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Abstract. In considering packing three copies of a tree into a complete bipartite graph,
H.Wang (2009) gives a conjecture: For each tree T of order n and each integer k > 2, there
is a k-packing of T in a complete bipartite graph Bn+k−1 whose order is n + k − 1. We
prove the conjecture is true for k = 4.
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1. Introduction

We discuss only finite simple graphs and use standard terminology and notation

from [6] except as indicated. For any graph G we use V (G) and E(G) to denote

the vertex set and the edge set of G, respectively. A forest is a graph without

cycles. A tree is a connected forest. We use Bn (or Kt,n−t) to represent a complete

bipartite graph of order n. A bipartite graph G admits (a, b)-bipartition if G has

a bipartition (X,Y ) such that |X | = a and |Y | = b. Note that up to isomorphism,

Bn (Kt,n−t) is not uniquely defined for n > 4 and t > 1.

An isomorphism from a simple graph G to a simple graph H is a bijection f :

V (G) → V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say that G

is isomorphic to H , written as G ∼= H . By an embedding σ of a bipartite graph G

in Bn, we mean that σ is an injection from V (G) into V (Bn) such that σ(V0) ⊆ X0

and σ(V1) ⊆ X1, where (V0, V1) and (X0, X1) are the given bipartitions of G and Bn,

respectively. A k-packing of T in the graphG is a partition of edges of subgraph of the
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graph G such that each element of the partition induces a subgraph isomorphic to T ,

where k is the number of the elements in the partition. (Later, denote the subgraph

ofG byG′. Let σi be a bijection satisfying σi(G
′) ≃ T for 1 6 i 6 k.) There have been

some results found on k-packing of T in G for various k, T and G. When T is a path

and G is a complete bipartite graph, some results can be found in [7], [8]. Hobbs,

Bourgeois and Kasiraj in [2] proved that any two trees of order m and n with m < n

can be packed into a complete bipartite graph Kn−1,⌈ 1

2
n⌉. It is proved in [1], [5] that

for any disconnected forest F of order n, there is a 2-packing of F in a complete bipar-

tite graphBn. Wang in [3] showed that any two forests of order n admitting the same

(a, b)-bipartition can be packed into a complete bipartite graph of order at most n+1.

Wang in [4] also proved that for any tree T of order n a 3-packing of T in some Bn+2

can be found. Wang gives a conjecture in paper (see [4]): For any tree T of order n

and each integer k > 2, there is a k-packing of T in some Bn+k−1. The conjecture is

true for k = 2 and k = 3 by the results in [3], [4], [5]. We will show it is true for k = 4.

Theorem 1.1. For each tree T of order n, there is a 4-packing of T in some Bn+3.

Its proof can be found in Section 3 while in Section 2, some lemmas, which are

important for the proof of the main theorem, are given.

2. Preliminary

We first give some terminology and notation. Given a bipartite graph G, we say

that two vertices of G are strongly independent if they are not adjacent and they do

not have any common neighbor either. A node ofG is a vertex of G that is adjacent to

an endvertex of G. A supernode of G is a vertex x of G such that, with one exception,

every neighbor of x is an endvertex of G. If G is a tree but not a star, we readily see

thatG has at least two distinct supernodes by observing a longest path ofG. If (X,Y )

is the given bipartition of G, then any subgraph H of G has (X ∩ V (H), Y ∩ V (H))

as its given bipartition. For a 4-packing (b, g, r, s) of G in Bn, we say that a vertex x

is 4-placed if b(x), g(x), r(x) and s(x) are distinct. A linear forest is a forest such

that each of its components is a path. By adopting the method in [4], we give

Lemmas 2.1 and 2.2, which are important for the proof of the main theorem. Let P =

xixi+1 . . . xi+l denote a path of length l with vertex set V (P ) = {xi+t : 0 6 t 6 l}

and edge set E(P ) = {xi+t−1xi+t : 1 6 t 6 l}. Let Ks,t(Vs, Vt) denote a bipartite

graph with vertex set V (Ks,t) = Vs∪Vt and edge set E(Ks,t) = {ab : a ∈ Vs, b ∈ Vt}.

Lemma 2.1. Let x, y, z and p be four strongly independent endvertices in the

same partite of a tree T . If there is a 4-packing of T − x − y − z − p in Bn, then

there is a 4-packing of T in Bn+4.
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P r o o f. Let {u, v, w, q} ⊆ V (T ) be such that {xu, yv, zw, pq} ⊆ E(T ). Let

(σ1, σ2, σ3, σ4) be a 4-packing of T − x − y − z − p in Bn. For i ∈ {1, 2, 3, 4}, let

Ai = {σi(u), σi(v), σi(w), σi(q)}. Obviously |Ai| = 4. Note that
4
⋃

i=1

Ai is contained

in one partite of Bn. Let V (Bn+4) = V (Bn) ∪ {x, y, z, p} such that {x, y, z, p} is in

the partite that does not contain
4
⋃

i=1

Ai. For each i ∈ {1, 2, 3, 4} we add a set Ei con-

sisting of four independent edges between {x, y, z, p} and Ai to σi(T−x−y−z−p) to

obtain a copy of T in Bn+4. Note that
∣

∣

∣

4
⋃

i=1

Ei

∣

∣

∣

= 16 and 4 6

∣

∣

∣

4
⋃

i=1

Ai

∣

∣

∣

6 20. The edges

in
4
⋃

i=1

Ei comes from the complete bipartite graph M with partite sets {x, y, z, p}

and
4
⋃

i=1

Ai. Obviously |E(M)| > 16. It is easy to choose Ei (1 6 i 6 4) satisfying

Ei ∩ Ej = ϕ for 1 6 i < j 6 4. Thus, we extend each σi to an embedding of T in

Bn+4 such that (σ1, σ2, σ3, σ4) becomes a 4-packing of T in Bn+4. �

Lemma 2.2. Let H be a subgraph of a tree T such that each vertex of T −V (H)

is an endvertex of T . If there is a 4-packing of H in Bn such that each vertex x of H

with xy ∈ E(T ) for some y ∈ V (T ) − V (H) is 4-placed, then there is a 4-packing

of T in Bn+m, where m = |V (T )| − |V (H)|.

P r o o f. Let (σ1, σ2, σ3, σ4) be a 4-packing of H in Bn so that if xy ∈ E(T ) with

y ∈ V (T )−V (H), then x is 4-placed. Note that σ1(x), σ2(x), σ3(x) and σ4(x) are in

the same partite for all x ∈ V (H). We obtain Bn+m by adding each y ∈ V (T )−V (H)

to Bn so that if xy ∈ E(T ), then y and σ1(x) are in the opposite partites. Then for

each i ∈ {1, 2, 3, 4} we extend σi to an embedding of T in Bn+m so that σi(y) = y

for each y ∈ V (T )− V (H). Then (σ1, σ2, σ3, σ4) is a 4-packing of T in Bn+m. �

We also need the following lemmas in order to prove our main theorem.

Lemma 2.3. The following two statements hold:

(1) If P is a linear forest of order 2k with k > 8, then there is a 4-packing of P

in Kk,k such that each vertex of P is 4-placed.

(2) If P is a path of order 2k with k ∈ {5, 6, 7}, then there is a 4-packing of P

in Kk+1,k+2 such that each vertex of P is 4-placed.

P r o o f. To prove (1), without loss of generality, suppose P = x1y1x2y2 . . . xkyk is

a path with ({x1, . . . , xk}, {y1, . . . , yk}) as its bipartition. The subscript modulo k is

in {1, 2, . . . , k}. Define a 4-packing (b, g, r, s) of P in Kk,k({x1, . . . , xk}, {y1, . . . , yk})

as follows. For all z ∈ V (P ), let b(z) = z; for i = {1, 2, . . . , k}, let g(xi) = xi+1 and

g(yi) = yi+3; r(xi) = xi+2 and r(yi) = yi+6; s(xi) = xi+3 and s(yi) = yi+1.
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To prove (2), let ({x1, . . . , xk, w1}, {y1, . . . , yk, w2, w3}) be the bipartition of

Kk+1,k+2. Say P = x1y1x2y2 . . . xkyk. InK{x1,...,xk,w1},{y1,...,yk,w2,w3}, i.e.,Kk+1,k+2,

we define four embeddings (b, g, r, s) of P with b being identity embedding as follows.

If k = 5, define g, r and s such that g(P ) = x2y3x5w3w1w2x1y5x3y1, r(P ) =

x3y4w1y3x1w3x2w2x4y2, s(P ) = x4w3x3w2x5y1w1y2x1y4, with g(x1) = x2, r(x1) =

x3 and s(x1) = x4.

If k = 6, define g, r and s such that g(P ) = x2y4x6w2w1y6x5w3x4y2x1y5, r(P ) =

x3y5x4y6x2w3x6y1w1y3x5w2, s(P ) = x6y2x5y1x3w2x2y3x1y4w2w3, with g(x1) = x2,

r(x1) = x3 and s(x1) = x6.

If k = 7, define g, r and s such that g(P ) = x2y3x5y6w1w3x1y5x7w2x3y1x4y2,

r(P ) = x3y4x7y1x5w2x2y6x1y7w1y2x6w3, s(P ) = x5y7x3y5x2y4x6w2w1w3x7y3x1y6,

with g(x1) = x2, r(x1) = x3 and s(x1) = x5. �

Lemma 2.4. Let P be a path of order n from x to y. The following three

statements hold:

(1) If n ∈ {4, 6, 8}, there is a 4-packing (b, g, r, s) of P in Bn+3 such that z is

4-placed for each z ∈ V (P )− {y}.

(2) If n = 5, there is a 4-packing (b, g, r, s) of P in Bn+3 such that z is 4-placed for

each z ∈ V (P )− {x, y}. Furthermore,

{b(x), g(x), r(x), s(x)} ∩ {b(y), g(y), r(y), s(y)} = ∅.

(3) If n ∈ {7, 9}, there is a 4-packing (b, g, r, s) of P in Bn+3 such that z is 4-placed

for each z ∈ V (P ).

P r o o f. To prove (1), when n = 4, let P = x1x2x3x4. Set V0 = {x1, x3} and

V1 = {x2, x4}. Let (V0, V1) be the partition of P and (V0∪{x5, x7}, V1∪{x6}) be the

bipartition of B7. Define the required 4-packing (b, g, r, s) of P in B7 with b being

identity embedding as follows: g(P ) = x3x6x1x4, r(P ) = x7x4x5x6 and s(P ) =

x5x2x7x6 with g(x1) = x3, r(x1) = x7 and s(x1) = x5.

When n = 6, let P = x1x2x3x4x5x6. Set V0 = {x1, x3, x5} and V1 = {x2, x4, x6}.

Let (V0, V1) be the partition of P and (V0∪{x7}, V1∪{x8, x9}) be the bipartition ofB9.

Define the required 4-packing (b, g, r, s) of P in B9 with b being identity embedding

as follows: g(P ) = x7x4x1x8x3x6, r(P ) = x3x9x5x2x7x6 and s(P ) = x5x8x7x9x1x6

with g(x1) = x7, r(x1) = x3 and s(x1) = x5.

When n = 8, let P = x1x2x3x4x5x6x7x8, V0 = {x1, x3, x5, x7} and V1 =

{x2, x4, x6, x8}. Let (V0, V1) be the partition of P and (V0 ∪ {x9}, V1 ∪ {x10, x11})

be the bipartition of B11. Define the required 4-packing (b, g, r, s) of P in B11

with b being identity embedding as follows: g(P ) = x1x11x5x10x7x2x9x4, r(P ) =

x1x10x9x6x3x8x5x2 and s(P ) = x7x4x1x8x9x11x3x10 with g(x1) = x1, r(x1) = x1

and s(x1) = x7.
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To prove (2), let P = x1x2x3x4x5. Set V0 = {x1, x3, x5} and V1 = {x2, x4}. Let

(V0, V1) be the partition of P and (V0 ∪{x7}, V1 ∪ {x6, x8}) be the bipartition of B8.

Define the required 4-packing (b, g, r, s) of P in B8 with b being identity embedding

as follows: g(P ) = x7x6x5x8x3, r(P ) = x1x4x7x2x5 and s(P ) = x7x8x1x6x3 with

g(x1) = x7, r(x1) = x1 and s(x1) = x7.

To prove (3), when n = 7, let P = x1x2x3x4x5x6x7. Set V0 = {x1, x3, x5, x7} and

V1 = {x2, x4, x6}. Let (V0, V1) be the partition of P and (V0 ∪ {x8, x9}, V1 ∪ {x10})

be the bipartition of B10. Define the required 4-packing (b, g, r, s) of P in B10

with b being identity embedding as follows: g(P ) = x3x6x8x10x7x2x9, r(P ) =

x7x4x9x6x1x10x3 and s(P ) = x9x10x5x2x8x4x1 with g(x1) = x3, r(x1) = x7 and

s(x1) = x9.

When n = 9, let P = x1x2x3x4x5x6x7x8x9. Set V0 = {x1, x3, x5, x7, x9} and V1 =

{x2, x4, x6, x8}. Let (V0, V1) be the partition of P and (V0 ∪ {x11}, V1 ∪ {x10, x12})

be the bipartition of B12. Define the required 4-packing (b, g, r, s) of P in B12

with b being identity embedding as follows: g(P ) = x3x8x11x6x9x10x1x4x7, r(P ) =

x5x10x7x2x11x4x9x12x1 and s(P ) = x7x12x5x8x1x6x3x10x11 with g(x1) = x3,

r(x1) = x5 and s(x1) = x7. �

To state Lemma 2.5, we define graphs Gi (1 6 i 6 18 and i 6= 8, 13 or 17)

to be the subgraphs of K8,8 (V0, V1), where V0 = {x1, x3, x5, . . . , x15} and V1 =

{x2, x4, x6, . . . , x16}. LetG8 be the graphK4,6 (U0, U1), where U0= {x1, x3, x5, x7}⊂

V0 and U1 = {x2, x4, x6, x8, x9, x10} ⊂ V1. Let G13 be the graph K6,7 (U0, U1),

where U0 = {x1, x3, x5, x7, x9, x11} ⊂ V0 and U1 = {x2, x4, x6, x8, x10, x12, x13} ⊂ V1,

and G17 be the graph K7,8 (U0, U1), where U0 = {x1, x3, x5, x7, x9, x11, x13} ⊂ V0

and U1 = {x2, x4, x6, x8, x10, x12, x14, x15} ⊂ V1. Let

G1 = x1x2x3x4x5x6 ∪ x3x8x7,

where x1x2x3x4x5x6 is a path of length 5 with edges x1x2, x2x3, x3x4, x4x5, x5x6.

G2 = x1x2x3x4x5x6x7 ∪ x3x8x9,

G3 = x1x2x3x4x5 ∪ x3x6x7x8x9x10x11,

G4 = x1x2x3x4x5x6x7 ∪ x3x8x9x10x11,

G5 = x1x2x3x4x5 ∪ x3x6x7x8x9x10x11x12x13,

G6 = x1x2x3x4x5x6x7 ∪ x3x8x9x10x11x12x13,

G7 = x1x2x3x4x5x6x7x8x9 ∪ x5x10x11x12x13,

G8 = x1x2x3x4x5 ∪ x3x6x7,

G9 = x1x2x3x4x5x6x7x8x9x10x11x12x13 ∪ x3x14x15,
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G10 = x1x2x3x4x5x6x7x8x9x10x11 ∪ x3x12x13x14x15,

G11 = x1x2x3x4x5x6x7x8x9 ∪ x5x10x11x12x13x14x15,

G12 = x1x2x3x4x5x6x7x8x9 ∪ x3x10x11x12x13x14x15,

G13 = x1x2x3x4x5x6 ∪ x9x10x3x8x7,

G14 = x1x2x3x4x5x6x7 ∪ x11x10x3x8x9,

G15 = x1x2x3x4x5x6x7 ∪ x13x12x3x8x9x10x11,

G16 = x1x2x3x4x5x6x7x8x9 ∪ x13x12x3x10x11,

G17 = x1x2x3x4x5x6 ∪ x7x8x3x10x9 ∪ x3x12x11,

G18 = x1x2x3x4x5x6x7 ∪ x9x8x3x10x11 ∪ x3x12x13.

Lemma 2.5. The following statements hold:

(1) There is a 4-packing of G1 in B11 such that, except x1, x6 and x7, every vertex

of G1 is 4-placed.

(2) There is a 4-packing of G2 in B12 such that, except x7 and x9, every vertex of

G2 is 4-placed.

(3) There is a 4-packing of G3 in B14 such that every vertex of G3 is 4-placed.

(4) There is a 4-packing of G4 in B14 such that every vertex of G4 is 4-placed.

(5) There is a 4-packing of G5 in B16 such that every vertex of G5 is 4-placed.

(6) There is a 4-packing of G6 in B16 such that every vertex of G6 is 4-placed.

(7) There is a 4-packing of G7 in B16 such that every vertex of G7 is 4-placed.

(8) There is a 4-packing of G8 in B10 such that, except x1, x5 and x7, every vertex

of G8 is 4-placed.

(9) There is a 4-packing of G9 in B18 such that every vertex of G9 is 4-placed.

(10) There is a 4-packing of G10 in B18 such that every vertex of G10 is 4-placed.

(11) There is a 4-packing of G11 in B18 such that every vertex of G11 is 4-placed.

(12) There is a 4-packing of G12 in B18 such that every vertex of G12 is 4-placed.

(13) There is a 4-packing of G13 in B13 such that, except x1, x6 and x9, every vertex

of G13 is 4-placed.

(14) There is a 4-packing of G14 in B14 such that every vertex of G14 is 4-placed.

(15) There is a 4-packing of G15 in B16 such that every vertex of G15 is 4-placed.

(16) There is a 4-packing of G16 in B16 such that every vertex of G16 is 4-placed.

(17) There is a 4-packing of G17 in B15 such that every vertex of G17 is 4-placed.

(18) There is a 4-packing of G18 in B16 such that every vertex of G18 is 4-placed.

The proof can be found in Appendix (I).
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To state Lemma 2.6, we define graphs Fi (1 6 i 6 8) to be the subgraphs of K10,9

(V0, V1), where V0 = {x1, x3, x5, . . . , x19} and V1 = {x2, x4, x6, . . . , x18}. Let

F1 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x8,

F2 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x12x11x8,

F3 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x14x13x12x11x8,

F4 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x16x15x14 ∪ x8x11x12x13,

F5 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x8x11x12,

F6 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x14x13x8x11x12,

F7 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x3x16x15x14x13x8x11x12,

F8 = x1x2x3x4x5 ∪ x6x7x8x9x10 ∪ x15x14x13x8x11x12 ∪ x3x18x17x16.

Lemma 2.6. The following statements hold:

(1) There is a 4-packing of F1 in B13 such that, except x10, every vertex of F1 is

4-placed.

(2) There is a 4-packing of F2 in B15 such that every vertex of F2 is 4-placed.

(3) There is a 4-packing of F3 in B17 such that every vertex of F3 is 4-placed.

(4) There is a 4-packing of F4 in B16 such that, except x1 and x5, every vertex

of F4 is 4-placed.

(5) There is a 4-packing of F5 in B15 such that every vertex of F5 is 4-placed.

(6) There is a 4-packing of F6 in B17 such that, except x6 and x12, every vertex

of F6 is 4-placed.

(7) There is a 4-packing of F7 in B19 such that every vertex of F7 is 4-placed.

(8) There is a 4-packing of F8 in B18 such that every vertex of F8 is 4-placed.

The proof can be found in Appendix (II).

3. Proof of the main theorem

Now we are in the position to prove our main result Theorem 3.1.

Theorem 3.1. For each tree T of order n, there is a 4-packing of T in some Bn+3.

P r o o f. To avoid considering many classes of non-isomorphic trees with the same

order n, the theorem is proved by contradiction. Let T be a tree with the smallest

order such that the theorem fails for T . Say |V (T )| = n. By Lemma 2.1, T does not

contain four strongly independent endvertices in the same partite. Thus, T contains

at most six supernodes. Clearly, n > 4 and T is not a star. By observing a longest
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path, we see that T has at least two supernodes. We need to consider only the trees

of order n with t supernodes (2 6 t 6 6). We divide the proof into several cases by

the numbers of supernodes of T . In every case, we manage to define a subgraph H

of T . Then from the 4-packing of H in Bn, we shall obtain a 4-packing of T in Bn+3.

Case 1 : T has exactly two supernodes.

In this case, let P = x1x2 . . . xt be a longest path. Then every vertex of T −V (P )

is an endvertex of T . If t = 2k and k /∈ {3, 4}, then by Lemma 2.3 (1) and (2),

there is a 4-packing of P in B2k+3 such that each vertex of P is 4-placed, and thus

the theorem holds by Lemma 2.2. If k ∈ {3, 4}, we apply Lemma 2.4 (1) to P and

Lemma 2.2 to T , and see that the theorem holds. If t = 2k + 1, let P ′ = P − x2k+1.

For the same reason, if k /∈ {3, 4}, then the theorem holds. If k ∈ {3, 4}, we apply

Lemma 2.4 (3) to P and Lemma 2.2 to T , and see that the theorem holds.

Case 2 : T has at least three but at most six supernodes.

In this case, T has a vertex-cut U with |U | 6 3 such that no component of T −U

contains two distinct supernodes of T . We choose such a vertex-cut U with |U |

minimal. Let w1, w2 and w3 be three distinct vertices not in T . In the following,

we shall define a subgraph H of T . Then from a 4-packing of H we shall obtain

a 4-packing of T in Bn+3 with V (Bn+3) = V (T )∪ {w1, w2, w3}. We divide this case

into the following three subcases.

u= xi0

y1 z1 a1 b1

x2

x1

xk+1

xk

ys−1

ys zt−1 ap−1 bq−1

zt ap bq

Q1 Q2

Q3 Q4 Q5

Figure 1. |U | = 1. (The larger dots are supernodes.)

Subcase 2.1 : |U | = 1. Say U = {u}. As T has at least three supernodes,

there exists a path Q1 = x1x2 . . . xk in T such that x1 and xk are two endver-

tices while x2 and xk−1 are two distinct supernodes. Furthermore, u = xi0 for some

i0 ∈ {3, 4, . . . , k − 2}. Let x1 and xk be two endvertices in the opposite partites

when T has at least four supernodes. In this situation, k is even and k > 6. Let

Q2 = y1y2 . . . ys be a path vertex-disjoint from Q1 such that xi0y1 ∈ E(T ) and ys−1
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is a supernode of T . Thus, ys is an endvertex of T . If T has four supernodes, let

Q3 = z1z2 . . . zt be the path vertex-disjoint from Q1 ∪ Q2 such that xi0z1 ∈ E(T )

and zt−1 is a supernode of T . If T has five supernodes, let Q4 = a1a2 . . . ap be the

path vertex-disjoint from Q1∪Q2∪Q3 such that xi0a1 ∈ E(T ) and ap−1 is a supern-

ode of T . If T has six supernodes, let Q5 = b1b2 . . . bq be the path vertex-disjoint

from Q1 ∪ Q2 ∪ Q3 ∪ Q4 such that xi0b1 ∈ E(T ) and bq−1 is a supernode of T , see

Figure 1.

Subcase 2.1.1 : We suppose that T has exactly three distinct supernodes. In this

situation, let H = Q1 ∪ Q2. If x1, xk and ys are in the opposite partites, we may

assume that {x1, xi0 , ys} ⊆ V0, xk ∈ V1. Then |V (H)| = 2h for some h > 4. It

is easy to see that each vertex of T − V (H) is an endvertex of T , for otherwise T

would have four distinct supernodes. Since H does not contain the edge xi0y1, each

of Q1 and Q2 is a component of H , i.e., H is a linear forest. Assume for the moment

h > 8. By Lemma 2.3 (1), there is a 4-packing (b, g, r, s) of H in B2h such that

each vertex of H is 4-placed. We may assume that b is the identity embedding. We

extend the embeddings b, g, r, s to H + xi0y1 in B2h+3 by adding w1, w2 and w3

and defining b(xi0) = xi0 , g(xi0) = w1, r(xi0 ) = w2 and s(xi0) = w3. By Lemma 2.2

there is a 4-packing of T in Bn+3. Therefore, h = 4, 5, 6 or 7. If h = 4, then

T [V (H)] ∼= G1. If h = 5, then k = 6 or k = 8. Furthermore, we see that if k = 6,

then T [V (H)] − x6
∼= G2, and if k = 8, then T [V (H)] − x8

∼= G2. If h = 6, then

k = 6, 8, or 10. Furthermore, we see that if k = 6, then T [V (H)]−x6
∼= G3, if k = 8,

then T [V (H)]− x8
∼= G4, and if k = 10, then T [V (H)] − x10

∼= G3 or G4. If h = 7,

then k = 6, 8, 10 or 12. Furthermore, we see that if k = 6, then T [V (H)]− x6
∼= G5,

if k = 8, then T [V (H)] − x8
∼= G6, if k = 10, then T [V (H)] − x10

∼= G6 or G7, and

if k = 12, then T [V (H)] − x12
∼= G5 or G6. By Lemma 2.2 and Lemma 2.5 (1)–(7),

there is a 4-packing of T in Bn+3.

If x1, xk and ys are in the same partite, we may assume that {x1, xk, ys} ⊆ V0.

Thus xi0 ∈ V0 or V1. Without loss of generality, we assume that xi0 ∈ V0, then

|V (H)| = 2h + 1 for some h > 3. If h > 8, let H ′ = H − ys, then we prove the

theorem as above. Therefore h = 3, 4, 5, 6 or 7. If h = 3, then k = 5, s = 2, and

T [V (H)] ∼= G8. If h = 4, then k = 5, s = 4, or k = 7, s = 2, and T [V (H)] ∼= G2. If

h = 5, then k = 5, s = 6, or k = 7, s = 4, or k = 9, s = 2, and T [V (H)] ∼= G3 or G4.

If h = 6, then k = 5, s = 8, or k = 7, s = 6, or k = 9, s = 4, or k = 11, s = 2, and

T [V (H)] ∼= G5, G6 or G7. If h = 7, then k = 5, s = 10, or k = 7, s = 8, or k = 9,

s = 6, or k = 11, s = 4, or k = 13, s = 2, and T [V (H)] ∼= G9, G10, G11 or G12. By

Lemma 2.2 and Lemma 2.5 (2)–(12), there is a 4-packing of T in Bn+3.

Subcase 2.1.2 : We suppose that T has exactly four distinct supernodes. In this

case, without loss of generality, say {x1, xi0} ⊆ V0. As T does not contain four

strongly independent endvertices of the same partities, we may assume that ys ∈ V0
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and zt ∈ V0 or V1. Let H = Q1 ∪ Q2 ∪ Q3, and t′ = t if zt ∈ V0. Let H =

Q1 ∪Q2 ∪Q3 − zt, and t′ = t− 1 if zt ∈ V1. Then |V (H)| = 2h for some h > 5. We

can see that each vertex of T − V (H) is an endvertex of T , for otherwise T would

have four strongly independent endvertices in the same partite. Clearly, H is a linear

forest. If h > 8, the proof is the same as that in Subcase 2.1.1. Therefore, h = 5, 6

or 7. If h = 5, then k = 6, s = 2 and t′ = 2, and T [V (H)] ∼= G13. If h = 6, then

k = 6 or k = 8. Furthermore, we see that if k = 6 then s = 4, t′ = 2, or s = 2, t′ = 4,

and T [V (H)] − x6
∼= G14. If k = 8, then s = 2, t′ = 2, and T [V (H)] − x8

∼= G14. If

h = 7, then k = 6, 8 or 10. Furthermore, we see that if k = 6, then s = 2, t′ = 6, or

s = 4, t′ = 4, or s = 6, t′ = 2, and T [V (H)]− x6
∼= G15 or G16. If k = 8, then s = 4,

t′ = 2, or s = 2, t′ = 4, and T [V (H)] − x8
∼= G15. If k = 10, then s = 2, t′ = 2,

and T [V (H)]− x10
∼= G15 or G16. By Lemma 2.2 and Lemma 2.5 (13)–(16), there is

a 4-packing of T in Bn+3.

Subcase 2.1.3 : We suppose that T has exactly five distinct supernodes. Without

loss of generality, say {x1, xi0} ⊆ V0. As T does not contain four strongly independent

endvertices in the same partite, we may assume that ys ∈ V0, zt ∈ V1 and ap ∈ V0

or V1. Let H = Q1 ∪ Q2 ∪ Q3 ∪Q4 if ap ∈ V1, and let H = Q1 ∪Q2 ∪Q3 ∪Q4 − zt

if ap ∈ V0. Then |V (H)| = 2h for some h > 6. It is easy to see that each vertex of

T−V (H) is an endvertex of T , for otherwise T would have four strongly independent

endvertices in the same partite. Clearly, H is a linear forest. If h > 8, the proof is

the same as that in Subcase 2.1.1. Therefore, h = 6 or 7. If h = 6, then k = 6, s = 2,

t− 1 = 2, p = 2, and T [V (H)] ∼= G17. If h = 7, then k = 6 or k = 8. Furthermore,

we see that if k = 6, then s = 2, t = 3, p = 3, or s = 2, t− 1 = 2, p = 4, or s = 2,

t−1 = 4, p = 2, and T [V (H)]−z3−a3 ∼= G17 or T [V (H)]−x6
∼= G18. If k = 8, then

s = 2, t−1 = 2, p = 2, and T [V (H)]−x8
∼= G18. By Lemma 2.2 and Lemma 2.5 (17)

and (18), there is a 4-packing of T in Bn+3.

Subcase 2.1.4 : We suppose that T has exactly six distinct supernodes. As T

does not contain four strongly independent endvertices in the same partite, we may

assume that {x1, ys, zt} ⊆ V0, and {xk, ap, bq} ⊆ V1. Let H = Q1∪Q2∪Q3∪Q4∪Q5.

Then |V (H)| = 2h for some h > 8. The proof is the same as that in Subcase 2.1.1.

Subcase 2.2 : |U | = 2. Say U = {u, v}. In this case, T has at least four supernodes,

there are two pairwise vertex-disjoint paths Q1 = x1x2 . . . xk and Q2 = y1y2 . . . ys

such that x2, xk−1, y2 and ys−1 are supernodes of T . Without loss of generality, say

u = xi0 and v = yj0 for some i0 ∈ {3, 4, . . . , k − 2} and j0 ∈ {3, 4, . . . , s − 2}. Let

Q3 = z1z2 . . . zt be the path vertex-disjoint from Q1 ∪Q2 such that {xi0z1, yj0zt} ⊆

E(T ). We divide this case into the following three subcases, see Figure 2.

Subcase 2.2.1 : We suppose that T has exactly four distinct supernodes. In this

case, T has at most two another nodes. Set m1 = k + s + t. Without loss of

generality, we assume that {x1, xk} ⊆ V0. Let H = Q1 ∪Q2 if {y1, ys} ⊆ V1 and let

48



H = Q1 ∪ Q2 − y1 if y1 ∈ V0, ys ∈ V1. Then H is a linear forest and |V (H)| = 2h.

Assume for the moment that h > 8, by Lemma 2.3 (1), there is a 4-packing (b, g, r, s)

of H in B2h such that each vertex of H is 4-placed. For even t, let Q′
3 = Q3. For

odd t, let Q′
3 = Q3−zt if z1 and zt are not nodes or z1 is a node, let Q

′
3 = Q3−z1 if zt

is a node, and let Q′
3 = Q3 + d if z1 and zt are both nodes, where d is an endvertex

which is adjacent to zt. If there is a 4-packing (b1, g1, r1, s1) of Q
′
3 in B|V (Q′

3
)|+3 such

that each vertex of Q′
3 is 4-placed, we can see that a 4-packing of T [V (Q1∪Q2∪Q3)]

in Bm1+3 is obtained from (b ∪ b1, g ∪ g1, r ∪ r1, s ∪ s1) by defining c(zt) = zt for

each c ∈ {b1, g1, r1, s1} when Q′
3 = Q3 − zt or by defining c(z1) = z1 for each

c ∈ {b1, g1, r1, s1} when Q′
3 = Q3 − z1. Furthermore, each node of T is 4-placed

in this packing. Then by Lemma 2.2 the theorem holds. Thus, there is no such

a 4-packing of Q′
3.

Q3u= xi0

z1 zt

v= yj0

x2

x1

xk−1

xk

y2

y1 ys−1

ys

Q1

Q2

Figure 2. |U | = 2. (The larger dots are supernodes.)

Therefore, by Lemma 2.3, we see that t 6 9 when z1 and zt are not nodes. If

t ∈ {7, 9}, by Lemma 2.4 (3), there is a 4-packing (b2, g2, r2, s2) of Q3 in Bt+3

such that each vertex of Q3 is 4-placed. If t ∈ {4, 6, 8}, by Lemma 2.4 (1), there

is a 4-packing (b2, g2, r2, s2) of Q3 in Bt+3 such that each vertex of Q3 is 4-placed

except zt. If t = 5, by Lemma 2.4 (2), there is a 4-packing (b2, g2, r2, s2) of Q3

in Bt+3 such that each vertex of Q3 is 4-placed except z1 and zt. Then (b∪ b2, g∪g2,

r ∪ r2, s ∪ s2) is a 4-packing of T [V (Q1 ∪ Q2 ∪ Q3)] in Bm1+3 such that each node

of T is 4-placed. By Lemma 2.2 the theorem holds. Hence, we must have t 6 3. Let

w0 = xi0 if t = 0. Let w0 = z1 if t = 1. Let w0 = z2 if t ∈ {2, 3}. We define or redefine

the values of b(w0), g(w0), r(w0) and s(w0) as: b(w0) = w0, g(w0) = w1, r(w0) = w2

and s(w0) = w3. Let b(x) = g(x) = r(x) = s(x) for all x ∈ V (T )−V (Q1∪Q2)−{w0}.

Then (b, g, r, s) is a 4-packing of T in Bn+3.

When z1 is a node, we see that t 6 9 by Lemma 2.3. If t ∈ {1, 2, 4, 6, 7, 8, 9},

we prove the theorem as above. Let Q′′
3 = Q3 + e when t ∈ {3, 5}, where e is an

endvertex which is adjacent to z1. Then by Lemma 2.4 (1), there is a 4-packing
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(b2, g2, r2, s2) of Q
′′
3 in B|V (Q′′

3
)|+3 such that each vertex of Q

′′
3 is 4-placed except e.

Then (b ∪ b2, g ∪ g2, r ∪ r2, s ∪ s2) is a 4-packing of T [V (Q1 ∪ Q2 ∪ Q3)] in Bm1+3

such that each node of T is 4-placed. By Lemma 2.2 the theorem holds.

When zt is a node, the proof is the same as the case when z1 is a node.

When z1 and zt are both nodes, we see that t 6 8 by Lemma 2.3. If t ∈ {1, 7},

we prove it as above. Let Q′′
3 = Q3 + d+ e if t ∈ {2, 4, 6, 8}, and let Q′′

3 = Q3 + d if

t ∈ {3, 5}, where d and e are the endvertices which are adjacent to zt and z1, respec-

tively. Then by Lemma 2.3 (2) and Lemma 2.4 (1), there is a 4-packing (b2, g2, r2, s2)

of Q′′
3 in B|V (Q′′

3
)|+3. Furthermore, each vertex of Q

′′
3 is 4-placed for t ∈ {2, 3, 4, 5, 6}

except d and each vertex of Q′′
3 is 4-placed for t = 8. Then (b∪b2, g∪g2, r∪r2, s∪s2)

is a 4-packing of T [V (Q1 ∪ Q2 ∪ Q3)] in Bm1+3 so that each node of T is 4-placed.

By Lemma 2.2 the theorem holds.

Now, we conclude that h = 5, 6 or 7. Then if h = 5, each of Q1 and Q2 is a path

of order 5. Thus Q1 = x1x2x3x4x5 and u = x3. Rename Q2 = x6x7x8x9x10. Thus,

v = x8. As we already assumed x1 ∈ V0, we have x6 ∈ V1. Hence, the order of Q3

must be even. Say t = 2t′. If t′ = 0, i.e., x3x8 ∈ E(T ), let H = Q1∪Q2+x3x8. Then

H ∼= F1 and there is a 4-packing of H in B13 such that each vertex of H is 4-placed

except x10. If t
′ = 1, say x12 = z1 and x11 = zt. LetH = Q1∪Q2∪Q3+x3x12+x8x11.

Then H ∼= F2. There is a 4-packing of H in B15 and each vertex of H is 4-placed.

If t′ = 2, say Q3 = x14x13x12x11. Let H = Q1 ∪ Q2 ∪ Q3 + x3x14 + x8x11. Then

H ∼= F3. There is a 4-packing of H in B17 and each vertex of H is 4-placed. If

t′ > 3, rename z1, z2, z3, zt−2, zt−1 and zt as x16, x15, x14, x13, x12 and x11,

respectively. Let H = Q1 ∪Q2 + x3x16x15x14 + x13x12x11x8. Then H ∼= F4. There

is a 4-packing (b, g, r, s) of H in B16 such that each vertex of H is 4-placed except x1

and x5. We consider two situations t
′ = 3 and t′ > 3. If t′ = 3, we define or

redefine b(x14) = x14, g(x14) = w1, r(x14) = w2 and s(x14) = w3. Let c(x) = x

for all x ∈ V (T ) − V (H) − {x14} and c ∈ {b, g, r, s}. We can find that (b, g, r, s)

is a 4-packing of T in Bm1+3 such that each node of T is 4-placed. Therefore,

we have t′ > 3, and let Q′′
3 = Q3 − z1z2z3 − ztzt−1zt−2. If 3 < t′ < 8, we have

|V (Q′′
3)| ∈ {2, 4, 6, 8}. Then there is a 4-packing (b2, g2, r2, s2) of Q

′′
3 in B|V (Q′′

3
)|+3

such that each vertex of Q′′
3 is 4-placed, and we can give the proof as above. If t

′ > 8,

by Lemma 2.3, there is a 4-packing (b2, g2, r2, s2) of Q
′′
3 in B|V (Q′′

3
)|+3 and each vertex

of Q′′
3 is 4-placed. Then when t′ > 3, (b ∪ b2, g ∪ g2, r ∪ r2, s ∪ s2) is a 4-packing of

T [V (Q1 ∪Q2 ∪Q3)] in Bm1+3 such that each node of T is 4-placed. By Lemma 2.2

and Lemma 2.6 (1)–(4) the theorem holds.

If h = 6 or 7, the proof is the same as that of h = 5.

Subcase 2.2.2 : We suppose that T has exactly five distinct supernodes. In this

case, T has at most one another node. Let Q4 = a1a2 . . . ap be a path vertex-disjoint

from Q1 ∪Q2 ∪ Q3 such that ap−1 is a supernode and ap is an endvertex, where a1
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is adjacent to a vertex of Q3 ∪ {u, v}. (If a1 is adjacent to a vertex of Q1 or Q2, we

can deal with the case in the same way.) Without loss of generality, we assume that

va1 ∈ E(T ). Set m2 = k + s + p + t. We assume that {x1, xk} ⊆ V0, {y1, ys} ⊆ V1,

since T does not have four strongly independent endvertices in the same partite. Let

H = Q1 ∪Q2 ∪Q4 if p is even and let H = Q1 ∪Q2 ∪Q4 − ap if p is odd. Then H is

a linear forest and |V (H)| = 2h for some h > 6. Assume for the moment that h > 8.

By Lemma 2.3 (1), there is a 4-packing (b, g, r, s) of H in B2h such that each vertex

of H is 4-placed. For even t, let Q′
3 = Q3. For odd t, let Q

′
3 = Q3−zt if z1 and zt are

not nodes or z1 is a node, and let Q
′
3 = Q3−z1 if zt is a node. If there is a 4-packing

(b1, g1, r1, s1) of Q
′
3 in B|V (Q′

3
)|+3 such that each vertex of Q

′
3 is 4-placed, we can

see that a 4-packing of T [V (Q1 ∪Q2 ∪Q3 ∪Q4)] in Bm2+3 is obtained from (b ∪ b1,

g∪g1, r∪r1, s∪s1) by defining c(zt) = zt for c ∈ {b1, g1, r1, s1} when Q′
3 = Q3−zt or

by defining c(z1) = z1 for each c ∈ {b1, g1, r1, s1} when Q′
3 = Q3 − z1. Furthermore,

each node of T is 4-placed in this packing. Then by Lemma 2.2 the theorem holds.

Thus, there is no such a 4-packing of Q′
3. Therefore, by Lemma 2.3 we see that t 6 9.

At most one of z1 and zt is a node. The proof is the same as that in Subcase 2.2.1.

We conclude that h = 6 or 7. Then if h = 6, each of Q1 and Q2 is a path of order 5.

Thus, Q1 = x1x2x3x4x5 and u = x3. Rename Q2 = x6x7x8x9x10, Q4 = x11x12.

Thus, v = x8. As we already assumed x1 ∈ V0, we have x6 ∈ V1. Hence, the

order of Q3 must be even. Say t = 2t′. If t′ = 0, i.e., x3x8 ∈ E(T ), let H =

Q1 ∪Q2 ∪Q4 + x3x8x11. Then H ∼= F5. Therefore, there is a 4-packing of H in B15

and each vertex of H is 4-placed. If t′ = 1, say x14 = z1 and x13 = zt. Let H = Q1∪

Q2∪Q3∪Q4+x3x14+x13x8x11. Then H ∼= F6. There is a 4-packing of H in B17 and

each vertex of H is 4-placed except x6 and x12. If t
′ = 2, say Q3 = x16x15x14x13. Let

H = Q1∪Q2∪Q3∪Q4+x3x16+x11x8x13. Then H ∼= F7. There is a 4-packing of H

in B19 and each vertex of H is 4-placed. If t
′ > 3, rename z1, z2, z3, zt−2, zt−1 and zt

as x18, x17, x16, x15, x14 and x13, respectively. Let H = Q1∪Q2∪Q4+x3x18x17x16+

x15x14x13x8x11. Then H ∼= F8. There is a 4-packing (b, g, r, s) of H in B18 and each

vertex of H is 4-placed. We consider two situations t′ = 3 and t′ > 3. If t′ = 3, define

or redefine b(x15) = x15, g(x15) = w1, r(x15) = w2 and s(x15) = w3. Let c(x) = x

for all x ∈ V (T ) − V (H) − {x15} and c ∈ {b, g, r, s}. We can find that (b, g, r, s) is

a 4-packing of T in Bm2+3 such that each node of T is 4-placed. Therefore, we have

t′ > 3. Let Q′′
3 = Q3 − z1z2z3 − ztzt−1zt−2. If 3 < t′ < 8, we can prove that there is

a 4-packing (b2, g2, r2, s2) of Q
′′
3 in B|V (Q′′

3
)|+3 and each vertex of Q

′′
3 is 4-placed as

that in Subcase 2.2.1. If t′ > 8, by Lemma 2.3, there is a 4-packing (b2, g2, r2, s2) of

Q′′
3 in B|V (Q′′

3
)|+3 and each vertex of Q

′′
3 is 4-placed. Then when t′ > 3, (b ∪ b2, g ∪

g2, r∪ r2, s∪ s2) is a 4-packing of T [V (Q1 ∪Q2 ∪Q3 ∪Q4)] in Bm2+3 such that each

node of T is 4-placed. By Lemma 2.2 and Lemma 2.6 (5)–(8) the theorem holds.

If h = 7, we prove the theorem as the case h = 6.
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Subcase 2.2.3 : We suppose that T has exactly six distinct supernodes. In this case,

there exist two pairwise vertex-disjoint paths Q4 = a1a2 . . . ap and Q5 = b1b2 . . . bq
whose vertices are also disjoint fromQ1∪Q2∪Q3. Furthermore, ap−1 and bq−1 are two

supernodes while a1 is adjacent to a vertex of Q1 ∪Q3 and b1 is adjacent to a vertex

of Q2. Set m3 = k+ s+ p+ q+ t. Without loss of generality, say xi0 ∈ V0, yj0 ∈ V1.

As T does not have four strongly independent endvertices in the same partite, we

assume that {x1, y1, ap} ⊆ V0 and {xk, ys, bq} ⊆ V1. Let H = Q1 ∪ Q2 ∪ Q4 ∪ Q5

if m3 − t is even, and let H = Q1 ∪ Q2 ∪ Q4 ∪ Q5 − bq if m3 − t is odd. Then H

is a linear forest and |V (H)| = 2h for some h > 8. By Lemma 2.3 (1), there is

a 4-packing (b, g, r, s) of H in B2h such that each vertex of H is 4-placed. If t is even,

let Q′
3 = Q3. If t is odd, let Q

′
3 = Q3− zt. If there is a 4-packing (b1, g1, r1, s1) of Q

′
3

in B|V (Q′

3
)|+3 such that each vertex of Q

′
3 is 4-placed, we can see that a 4-packing of

T [V (Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5)] in Bm3+3 is obtained from (b∪ b1, g∪ g1, r∪ r1, s∪ s1)

by defining c(zt) = zt for c ∈ {b1, g1, r1, s1} when t is odd. Furthermore, each node

of T is 4-placed in this packing. Then by Lemma 2.2 the theorem holds. Thus, there

is no such a 4-packing of Q′
3. Therefore, by Lemma 2.3, we see that t 6 9. Then we

can give the proof as that in Subcase 2.2.1 when z1 and zt are not nodes. Thus, we

can find a 4-packing of T [V (Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5)] in Bm3+3 such that each node

of T is 4-placed. By Lemma 2.2 the theorem holds.

Q4 Q5u1 = xi0

a1 ap

u2 = yj0 u3 = zr0

x2

x1

xk−1

xk

y2

y1 ys−1

ys

z2

z1

zt−1

zt

Q1

Q2 Q3

Figure 3. |U | = 3. (The larger dots are supernodes.)

Case 2.3 : |U | = 3. Say U = {u1, u2, u3}. In this case, T has exactly six distinct su-

pernodes. There exist three vertex-disjoint paths Q1 = x1x2 . . . xk, Q2 = y1y2 . . . ys
and Q3 = z1z2 . . . zt in T such that x1, xk, y1, ys, z1 and zt are six endvertices

while x2, xk−1, y2, ys−1, z2 and zt−1 are six distinct supernodes. Furthermore,

u1 = xi0 for some i0 ∈ {3, 4, . . . , k − 2}, u2 = yj0 for some j0 ∈ {3, 4, . . . , s − 2},

and u3 = zr0 for some r0 ∈ {3, 4, . . . , t− 2}. Let Q4 = a1a2 . . . ap be a path vertex-

disjoint from Q1∪Q2∪Q3 such that {xi0a1, yj0ap} ⊆ E(T ). Thus, there exists a path
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Q5 = b1b2 . . . bq vertex-disjoint fromQ1∪Q2∪Q3∪Q4 such that b1 is adjacent to a ver-

tex of Q1∪Q2∪Q4 and bqzr0 ∈ E(T ), see Figure 3. Let H = Q1∪Q2∪Q3∪Q4∪Q5.

We can see that every vertex of T−H is an endvertex of T . And T does not have other

nodes besides the six supernodes, for otherwise T would have four strongly indepen-

dent endvertices in the same partite. Let H1 = Q1∪Q2∪Q3. Setm = k+s+t. As T

does not contain four strongly independent endvertices in the same partite, without

loss of generality, we assume that {x1, xk, y1} ⊆ V0 and {ys, z1, zt} ⊆ V1. Thus,

|V (H1)| = 2h for some h > 8. By Lemma 2.3 (1), there is a 4-packing (b, g, r, s) of

H1 in B2h such that each vertex of H1 is 4-placed. Let H2 = Q4 ∪Q5. Set l = p+ q.

We can find that there is a 4-packing (b1, g1, r1, s1) of T [V (H2)] in Bl+3 by Case 1 and

Subcase 2.1.1. We can see that (b∪ b1, g∪g1, r∪ r1, s∪ s1) is a 4-packing of T [V (H)]

in Bm+l+3. Furthermore, each node of T [V (H)] is 4-placed in this 4-packing. Then

by Lemma 2.2, the theorem holds. This completes the proof of the theorem. �

In this theorem, n + 3 cannot be further reduced. A simple example is a star.

Another example is a tree such that it is obtained from two vertex-disjoint stars by

connecting two centers of them with a path of length 2.

We can see there are more cases in the proof of the conjecture (see [7]) when k = 4.

Another purpose of this article is to improve the state of knowledge approaching the

conjecture by determining the case k = 4.

4. Appendix (I): The proof of Lemma 2.5

For each case, we define the required 4-packing (b, g, r, s) with b as identity em-

bedding as follows.

To prove (1), let

⊲ g(G1) = x1x4x9x2x7x6 ∪ x9x10x11 with g(x1) = x1 and g(x7) = x11,

⊲ r(G1) = x9x8x11x6x3x10 ∪ x11x4x7 with r(x1) = x9 and r(x7) = x7,

⊲ s(G1) = x7x10x5x8x1x6 ∪ x5x2x11 with s(x1) = x7 and s(x7) = x11.

To prove (2), let

⊲ g(G2) = x5x10x1x6x9x2x11 ∪ x1x4x7 with g(x1) = x5 and g(x9) = x7,

⊲ r(G2) = x11x8x5x2x7x10x3 ∪ x5x12x9 with r(x1) = x11 and r(x9) = x9,

⊲ s(G2) = x9x4x11x12x1x8x7 ∪ x11x6x3 with s(x1) = x9 and s(x9) = x3.

To prove (3), let

⊲ g(G3) = x7x14x13x6x11 ∪ x13x4x9x12x5x8x1 with g(x1) = x7 and g(x11) = x1,

⊲ r(G3) = x3x8x11x12x13 ∪ x11x14x1x4x7x2x5 with r(x1) = x3 and r(x11) = x5,

⊲ s(G3) = x5x6x9x14x3 ∪ x9x2x13x10x1x12x7 with s(x1) = x5 and s(x11) = x7.
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To prove (4), let

⊲ g(G4) = x3x6x9x12x13x14x1 ∪ x9x2x11x4x7 with g(x1) = x3 and g(x11) = x7,

⊲ r(G4) = x5x10x13x2x7x8x11 ∪ x13x6x1x12x3 with r(x1) = x5 and r(x11) = x3,

⊲ s(G4) = x11x14x7x10x1x4x9 ∪ x7x12x5x8x13 with s(x1) = x11 and s(x11) = x13.

To prove (5), let

⊲ g(G5) = x3x8x11x14x15∪x11x16x13x10x1x4x7x2x9 with g(x1) = x3 and g(x13)=x9,

⊲ r(G5) = x5x6x9x12x1∪x9x14x3x16x15x8x13x4x11 with r(x1) = x5 and r(x13)=x11,

⊲ s(G5) = x9x16x5x10x3 ∪x5x12x15x2x11x6x1x14x7 with s(x1) = x9 and s(x13)=x7.

To prove (6), let

⊲ g(G6) = x3x6x9x12x15x16x1∪x9x2x11x14x13x4x7 with g(x1) = x3 and g(x13)=x7,

⊲ r(G6) = x5x8x11x6x1x14x9∪x11x16x3x12x7x2x15 with r(x1) = x5 and r(x13)=x15,

⊲ s(G6) = x9x16x7x8x13x2x5∪x7x10x1x4x15x14x3 with s(x1) = x9 and s(x13) = x3.

To prove (7), let

⊲ g(G7) = x3x6x9x12x15x16x1x4x11∪x15x2x7x14x5 with (x1) = x3 and g(x13) = x5,

⊲ r(G7)=x9x16x11x14x3x10x13x8x5∪x3x12x1x6x15 with r(x1)=x9 and r(x13)=x15,

⊲ s(G7) = x7x12x5x2x9x14x15x10x1∪x9x4x13x16x3 with s(x1) = x7 and s(x13)=x3.

To prove (8), let

⊲ g(G8) = x3x8x1x9x5 ∪ x1x10x7 with g(x1) = x3 and g(x7) = x7,

⊲ r(G8) = x1x6x5x10x3 ∪ x5x2x7 with r(x1) = x1 and r(x7) = x7,

⊲ s(G8) = x3x9x7x8x5 ∪ x7x4x1 with s(x1) = x3 and s(x7) = x1.

To prove (9), let

⊲ g(G9) = x3x6x9x12x15x16x17x18x5x14x1x10x7 ∪ x9x2x13 with g(x1) = x3 and

g(x13) = x7,

⊲ r(G9) = x5x10x15x2x7x14x3x16x11x4x9x18x1 ∪ x15x6x17 with r(x1) = x5 and

r(x13) = x1,

⊲ s(G9) = x9x14x17x10x3x18x11x6x13x16x5x8x15 ∪ x17x12x7 with s(x1) = x9 and

s(x13) = x15.

To prove (10), let

⊲ g(G10) = x3x6x9x12x15x16x17x18x1x4x7 ∪ x9x14x5x10x13 with g(x1) = x3 and

g(x15) = x13,

⊲ r(G10) = x5x8x11x14x17x2x9x4x13x16x3 ∪ x11x6x15x18x7 with r(x1) = x5 and

r(x15) = x7,

⊲ s(G10) = x7x12x17x6x13x18x3x10x15x2x5 ∪ x17x8x1x16x9 with s(x1) = x7 and

s(x15) = x9.
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To prove (11), let

⊲ g(G11) = x11x4x9x6x13x10x1x14x3 ∪ x13x2x17x4x1x18x5 with g(x1) = x11 and

g(x15) = x5,

⊲ r(G11) = x5x8x1x16x17x18x9x2x11 ∪ x17x12x3x10x7x4x13 with r(x1) = x5 and

r(x15) = x13,

⊲ s(G11) = x9x16x11x14x15x2x5x12x1 ∪ x15x8x13x18x3x6x17 with s(x1) = x9 and

s(x15) = x17.

To prove (12), let

⊲ g(G12) = x3x6x9x12x15x16x17x18x5 ∪ x9x14x1x10x7x4x13 with g(x1) = x3 and

g(x15) = x13,

⊲ r(G12) = x5x8x15x2x7x14x3x16x11 ∪ x15x4x9x18x1x6x17 with r(x1) = x5 and

r(x15) = x17,

⊲ s(G12) = x7x12x17x8x3x18x11x6x13 ∪ x17x2x5x16x9x10x5 with s(x1) = x7 and

s(x15) = x5.

To prove (13), let

⊲ g(G13) = x3x6x7x10x11x12 ∪ x1x4x7x13x9 with g(x1) = x3 and g(x7) = x9,

⊲ r(G13) = x5x12x9x8x1x13 ∪ x1x6x9x2x11 with r(x1) = x5 and r(x7) = x11,

⊲ s(G13) = x3x13x5x2x7x12 ∪ x11x8x5x10x1 with s(x1) = x3 and s(x7) = x1.

To prove (14), let

⊲ g(G14) = x3x6x9x10x13x14x1 ∪ x7x12x9x2x5 with g(x1) = x3 and g(x11) = x7,

⊲ r(G14) = x5x8x11x12x1x4x9 ∪ x13x2x11x14x7 with r(x1) = x5 and r(x11) = x13,

⊲ s(G14) = x11x4x13x8x7x10x5 ∪ x1x6x13x12x3 with s(x1) = x11 and s(x11) = x1.

To prove (15), let

⊲ g(G15)=x3x6x9x12x11x14x15∪x5x2x9x16x1x4x13 with g(x10)=x3 and g(x13)=x5,

⊲ r(G15)=x5x8x11x16x3x10x13∪x1x6x11x2x15x12x7 with r(x1)=x5 and r(x13)=x1,

⊲ s(G15)=x7x16x15x6x13x8x1∪x11x4x15x10x5x14x3 with s(x1)=x7 and s(x13)=x11.

To prove (16), let

⊲ g(G16) = x3x6x9x10x13x14x15x16x1∪x7x2x9x12x5 with g(x1) = x3 and g(x13)=x7,

⊲ r(G16) = x15x8x11x14x1x10x5x2x13 ∪ x9x4x11x16x7 with r(x1) = x15 and

r(x13) = x9,

⊲ s(G16)=x9x16x13x6x11x12x7x14x5∪x3x8x13x4x15 with s(x1)=x9 and s(x13)=x3.

To prove (17), let

⊲ g(G17) = x3x6x9x12x13x8∪x5x15x9x14x1∪x9x4x7 with g(x1) = x3 and g(x7) = x5,

⊲ r(G17) = x5x8x11x14x7x10 ∪ x9x2x11x4x13 ∪ x11x15x1 with r(x1) = x5 and

r(x7) = x9,
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⊲ s(G17) = x7x15x13x10x1x12 ∪ x11x6x13x2x5 ∪ x13x14x3 with s(x1) = x7 and

s(x7) = x11.

To prove (18), let

⊲ g(G18) = x3x6x9x12x15x16x13 ∪ x5x14x9x4x7 ∪ x9x10x1 with g(x1) = x3 and

g(x13) = x1,

⊲ r(G18) = x7x8x11x14x1x12x5 ∪ x3x16x11x6x13 ∪ x11x2x15 with r(x1) = x7 and

r(x13) = x15,

⊲ s(G18) = x13x14x15x10x7x2x9 ∪ x1x6x15x8x5 ∪ x15x4x11 with s(x1) = x13 and

s(x13) = x11.

5. Appendix (II): The proof of Lemma 2.6

For each case, we define the required 4-packing (b, g, r, s) with b as identity em-

bedding as follows.

To prove (1), let

⊲ g(F1) = x5x8x13x10x7 ∪ x12x11x6x1x4 ∪ x13x6,

⊲ r(F1) = x11x4x7x2x13 ∪ x8x1x12x3x10 ∪ x7x12,

⊲ s(F1) = x13x12x9x6x3 ∪ x10x5x2x11x8 ∪ x9x2.

To prove (2), let

⊲ g(F2) = x3x8x1x10x13 ∪ x4x9x6x15x2 ∪ x1x14x11x6,

⊲ r(F2) = x7x12x5x14x3 ∪ x2x11x4x13x12 ∪ x5x8x15x4,

⊲ s(F2) = x9x14x15x12x1 ∪ x8x13x2x5x6 ∪ x15x10x7x2.

To prove (3), let

⊲ g(F3) = x3x6x9x12x15 ∪ x8x13x16x11x14 ∪ x9x2x17x10x5x16,

⊲ r(F3) = x5x8x15x16x17 ∪ x10x11x2x13x4 ∪ x15x6x1x14x7x2,

⊲ s(F3) = x7x4x17x6x11 ∪ x12x5x14x15x2 ∪ x17x8x3x16x9x14.

To prove (4), let

⊲ g(F4) = x13x8x5x16x9 ∪ x12x15x10x3x14 ∪ x5x6x1x4 ∪ x10x7x2x11,

⊲ r(F4) = x1x16x11x6x3 ∪ x4x9x2x15x8 ∪ x11x14x7x12 ∪ x2x13x10x5,

⊲ s(F4) = x11x10x1x8x3 ∪ x14x13x4x7x16 ∪ x1x12x5x2 ∪ x4x15x6x9.

To prove (5), let

⊲ g(F5) = x3x12x9x6x13 ∪ x4x1x14x5x8 ∪ x9x14x7x10,

⊲ r(F5) = x5x10x13x8x1 ∪ x2x11x4x7x12 ∪ x13x4x15x14,

⊲ s(F5) = x11x6x1x10x3 ∪ x8x15x12x13x14 ∪ x1x12x5x2.
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To prove (6), let

⊲ g(F6) = x3x6x9x12x15 ∪ x2x13x10x1x14 ∪ x9x4x17x10x5x16,

⊲ r(F6) = x5x8x15x2x17 ∪ x14x11x4x13x12 ∪ x15x6x1x4x7x10,

⊲ s(F6) = x7x14x17x6x11 ∪ x2x9x16x15x4 ∪ x17x8x3x16x1x12.

To prove (7), let

⊲ g(F7) = x3x6x9x12x13 ∪ x8x15x18x17x2 ∪ x9x14x1x10x19x18x7x4,

⊲ r(F7) = x5x8x17x16x11 ∪ x4x9x2x7x14 ∪ x17x6x19x12x15x2x13x10,

⊲ s(F7) = x9x18x11x6x15 ∪ x12x17x4x13x16 ∪ x11x10x3x8x1x4x19x2.

To prove (8), let

⊲ g(F8) = x3x6x9x12x13 ∪ x8x15x18x1x16 ∪ x17x4x11x18x5x10 ∪ x9x2x7x14,

⊲ r(F8) = x5x8x17x6x11 ∪ x12x1x10x3x18 ∪ x13x2x15x10x7x16 ∪ x17x14x9x4,

⊲ s(F8) = x17x10x13x18x9 ∪ x2x11x16x5x14 ∪ x7x12x3x16x15x6 ∪ x13x4x1x8.
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