_{2}, s_{2}$) of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$. Furthermore, each vertex of $Q_{3}^{\prime \prime}$ is 4-placed for $t \in\{2,3,4,5,6\}$ except d and each vertex of $Q_{3}^{\prime \prime}$ is 4 -placed for $t=8$. Then $\left(b \cup b_{2}, g \cup g_{2}, r \cup r_{2}, s \cup s_{2}\right)$ is a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)\right]$ in $B_{m_{1}+3}$ so that each node of T is 4-placed. By Lemma 2.2 the theorem holds.

Now, we conclude that $h=5,6$ or 7 . Then if $h=5$, each of Q_{1} and Q_{2} is a path of order 5. Thus $Q_{1}=x_{1} x_{2} x_{3} x_{4} x_{5}$ and $u=x_{3}$. Rename $Q_{2}=x_{6} x_{7} x_{8} x_{9} x_{10}$. Thus, $v=x_{8}$. As we already assumed $x_{1} \in V_{0}$, we have $x_{6} \in V_{1}$. Hence, the order of Q_{3} must be even. Say $t=2 t^{\prime}$. If $t^{\prime}=0$, i.e., $x_{3} x_{8} \in E(T)$, let $H=Q_{1} \cup Q_{2}+x_{3} x_{8}$. Then $H \cong F_{1}$ and there is a 4-packing of H in B_{13} such that each vertex of H is 4-placed except x_{10}. If $t^{\prime}=1$, say $x_{12}=z_{1}$ and $x_{11}=z_{t}$. Let $H=Q_{1} \cup Q_{2} \cup Q_{3}+x_{3} x_{12}+x_{8} x_{11}$. Then $H \cong F_{2}$. There is a 4 -packing of H in B_{15} and each vertex of H is 4-placed. If $t^{\prime}=2$, say $Q_{3}=x_{14} x_{13} x_{12} x_{11}$. Let $H=Q_{1} \cup Q_{2} \cup Q_{3}+x_{3} x_{14}+x_{8} x_{11}$. Then $H \cong F_{3}$. There is a 4-packing of H in B_{17} and each vertex of H is 4-placed. If $t^{\prime} \geqslant 3$, rename $z_{1}, z_{2}, z_{3}, z_{t-2}, z_{t-1}$ and z_{t} as $x_{16}, x_{15}, x_{14}, x_{13}, x_{12}$ and x_{11}, respectively. Let $H=Q_{1} \cup Q_{2}+x_{3} x_{16} x_{15} x_{14}+x_{13} x_{12} x_{11} x_{8}$. Then $H \cong F_{4}$. There is a 4-packing (b, g, r, s) of H in B_{16} such that each vertex of H is 4 -placed except x_{1} and x_{5}. We consider two situations $t^{\prime}=3$ and $t^{\prime}>3$. If $t^{\prime}=3$, we define or redefine $b\left(x_{14}\right)=x_{14}, g\left(x_{14}\right)=w_{1}, r\left(x_{14}\right)=w_{2}$ and $s\left(x_{14}\right)=w_{3}$. Let $c(x)=x$ for all $x \in V(T)-V(H)-\left\{x_{14}\right\}$ and $c \in\{b, g, r, s\}$. We can find that (b, g, r, s) is a 4-packing of T in $B_{m_{1}+3}$ such that each node of T is 4 -placed. Therefore, we have $t^{\prime}>3$, and let $Q_{3}^{\prime \prime}=Q_{3}-z_{1} z_{2} z_{3}-z_{t} z_{t-1} z_{t-2}$. If $3<t^{\prime}<8$, we have $\left|V\left(Q_{3}^{\prime \prime}\right)\right| \in\{2,4,6,8\}$. Then there is a 4-packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$ such that each vertex of $Q_{3}^{\prime \prime}$ is 4 -placed, and we can give the proof as above. If $t^{\prime} \geqslant 8$, by Lemma 2.3, there is a 4-packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$ and each vertex of $Q_{3}^{\prime \prime}$ is 4-placed. Then when $t^{\prime}>3,\left(b \cup b_{2}, g \cup g_{2}, r \cup r_{2}, s \cup s_{2}\right)$ is a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)\right]$ in $B_{m_{1}+3}$ such that each node of T is 4-placed. By Lemma 2.2 and Lemma 2.6 (1)-(4) the theorem holds.

If $h=6$ or 7 , the proof is the same as that of $h=5$.
Subcase 2.2.2: We suppose that T has exactly five distinct supernodes. In this case, T has at most one another node. Let $Q_{4}=a_{1} a_{2} \ldots a_{p}$ be a path vertex-disjoint from $Q_{1} \cup Q_{2} \cup Q_{3}$ such that a_{p-1} is a supernode and a_{p} is an endvertex, where a_{1}
is adjacent to a vertex of $Q_{3} \cup\{u, v\}$. (If a_{1} is adjacent to a vertex of Q_{1} or Q_{2}, we can deal with the case in the same way.) Without loss of generality, we assume that $v a_{1} \in E(T)$. Set $m_{2}=k+s+p+t$. We assume that $\left\{x_{1}, x_{k}\right\} \subseteq V_{0},\left\{y_{1}, y_{s}\right\} \subseteq V_{1}$, since T does not have four strongly independent endvertices in the same partite. Let $H=Q_{1} \cup Q_{2} \cup Q_{4}$ if p is even and let $H=Q_{1} \cup Q_{2} \cup Q_{4}-a_{p}$ if p is odd. Then H is a linear forest and $|V(H)|=2 h$ for some $h \geqslant 6$. Assume for the moment that $h \geqslant 8$. By Lemma $2.3(1)$, there is a 4 -packing (b, g, r, s) of H in $B_{2 h}$ such that each vertex of H is 4-placed. For even t, let $Q_{3}^{\prime}=Q_{3}$. For odd t, let $Q_{3}^{\prime}=Q_{3}-z_{t}$ if z_{1} and z_{t} are not nodes or z_{1} is a node, and let $Q_{3}^{\prime}=Q_{3}-z_{1}$ if z_{t} is a node. If there is a 4-packing $\left(b_{1}, g_{1}, r_{1}, s_{1}\right)$ of Q_{3}^{\prime} in $B_{\left|V\left(Q_{3}^{\prime}\right)\right|+3}$ such that each vertex of Q_{3}^{\prime} is 4 -placed, we can see that a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}\right)\right]$ in $B_{m_{2}+3}$ is obtained from $\left(b \cup b_{1}\right.$, $\left.g \cup g_{1}, r \cup r_{1}, s \cup s_{1}\right)$ by defining $c\left(z_{t}\right)=z_{t}$ for $c \in\left\{b_{1}, g_{1}, r_{1}, s_{1}\right\}$ when $Q_{3}^{\prime}=Q_{3}-z_{t}$ or by defining $c\left(z_{1}\right)=z_{1}$ for each $c \in\left\{b_{1}, g_{1}, r_{1}, s_{1}\right\}$ when $Q_{3}^{\prime}=Q_{3}-z_{1}$. Furthermore, each node of T is 4 -placed in this packing. Then by Lemma 2.2 the theorem holds. Thus, there is no such a 4 -packing of Q_{3}^{\prime}. Therefore, by Lemma 2.3 we see that $t \leqslant 9$. At most one of z_{1} and z_{t} is a node. The proof is the same as that in Subcase 2.2.1.

We conclude that $h=6$ or 7 . Then if $h=6$, each of Q_{1} and Q_{2} is a path of order 5 . Thus, $Q_{1}=x_{1} x_{2} x_{3} x_{4} x_{5}$ and $u=x_{3}$. Rename $Q_{2}=x_{6} x_{7} x_{8} x_{9} x_{10}, Q_{4}=x_{11} x_{12}$. Thus, $v=x_{8}$. As we already assumed $x_{1} \in V_{0}$, we have $x_{6} \in V_{1}$. Hence, the order of Q_{3} must be even. Say $t=2 t^{\prime}$. If $t^{\prime}=0$, i.e., $x_{3} x_{8} \in E(T)$, let $H=$ $Q_{1} \cup Q_{2} \cup Q_{4}+x_{3} x_{8} x_{11}$. Then $H \cong F_{5}$. Therefore, there is a 4-packing of H in B_{15} and each vertex of H is 4 -placed. If $t^{\prime}=1$, say $x_{14}=z_{1}$ and $x_{13}=z_{t}$. Let $H=Q_{1} \cup$ $Q_{2} \cup Q_{3} \cup Q_{4}+x_{3} x_{14}+x_{13} x_{8} x_{11}$. Then $H \cong F_{6}$. There is a 4-packing of H in B_{17} and each vertex of H is 4 -placed except x_{6} and x_{12}. If $t^{\prime}=2$, say $Q_{3}=x_{16} x_{15} x_{14} x_{13}$. Let $H=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}+x_{3} x_{16}+x_{11} x_{8} x_{13}$. Then $H \cong F_{7}$. There is a 4 -packing of H in B_{19} and each vertex of H is 4 -placed. If $t^{\prime} \geqslant 3$, rename $z_{1}, z_{2}, z_{3}, z_{t-2}, z_{t-1}$ and z_{t} as $x_{18}, x_{17}, x_{16}, x_{15}, x_{14}$ and x_{13}, respectively. Let $H=Q_{1} \cup Q_{2} \cup Q_{4}+x_{3} x_{18} x_{17} x_{16}+$ $x_{15} x_{14} x_{13} x_{8} x_{11}$. Then $H \cong F_{8}$. There is a 4-packing (b, g, r, s) of H in B_{18} and each vertex of H is 4 -placed. We consider two situations $t^{\prime}=3$ and $t^{\prime}>3$. If $t^{\prime}=3$, define or redefine $b\left(x_{15}\right)=x_{15}, g\left(x_{15}\right)=w_{1}, r\left(x_{15}\right)=w_{2}$ and $s\left(x_{15}\right)=w_{3}$. Let $c(x)=x$ for all $x \in V(T)-V(H)-\left\{x_{15}\right\}$ and $c \in\{b, g, r, s\}$. We can find that (b, g, r, s) is a 4-packing of T in $B_{m_{2}+3}$ such that each node of T is 4-placed. Therefore, we have $t^{\prime}>3$. Let $Q_{3}^{\prime \prime}=Q_{3}-z_{1} z_{2} z_{3}-z_{t} z_{t-1} z_{t-2}$. If $3<t^{\prime}<8$, we can prove that there is a 4-packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$ and each vertex of $Q_{3}^{\prime \prime}$ is 4-placed as that in Subcase 2.2.1. If $t^{\prime} \geqslant 8$, by Lemma 2.3, there is a 4 -packing $\left(b_{2}, g_{2}, r_{2}, s_{2}\right)$ of $Q_{3}^{\prime \prime}$ in $B_{\left|V\left(Q_{3}^{\prime \prime}\right)\right|+3}$ and each vertex of $Q_{3}^{\prime \prime}$ is 4-placed. Then when $t^{\prime}>3,\left(b \cup b_{2}, g \cup\right.$ $\left.g_{2}, r \cup r_{2}, s \cup s_{2}\right)$ is a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}\right)\right]$ in $B_{m_{2}+3}$ such that each node of T is 4 -placed. By Lemma 2.2 and Lemma 2.6 (5)-(8) the theorem holds.

If $h=7$, we prove the theorem as the case $h=6$.

Subcase 2.2.3: We suppose that T has exactly six distinct supernodes. In this case, there exist two pairwise vertex-disjoint paths $Q_{4}=a_{1} a_{2} \ldots a_{p}$ and $Q_{5}=b_{1} b_{2} \ldots b_{q}$ whose vertices are also disjoint from $Q_{1} \cup Q_{2} \cup Q_{3}$. Furthermore, a_{p-1} and b_{q-1} are two supernodes while a_{1} is adjacent to a vertex of $Q_{1} \cup Q_{3}$ and b_{1} is adjacent to a vertex of Q_{2}. Set $m_{3}=k+s+p+q+t$. Without loss of generality, say $x_{i_{0}} \in V_{0}, y_{j_{0}} \in V_{1}$. As T does not have four strongly independent endvertices in the same partite, we assume that $\left\{x_{1}, y_{1}, a_{p}\right\} \subseteq V_{0}$ and $\left\{x_{k}, y_{s}, b_{q}\right\} \subseteq V_{1}$. Let $H=Q_{1} \cup Q_{2} \cup Q_{4} \cup Q_{5}$ if $m_{3}-t$ is even, and let $H=Q_{1} \cup Q_{2} \cup Q_{4} \cup Q_{5}-b_{q}$ if $m_{3}-t$ is odd. Then H is a linear forest and $|V(H)|=2 h$ for some $h \geqslant 8$. By Lemma 2.3 (1), there is a 4-packing (b, g, r, s) of H in $B_{2 h}$ such that each vertex of H is 4-placed. If t is even, let $Q_{3}^{\prime}=Q_{3}$. If t is odd, let $Q_{3}^{\prime}=Q_{3}-z_{t}$. If there is a 4-packing $\left(b_{1}, g_{1}, r_{1}, s_{1}\right)$ of Q_{3}^{\prime} in $B_{\left|V\left(Q_{3}^{\prime}\right)\right|+3}$ such that each vertex of Q_{3}^{\prime} is 4-placed, we can see that a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \cup Q_{5}\right)\right]$ in $B_{m_{3}+3}$ is obtained from $\left(b \cup b_{1}, g \cup g_{1}, r \cup r_{1}, s \cup s_{1}\right)$ by defining $c\left(z_{t}\right)=z_{t}$ for $c \in\left\{b_{1}, g_{1}, r_{1}, s_{1}\right\}$ when t is odd. Furthermore, each node of T is 4 -placed in this packing. Then by Lemma 2.2 the theorem holds. Thus, there is no such a 4 -packing of Q_{3}^{\prime}. Therefore, by Lemma 2.3 , we see that $t \leqslant 9$. Then we can give the proof as that in Subcase 2.2.1 when z_{1} and z_{t} are not nodes. Thus, we can find a 4-packing of $T\left[V\left(Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \cup Q_{5}\right)\right]$ in $B_{m_{3}+3}$ such that each node of T is 4-placed. By Lemma 2.2 the theorem holds.

Figure 3. $|U|=3$. (The larger dots are supernodes.)
Case 2.3: $|U|=3$. Say $U=\left\{u_{1}, u_{2}, u_{3}\right\}$. In this case, T has exactly six distinct supernodes. There exist three vertex-disjoint paths $Q_{1}=x_{1} x_{2} \ldots x_{k}, Q_{2}=y_{1} y_{2} \ldots y_{s}$ and $Q_{3}=z_{1} z_{2} \ldots z_{t}$ in T such that $x_{1}, x_{k}, y_{1}, y_{s}, z_{1}$ and z_{t} are six endvertices while $x_{2}, x_{k-1}, y_{2}, y_{s-1}, z_{2}$ and z_{t-1} are six distinct supernodes. Furthermore, $u_{1}=x_{i_{0}}$ for some $i_{0} \in\{3,4, \ldots, k-2\}, u_{2}=y_{j_{0}}$ for some $j_{0} \in\{3,4, \ldots, s-2\}$, and $u_{3}=z_{r_{0}}$ for some $r_{0} \in\{3,4, \ldots, t-2\}$. Let $Q_{4}=a_{1} a_{2} \ldots a_{p}$ be a path vertexdisjoint from $Q_{1} \cup Q_{2} \cup Q_{3}$ such that $\left\{x_{i_{0}} a_{1}, y_{j_{0}} a_{p}\right\} \subseteq E(T)$. Thus, there exists a path
$Q_{5}=b_{1} b_{2} \ldots b_{q}$ vertex-disjoint from $Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4}$ such that b_{1} is adjacent to a vertex of $Q_{1} \cup Q_{2} \cup Q_{4}$ and $b_{q} z_{r_{0}} \in E(T)$, see Figure 3. Let $H=Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \cup Q_{5}$. We can see that every vertex of $T-H$ is an endvertex of T. And T does not have other nodes besides the six supernodes, for otherwise T would have four strongly independent endvertices in the same partite. Let $H_{1}=Q_{1} \cup Q_{2} \cup Q_{3}$. Set $m=k+s+t$. As T does not contain four strongly independent endvertices in the same partite, without loss of generality, we assume that $\left\{x_{1}, x_{k}, y_{1}\right\} \subseteq V_{0}$ and $\left\{y_{s}, z_{1}, z_{t}\right\} \subseteq V_{1}$. Thus, $\left|V\left(H_{1}\right)\right|=2 h$ for some $h \geqslant 8$. By Lemma $2.3(1)$, there is a 4 -packing (b, g, r, s) of H_{1} in $B_{2 h}$ such that each vertex of H_{1} is 4-placed. Let $H_{2}=Q_{4} \cup Q_{5}$. Set $l=p+q$. We can find that there is a 4-packing $\left(b_{1}, g_{1}, r_{1}, s_{1}\right)$ of $T\left[V\left(H_{2}\right)\right]$ in B_{l+3} by Case 1 and Subcase 2.1.1. We can see that $\left(b \cup b_{1}, g \cup g_{1}, r \cup r_{1}, s \cup s_{1}\right)$ is a 4-packing of $T[V(H)]$ in B_{m+l+3}. Furthermore, each node of $T[V(H)]$ is 4-placed in this 4-packing. Then by Lemma 2.2, the theorem holds. This completes the proof of the theorem.

In this theorem, $n+3$ cannot be further reduced. A simple example is a star. Another example is a tree such that it is obtained from two vertex-disjoint stars by connecting two centers of them with a path of length 2 .

We can see there are more cases in the proof of the conjecture (see [7]) when $k=4$. Another purpose of this article is to improve the state of knowledge approaching the conjecture by determining the case $k=4$.

4. Appendix (I): The proof of Lemma 2.5

For each case, we define the required 4 -packing (b, g, r, s) with b as identity embedding as follows.

To prove (1), let
$\triangleright g\left(G_{1}\right)=x_{1} x_{4} x_{9} x_{2} x_{7} x_{6} \cup x_{9} x_{10} x_{11}$ with $g\left(x_{1}\right)=x_{1}$ and $g\left(x_{7}\right)=x_{11}$, $\triangleright r\left(G_{1}\right)=x_{9} x_{8} x_{11} x_{6} x_{3} x_{10} \cup x_{11} x_{4} x_{7}$ with $r\left(x_{1}\right)=x_{9}$ and $r\left(x_{7}\right)=x_{7}$, $\triangleright s\left(G_{1}\right)=x_{7} x_{10} x_{5} x_{8} x_{1} x_{6} \cup x_{5} x_{2} x_{11}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{7}\right)=x_{11}$.

To prove (2), let
$\triangleright g\left(G_{2}\right)=x_{5} x_{10} x_{1} x_{6} x_{9} x_{2} x_{11} \cup x_{1} x_{4} x_{7}$ with $g\left(x_{1}\right)=x_{5}$ and $g\left(x_{9}\right)=x_{7}$,
$\triangleright r\left(G_{2}\right)=x_{11} x_{8} x_{5} x_{2} x_{7} x_{10} x_{3} \cup x_{5} x_{12} x_{9}$ with $r\left(x_{1}\right)=x_{11}$ and $r\left(x_{9}\right)=x_{9}$,
$\triangleright s\left(G_{2}\right)=x_{9} x_{4} x_{11} x_{12} x_{1} x_{8} x_{7} \cup x_{11} x_{6} x_{3}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{9}\right)=x_{3}$.
To prove (3), let
$\triangleright g\left(G_{3}\right)=x_{7} x_{14} x_{13} x_{6} x_{11} \cup x_{13} x_{4} x_{9} x_{12} x_{5} x_{8} x_{1}$ with $g\left(x_{1}\right)=x_{7}$ and $g\left(x_{11}\right)=x_{1}$, $\triangleright r\left(G_{3}\right)=x_{3} x_{8} x_{11} x_{12} x_{13} \cup x_{11} x_{14} x_{1} x_{4} x_{7} x_{2} x_{5}$ with $r\left(x_{1}\right)=x_{3}$ and $r\left(x_{11}\right)=x_{5}$,
$\triangleright s\left(G_{3}\right)=x_{5} x_{6} x_{9} x_{14} x_{3} \cup x_{9} x_{2} x_{13} x_{10} x_{1} x_{12} x_{7}$ with $s\left(x_{1}\right)=x_{5}$ and $s\left(x_{11}\right)=x_{7}$.

To prove (4), let
$\triangleright g\left(G_{4}\right)=x_{3} x_{6} x_{9} x_{12} x_{13} x_{14} x_{1} \cup x_{9} x_{2} x_{11} x_{4} x_{7}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{11}\right)=x_{7}$,
$\triangleright r\left(G_{4}\right)=x_{5} x_{10} x_{13} x_{2} x_{7} x_{8} x_{11} \cup x_{13} x_{6} x_{1} x_{12} x_{3}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{11}\right)=x_{3}$,
$\triangleright s\left(G_{4}\right)=x_{11} x_{14} x_{7} x_{10} x_{1} x_{4} x_{9} \cup x_{7} x_{12} x_{5} x_{8} x_{13}$ with $s\left(x_{1}\right)=x_{11}$ and $s\left(x_{11}\right)=x_{13}$.
To prove (5), let
$\triangleright g\left(G_{5}\right)=x_{3} x_{8} x_{11} x_{14} x_{15} \cup x_{11} x_{16} x_{13} x_{10} x_{1} x_{4} x_{7} x_{2} x_{9}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{9}$,
$\triangleright r\left(G_{5}\right)=x_{5} x_{6} x_{9} x_{12} x_{1} \cup x_{9} x_{14} x_{3} x_{16} x_{15} x_{8} x_{13} x_{4} x_{11}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{13}\right)=x_{11}$,
$\triangleright s\left(G_{5}\right)=x_{9} x_{16} x_{5} x_{10} x_{3} \cup x_{5} x_{12} x_{15} x_{2} x_{11} x_{6} x_{1} x_{14} x_{7}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{13}\right)=x_{7}$.
To prove (6), let
$\triangleright g\left(G_{6}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{1} \cup x_{9} x_{2} x_{11} x_{14} x_{13} x_{4} x_{7}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{7}$, $\triangleright r\left(G_{6}\right)=x_{5} x_{8} x_{11} x_{6} x_{1} x_{14} x_{9} \cup x_{11} x_{16} x_{3} x_{12} x_{7} x_{2} x_{15}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{13}\right)=x_{15}$, $\triangleright s\left(G_{6}\right)=x_{9} x_{16} x_{7} x_{8} x_{13} x_{2} x_{5} \cup x_{7} x_{10} x_{1} x_{4} x_{15} x_{14} x_{3}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{13}\right)=x_{3}$.

To prove (7), let
$\triangleright g\left(G_{7}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{1} x_{4} x_{11} \cup x_{15} x_{2} x_{7} x_{14} x_{5}$ with $\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{5}$,
$\triangleright r\left(G_{7}\right)=x_{9} x_{16} x_{11} x_{14} x_{3} x_{10} x_{13} x_{8} x_{5} \cup x_{3} x_{12} x_{1} x_{6} x_{15}$ with $r\left(x_{1}\right)=x_{9}$ and $r\left(x_{13}\right)=x_{15}$,
$\triangleright s\left(G_{7}\right)=x_{7} x_{12} x_{5} x_{2} x_{9} x_{14} x_{15} x_{10} x_{1} \cup x_{9} x_{4} x_{13} x_{16} x_{3}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{13}\right)=x_{3}$.
To prove (8), let
$\triangleright g\left(G_{8}\right)=x_{3} x_{8} x_{1} x_{9} x_{5} \cup x_{1} x_{10} x_{7}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{7}\right)=x_{7}$,
$\triangleright r\left(G_{8}\right)=x_{1} x_{6} x_{5} x_{10} x_{3} \cup x_{5} x_{2} x_{7}$ with $r\left(x_{1}\right)=x_{1}$ and $r\left(x_{7}\right)=x_{7}$,
$\triangleright s\left(G_{8}\right)=x_{3} x_{9} x_{7} x_{8} x_{5} \cup x_{7} x_{4} x_{1}$ with $s\left(x_{1}\right)=x_{3}$ and $s\left(x_{7}\right)=x_{1}$.
To prove (9), let
$\triangleright g\left(G_{9}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{17} x_{18} x_{5} x_{14} x_{1} x_{10} x_{7} \cup x_{9} x_{2} x_{13}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{7}$,
$\triangleright r\left(G_{9}\right)=x_{5} x_{10} x_{15} x_{2} x_{7} x_{14} x_{3} x_{16} x_{11} x_{4} x_{9} x_{18} x_{1} \cup x_{15} x_{6} x_{17}$ with $r\left(x_{1}\right)=x_{5} \quad$ and $r\left(x_{13}\right)=x_{1}$,
$\triangleright s\left(G_{9}\right)=x_{9} x_{14} x_{17} x_{10} x_{3} x_{18} x_{11} x_{6} x_{13} x_{16} x_{5} x_{8} x_{15} \cup x_{17} x_{12} x_{7}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{13}\right)=x_{15}$.

To prove (10), let
$\triangleright g\left(G_{10}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{17} x_{18} x_{1} x_{4} x_{7} \cup x_{9} x_{14} x_{5} x_{10} x_{13}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{15}\right)=x_{13}$,
$\triangleright r\left(G_{10}\right)=x_{5} x_{8} x_{11} x_{14} x_{17} x_{2} x_{9} x_{4} x_{13} x_{16} x_{3} \cup x_{11} x_{6} x_{15} x_{18} x_{7}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{15}\right)=x_{7}$,
$\triangleright s\left(G_{10}\right)=x_{7} x_{12} x_{17} x_{6} x_{13} x_{18} x_{3} x_{10} x_{15} x_{2} x_{5} \cup x_{17} x_{8} x_{1} x_{16} x_{9}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{15}\right)=x_{9}$.

To prove (11), let
$\triangleright g\left(G_{11}\right)=x_{11} x_{4} x_{9} x_{6} x_{13} x_{10} x_{1} x_{14} x_{3} \cup x_{13} x_{2} x_{17} x_{4} x_{1} x_{18} x_{5}$ with $g\left(x_{1}\right)=x_{11}$ and $g\left(x_{15}\right)=x_{5}$,
$\triangleright r\left(G_{11}\right)=x_{5} x_{8} x_{1} x_{16} x_{17} x_{18} x_{9} x_{2} x_{11} \cup x_{17} x_{12} x_{3} x_{10} x_{7} x_{4} x_{13}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{15}\right)=x_{13}$,
$\triangleright s\left(G_{11}\right)=x_{9} x_{16} x_{11} x_{14} x_{15} x_{2} x_{5} x_{12} x_{1} \cup x_{15} x_{8} x_{13} x_{18} x_{3} x_{6} x_{17}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{15}\right)=x_{17}$.
To prove (12), let
$\triangleright g\left(G_{12}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{17} x_{18} x_{5} \cup x_{9} x_{14} x_{1} x_{10} x_{7} x_{4} x_{13}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{15}\right)=x_{13}$,
$\triangleright r\left(G_{12}\right)=x_{5} x_{8} x_{15} x_{2} x_{7} x_{14} x_{3} x_{16} x_{11} \cup x_{15} x_{4} x_{9} x_{18} x_{1} x_{6} x_{17}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{15}\right)=x_{17}$,
$\triangleright s\left(G_{12}\right)=x_{7} x_{12} x_{17} x_{8} x_{3} x_{18} x_{11} x_{6} x_{13} \cup x_{17} x_{2} x_{5} x_{16} x_{9} x_{10} x_{5}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{15}\right)=x_{5}$.

To prove (13), let
$\triangleright g\left(G_{13}\right)=x_{3} x_{6} x_{7} x_{10} x_{11} x_{12} \cup x_{1} x_{4} x_{7} x_{13} x_{9}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{7}\right)=x_{9}$,
$\triangleright r\left(G_{13}\right)=x_{5} x_{12} x_{9} x_{8} x_{1} x_{13} \cup x_{1} x_{6} x_{9} x_{2} x_{11}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{7}\right)=x_{11}$,
$\triangleright s\left(G_{13}\right)=x_{3} x_{13} x_{5} x_{2} x_{7} x_{12} \cup x_{11} x_{8} x_{5} x_{10} x_{1}$ with $s\left(x_{1}\right)=x_{3}$ and $s\left(x_{7}\right)=x_{1}$.
To prove (14), let
$\triangleright g\left(G_{14}\right)=x_{3} x_{6} x_{9} x_{10} x_{13} x_{14} x_{1} \cup x_{7} x_{12} x_{9} x_{2} x_{5}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{11}\right)=x_{7}$,
$\triangleright r\left(G_{14}\right)=x_{5} x_{8} x_{11} x_{12} x_{1} x_{4} x_{9} \cup x_{13} x_{2} x_{11} x_{14} x_{7}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{11}\right)=x_{13}$,
$\triangleright s\left(G_{14}\right)=x_{11} x_{4} x_{13} x_{8} x_{7} x_{10} x_{5} \cup x_{1} x_{6} x_{13} x_{12} x_{3}$ with $s\left(x_{1}\right)=x_{11}$ and $s\left(x_{11}\right)=x_{1}$.
To prove (15), let
$\triangleright g\left(G_{15}\right)=x_{3} x_{6} x_{9} x_{12} x_{11} x_{14} x_{15} \cup x_{5} x_{2} x_{9} x_{16} x_{1} x_{4} x_{13}$ with $g\left(x_{10}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{5}$,
$\triangleright r\left(G_{15}\right)=x_{5} x_{8} x_{11} x_{16} x_{3} x_{10} x_{13} \cup x_{1} x_{6} x_{11} x_{2} x_{15} x_{12} x_{7}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{13}\right)=x_{1}$,
$\triangleright s\left(G_{15}\right)=x_{7} x_{16} x_{15} x_{6} x_{13} x_{8} x_{1} \cup x_{11} x_{4} x_{15} x_{10} x_{5} x_{14} x_{3}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{13}\right)=x_{11}$.
To prove (16), let
$\triangleright g\left(G_{16}\right)=x_{3} x_{6} x_{9} x_{10} x_{13} x_{14} x_{15} x_{16} x_{1} \cup x_{7} x_{2} x_{9} x_{12} x_{5}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{7}$, $\triangleright r\left(G_{16}\right)=x_{15} x_{8} x_{11} x_{14} x_{1} x_{10} x_{5} x_{2} x_{13} \cup x_{9} x_{4} x_{11} x_{16} x_{7}$ with $r\left(x_{1}\right)=x_{15}$ and $r\left(x_{13}\right)=x_{9}$,
$\triangleright s\left(G_{16}\right)=x_{9} x_{16} x_{13} x_{6} x_{11} x_{12} x_{7} x_{14} x_{5} \cup x_{3} x_{8} x_{13} x_{4} x_{15}$ with $s\left(x_{1}\right)=x_{9}$ and $s\left(x_{13}\right)=x_{3}$.
To prove (17), let
$\triangleright g\left(G_{17}\right)=x_{3} x_{6} x_{9} x_{12} x_{13} x_{8} \cup x_{5} x_{15} x_{9} x_{14} x_{1} \cup x_{9} x_{4} x_{7}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{7}\right)=x_{5}$, $\triangleright r\left(G_{17}\right)=x_{5} x_{8} x_{11} x_{14} x_{7} x_{10} \cup x_{9} x_{2} x_{11} x_{4} x_{13} \cup x_{11} x_{15} x_{1}$ with $r\left(x_{1}\right)=x_{5}$ and $r\left(x_{7}\right)=x_{9}$,
$\triangleright s\left(G_{17}\right)=x_{7} x_{15} x_{13} x_{10} x_{1} x_{12} \cup x_{11} x_{6} x_{13} x_{2} x_{5} \cup x_{13} x_{14} x_{3}$ with $s\left(x_{1}\right)=x_{7}$ and $s\left(x_{7}\right)=x_{11}$.

To prove (18), let
$\triangleright g\left(G_{18}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} x_{16} x_{13} \cup x_{5} x_{14} x_{9} x_{4} x_{7} \cup x_{9} x_{10} x_{1}$ with $g\left(x_{1}\right)=x_{3}$ and $g\left(x_{13}\right)=x_{1}$,
$\triangleright r\left(G_{18}\right)=x_{7} x_{8} x_{11} x_{14} x_{1} x_{12} x_{5} \cup x_{3} x_{16} x_{11} x_{6} x_{13} \cup x_{11} x_{2} x_{15}$ with $r\left(x_{1}\right)=x_{7}$ and $r\left(x_{13}\right)=x_{15}$,
$\triangleright s\left(G_{18}\right)=x_{13} x_{14} x_{15} x_{10} x_{7} x_{2} x_{9} \cup x_{1} x_{6} x_{15} x_{8} x_{5} \cup x_{15} x_{4} x_{11}$ with $s\left(x_{1}\right)=x_{13}$ and $s\left(x_{13}\right)=x_{11}$.

5. Appendix (II): The proof of Lemma 2.6

For each case, we define the required 4 -packing (b, g, r, s) with b as identity embedding as follows.

To prove (1), let
$\triangleright g\left(F_{1}\right)=x_{5} x_{8} x_{13} x_{10} x_{7} \cup x_{12} x_{11} x_{6} x_{1} x_{4} \cup x_{13} x_{6}$,
$\triangleright r\left(F_{1}\right)=x_{11} x_{4} x_{7} x_{2} x_{13} \cup x_{8} x_{1} x_{12} x_{3} x_{10} \cup x_{7} x_{12}$,
$\triangleright s\left(F_{1}\right)=x_{13} x_{12} x_{9} x_{6} x_{3} \cup x_{10} x_{5} x_{2} x_{11} x_{8} \cup x_{9} x_{2}$.
To prove (2), let
$\triangleright g\left(F_{2}\right)=x_{3} x_{8} x_{1} x_{10} x_{13} \cup x_{4} x_{9} x_{6} x_{15} x_{2} \cup x_{1} x_{14} x_{11} x_{6}$,
$\triangleright r\left(F_{2}\right)=x_{7} x_{12} x_{5} x_{14} x_{3} \cup x_{2} x_{11} x_{4} x_{13} x_{12} \cup x_{5} x_{8} x_{15} x_{4}$,
$\triangleright s\left(F_{2}\right)=x_{9} x_{14} x_{15} x_{12} x_{1} \cup x_{8} x_{13} x_{2} x_{5} x_{6} \cup x_{15} x_{10} x_{7} x_{2}$.
To prove (3), let
$\triangleright g\left(F_{3}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} \cup x_{8} x_{13} x_{16} x_{11} x_{14} \cup x_{9} x_{2} x_{17} x_{10} x_{5} x_{16}$,
$\triangleright r\left(F_{3}\right)=x_{5} x_{8} x_{15} x_{16} x_{17} \cup x_{10} x_{11} x_{2} x_{13} x_{4} \cup x_{15} x_{6} x_{1} x_{14} x_{7} x_{2}$,
$\triangleright s\left(F_{3}\right)=x_{7} x_{4} x_{17} x_{6} x_{11} \cup x_{12} x_{5} x_{14} x_{15} x_{2} \cup x_{17} x_{8} x_{3} x_{16} x_{9} x_{14}$.
To prove (4), let
$\triangleright g\left(F_{4}\right)=x_{13} x_{8} x_{5} x_{16} x_{9} \cup x_{12} x_{15} x_{10} x_{3} x_{14} \cup x_{5} x_{6} x_{1} x_{4} \cup x_{10} x_{7} x_{2} x_{11}$,
$\triangleright r\left(F_{4}\right)=x_{1} x_{16} x_{11} x_{6} x_{3} \cup x_{4} x_{9} x_{2} x_{15} x_{8} \cup x_{11} x_{14} x_{7} x_{12} \cup x_{2} x_{13} x_{10} x_{5}$,
$\triangleright s\left(F_{4}\right)=x_{11} x_{10} x_{1} x_{8} x_{3} \cup x_{14} x_{13} x_{4} x_{7} x_{16} \cup x_{1} x_{12} x_{5} x_{2} \cup x_{4} x_{15} x_{6} x_{9}$.
To prove (5), let
$\triangleright g\left(F_{5}\right)=x_{3} x_{12} x_{9} x_{6} x_{13} \cup x_{4} x_{1} x_{14} x_{5} x_{8} \cup x_{9} x_{14} x_{7} x_{10}$,
$\triangleright r\left(F_{5}\right)=x_{5} x_{10} x_{13} x_{8} x_{1} \cup x_{2} x_{11} x_{4} x_{7} x_{12} \cup x_{13} x_{4} x_{15} x_{14}$,
$\triangleright s\left(F_{5}\right)=x_{11} x_{6} x_{1} x_{10} x_{3} \cup x_{8} x_{15} x_{12} x_{13} x_{14} \cup x_{1} x_{12} x_{5} x_{2}$.

To prove (6), let
$\triangleright g\left(F_{6}\right)=x_{3} x_{6} x_{9} x_{12} x_{15} \cup x_{2} x_{13} x_{10} x_{1} x_{14} \cup x_{9} x_{4} x_{17} x_{10} x_{5} x_{16}$,
$\triangleright r\left(F_{6}\right)=x_{5} x_{8} x_{15} x_{2} x_{17} \cup x_{14} x_{11} x_{4} x_{13} x_{12} \cup x_{15} x_{6} x_{1} x_{4} x_{7} x_{10}$,
$\triangleright s\left(F_{6}\right)=x_{7} x_{14} x_{17} x_{6} x_{11} \cup x_{2} x_{9} x_{16} x_{15} x_{4} \cup x_{17} x_{8} x_{3} x_{16} x_{1} x_{12}$.
To prove (7), let
$\triangleright g\left(F_{7}\right)=x_{3} x_{6} x_{9} x_{12} x_{13} \cup x_{8} x_{15} x_{18} x_{17} x_{2} \cup x_{9} x_{14} x_{1} x_{10} x_{19} x_{18} x_{7} x_{4}$,
$\triangleright r\left(F_{7}\right)=x_{5} x_{8} x_{17} x_{16} x_{11} \cup x_{4} x_{9} x_{2} x_{7} x_{14} \cup x_{17} x_{6} x_{19} x_{12} x_{15} x_{2} x_{13} x_{10}$,
$\triangleright s\left(F_{7}\right)=x_{9} x_{18} x_{11} x_{6} x_{15} \cup x_{12} x_{17} x_{4} x_{13} x_{16} \cup x_{11} x_{10} x_{3} x_{8} x_{1} x_{4} x_{19} x_{2}$.
To prove (8), let
$\triangleright g\left(F_{8}\right)=x_{3} x_{6} x_{9} x_{12} x_{13} \cup x_{8} x_{15} x_{18} x_{1} x_{16} \cup x_{17} x_{4} x_{11} x_{18} x_{5} x_{10} \cup x_{9} x_{2} x_{7} x_{14}$,
$\triangleright r\left(F_{8}\right)=x_{5} x_{8} x_{17} x_{6} x_{11} \cup x_{12} x_{1} x_{10} x_{3} x_{18} \cup x_{13} x_{2} x_{15} x_{10} x_{7} x_{16} \cup x_{17} x_{14} x_{9} x_{4}$,
$\triangleright s\left(F_{8}\right)=x_{17} x_{10} x_{13} x_{18} x_{9} \cup x_{2} x_{11} x_{16} x_{5} x_{14} \cup x_{7} x_{12} x_{3} x_{16} x_{15} x_{6} \cup x_{13} x_{4} x_{1} x_{8}$.
Acknowledgement. The authors would like to thank the referees for their careful reading of the manuscript and their valuable comments which have helped to improve the paper.

References

[1] J.-L. Fouquet, A. P. Wojda: Mutual placement of bipartite graphs. Discrete Math. 121 (1993), 85-92.
[2] A. M. Hobbs, B. A. Bourgeois, J. Kasiraj: Packing trees in complete graphs. Discrete Math. 67 (1987), 27-42.
zbl MR doi
] H. Wang: Packing two forests into a bipartite graph. J. Graph Theory 23 (1996), 209-213.
4] H. Wang: Packing three copies of a tree into a complete bipartite graph. Ann. Comb. 13 (2009), 261-269.
[5] H. Wang, N. Sauer: The chromatic number of the two-packings of a forest. The Mathematics of Paul Erdős. Vol. II. Algorithms and Combinatorics 14. Springer, Berlin, 1997, pp. 99-120.
[6] D. B. West: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River, 1996.
zbl MR doi zbl MR
[7] M. Woźniak: Packing of graphs and permutations - a survey. Discrete Math. 276 (2004), 379-391.
[8] H. P. Yap: Packing of graphs - a survey. Discrete Math. 72 (1988), 395-404.
Authors' address: Liqun Pu (corresponding author), Yuan Tang, Xiaoli Gao, School of Mathematics and Statistics of Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, P.R. China, e-mail: liqunpu@sina.com, yuantang009@163.com, xiaoligao68@163.com.

