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1. Introduction

A signed graph Ġ is a pair (G, σ), where G = (V,E) is a simple unsigned graph,

called the underlying graph, and σ : E → {1,−1} is the sign function or the signature.
The number of vertices of Ġ is called the order and is denoted by n. The edge set of Ġ

is composed of subsets of positive and negative edges. The adjacency matrix AĠ

of Ġ is obtained from the adjacency matrix of its underlying graph by reversing the

sign of all 1’s which correspond to negative edges. The eigenvalues of Ġ are identified

as the eigenvalues of AĠ, and they form the spectrum of AĠ.

Throughout the paper we interpret a graph as a signed graph with all the edges

being positive and, where no confusion arises, we write ‘Ġ has k eigenvalues’ to mean

that Ġ has exactly k distinct eigenvalues.

Unsigned graphs with 2 eigenvalues are well-known, while those that are con-

nected and have 3 eigenvalues are either strongly regular or nonregular. Moreover,

every noncomplete connected strongly regular graph has 3 eigenvalues and these

graphs have received a great deal of attention in the last 70 years. Nonregular
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graphs with 3 eigenvalues are less studied, but some progress in this direction is re-

ported in [5], [6], [17], [18], [25] for example. In the case of connected signed graphs

with 2 or 3 eigenvalues we have a much more complicated situation. First, those

with 2 eigenvalues are neither determined nor fully described; they are known to be

regular, moreover strongly regular in the sense of [23]. Signed graphs with 3 eigen-

values may or may not be regular, and if they are, then they may or may not be

strongly regular. Some results concerning signed graphs with 2 eigenvalues can be

found in [11], [12], [13], [14], [23], [24], while those that are regular and have 3 eigen-

values are considered in [1]. Some open problems related to signed graphs with

a comparatively small number of eigenvalues are given in [2].

The purpose of this paper is to give some properties and constructions of signed

graphs with 2 or 3 eigenvalues, with special attention to those that are nonregular

and have 3 eigenvalues, one of which is simple. Our results are based on the join

operation and the examination of vertex-deleted subgraphs or cones over prescribed

signed graphs. Similar techniques in the framework of graphs can be found in [5],

[17], [25]. Some new constructions of regular signed graphs with 3 eigenvalues and

bipartite signed graphs with 2 or 3 eigenvalues are also provided.

Additional terminology and notation are given in Section 2. Our results are re-

ported in the remaining sections. In particular, in Section 3 we compute the charac-

teristic polynomial of the join of two signed graphs in terms of their eigenvalues and

main angles. This result is an extension of a known result formulated in a particular

case of unsigned graphs. Some basic results are given in Section 4. The main results

and aforementioned new constructions are separated in Sections 5 and 6.

2. Preliminaries

We write I, O, J , 0 and j for the identity matrix, the all-0 matrix, the all-1 matrix,

the all-0 vector and the all-1 vector, respectively.

We say that a signed graph Ġ is connected, complete, regular or bipartite if the

same holds for its underlying graph G. The vertex degree of a vertex in Ġ is trans-

ferred from G as well. The net-degree of a vertex is the difference between the

number of positive and the number of negative edges incident with it. In partic-

ular, a signed graph is said to be net-regular if the net-degree is constant on the

vertex set.

A signed graph is said to be homogeneous if all its edges have the same sign (in

particular, if its edge set is empty). Otherwise, it is said to be inhomogeneous. The

negation −Ġ is obtained by reversing the sign of every edge of Ġ. We write Ġ+ for

the subgraph of Ġ determined by the positive edges.
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The join of (disjoint) signed graphs Ġ and Ḣ is the signed graph Ġ∇ Ḣ obtained

from Ġ and Ḣ by adding a positive edge between each vertex of Ġ and each vertex

of Ḣ. We call K1 ∇ Ḣ the cone over Ḣ .

We say that Ġ and Ḣ are isomorphic if there is a permutation matrix P such that

AḢ = P−1AĠP . In this case we write Ġ
∼= Ḣ . We say that Ġ and Ḣ are switching

equivalent if there is a vertex subset S ⊆ V (Ġ) such that Ḣ is obtained by reversing

the sign of every edge with one end in S and the other in V (Ġ) \ S. In this case we
write Ġ ≃ Ḣ . Evidently, the underlying graphs of switching equivalent signed graphs

are isomorphic. If the vertex labelling is transferred from the common underlying

graph, then Ġ ≃ Ḣ holds if and only if there is a diagonal matrix D with ±1 on

diagonal such that AḢ = D−1AĠD. Clearly, isomorphism and switching equivalence

preserve the spectrum.

It is known that j is an eigenvector of Ġ if and only if Ġ is net-regular, and then j

belongs to the eigenspace of the net-degree, see [28]. The largest absolute value of

eigenvalues of Ġ is called the spectral radius and it does not exceed the spectral radius

of the underlying graph G with equality if and only if is Ġ ≃ G or −Ġ ≃ G, see [22].

If λ1, λ2, . . . , λl are the (distinct) eigenvalues of a signed graph Ġ, let Pi be

the matrix representing the orthogonal projection of Rn onto the eigenspace E(λi)

with respect to the canonical basis. The spectral decomposition of AĠ is given by

AĠ =
l
∑

i=1

λiPi. The numbers βi = ‖Pij‖/
√
n are called the main angles of Ġ. An

eigenvalue of Ġ is called main if the corresponding main angle is nonzero. Equiv-

alently, it is main if there is an associated eigenvector not orthogonal to the main

direction j. It is clear that every signed graph has at least one main eigenvalue.

Moreover, it has exactly one main eigenvalue if and only if it is net-regular (and then

the net-degree is the unique main eigenvalue). Spectral decomposition, main angles

and main eigenvalues are defined for every real symmetric matrix.

For basic notions and notation on graphs not given here we refer the reader

to [8], [9]. More details on signed graphs can be found in Zaslavsky’s papers,

see [27], [28].

3. The characteristic polynomial of the join of signed graphs

In this section we express the characteristic polynomial of the join of two signed

graphs in terms of their eigenvalues and corresponding main angles. A similar result

in the context of graphs can be found in [9].

We start with a more general consideration. Let A be a real symmetric n1 × n1

matrix with spectral decomposition A = µ1P1+µ2P2+. . .+µmPm, and letB be a real

symmetric n2×n2 matrix with spectral decomposition B = λ1Q1+λ1Q2+. . .+λlQl.
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We write

A∗ = J −A, B∗ = J −B, q1(x) = n1

m
∑

i=1

β2
i

x− µi

and q2(x) = n2

l
∑

j=1

γ2
j

x− λj

,

where βi = ‖Pij‖/
√
n1 and γj = ‖Qjj‖/

√
n2. Thus, the βi and λj are the main

angles of µi and λj , respectively. For the characteristic polynomial of A
∗ we have

PA∗(x) = det(xI +A− J) = det(xI +A)− j⊤adj(xI + A)j

= det(xI +A)− j⊤ det(xI +A)(xI +A)−1j

= det(xI +A)

(

1−
m
∑

i=1

‖Pij‖2
x+ µi

)

.

Similarly,

PB∗(x) = det(xI +B)

(

1−
l

∑

j=1

‖Qjj‖2
x+ λj

)

.

Hence,

PA∗(x) = (−1)n1PA(−x)(1 + q1(−x)) and PB∗(x) = (−1)n1PB(−x)(1 + q2(−x)).

Note that the matrix

(

A O

O B

)∗

has characteristic polynomial

(−1)n1+n2PA(−x)PB(−x)(1 + q1(−x) + q2(−x))

= (−1)n1+n2(−PA(−x)PB(−x) + PB(−x)(−1)n1PA∗(x) + PA(−x)(−1)n2PB∗(x)).

Now suppose that A, B are the adjacency matrices of signed graphs Ġ, Ḣ , and let

M =

(

A∗ O

O B∗

)

. Then the adjacency matrix of Ġ∇Ḣ is M∗. Replacing A with A∗

and B with B∗ in the previous equality, we obtain

(−1)n1+n2PM∗(x)

= − PA∗(−x)PB∗(−x) + PB∗(−x)(−1)n1PA(x) + PA∗(−x)(−1)n2PB(x)

= − (−1)n1PA(x)(1 + q1(x))(−1)n2PB(x)(1 + q2(x))

+ (−1)n1+n2PB(x)(1 + q2(x))PA(x) + (−1)n1+n2PA(x)(1 + q1(x))PB(x)

= (−1)n1+n2PA(x)PB(x)(−(1 + q1(x))(1 + q2(x)) + 1 + q1(x) + 1 + q2(x)).

Hence, we arrive at the following result.
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Theorem 3.1. Let Ġ be a signed graph of order n1 with distinct eigenvalues µ1,

µ2, . . . , µm and corresponding main angles β1, β2, . . . , βm and Ḣ be a signed graph

of order n2 with distinct eigenvalues λ1, λ2, . . . , λl and corresponding main angles

γ1, γ2, . . . , γl. Then

PĠ∇Ḣ(x) = PĠ(x)PḢ (x)

(

1− n1n2

m
∑

i=1

l
∑

j=1

β2
i γ

2
j

(x− µi)(x − γj)

)

.

The following result is a direct consequence of the previous theorem.

Corollary 3.2. The cone over a signed graph Ḣ of order n has characteristic

polynomial

PK1∇Ḣ(x) = PḢ(x)

(

x−
m
∑

i=1

nβ2
i

x− µi

)

,

where µ1, µ2, . . . , µm are the distinct eigenvalues of Ḣ and β1, β2, . . . , βm are the

corresponding main angles.

4. Basic results

This section contains several basic results on signed graphs with 2 eigenvalues and

their vertex-deleted subgraphs, together with results on signed graphs with 3 eigen-

values, one of which is simple. We start by transferring a well-known result concern-

ing unsigned graphs.

Lemma 4.1. If λ1 > λ2 > . . . > λn are the eigenvalues (with possible repetitions)

of a signed graph Ġ, then λ2 6 0 if and only if Ġ is switching equivalent to a complete

multipartite graph with possible isolated vertices. In particular, λ2 < 0 holds if and

only if Ġ is switching equivalent to the complete graph.

P r o o f. Observe that if Ġ is not switching equivalent to its underlying graph G,

then Ġ contains at least one negative cycle as an induced subgraph, see [27], [28].

Since the second largest eigenvalue of every negative cycle is greater than 0, see [20],

Section 4, we conclude (using eigenvalue interlacing) that λ2 > 0. Thus, if λ2 6 0,

then Ġ is switching equivalent to G, and the first part of the proof follows by the

well-known result which states that the second largest eigenvalue of a graph G is

nonpositive if and only if G is complete multipartite up to isolated vertices, see [8],

Theorem 6.7.

In the particular case when λ2 < 0 we see immediately that Ġ is connected, and

then it must be complete; for otherwise, it would contain 2K1 as an induced subgraph

(with λ2 > λ2(2K1) = 0). The opposite implication follows directly. �
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We proceed with some consequences of the previous result.

Corollary 4.2. A connected signed graph Ġ has 2 eigenvalues, one of which is

simple, if and only if Ġ is switching equivalent to a complete graph or its negation.

P r o o f. This result is a direct consequence of the latter part of Lemma 4.1. �

In the following two corollaries we consider vertex-deleted subgraphs of signed

graphs with 2 eigenvalues.

Corollary 4.3. Let Ġ be a connected signed graph of order n > 3, and let Ḣ be

a vertex-deleted subgraph of Ġ. Then Ġ and Ḣ both have 2 eigenvalues if and only

if either Ġ ≃ Kn or Ġ ≃ −Kn.

P r o o f. If Ġ is switching equivalent toKn or−Kn, then Ġ has 2 eigenvalues, and

every vertex-deleted subgraph is switching equivalent to Kn−1 or −Kn−1. Hence Ḣ

also has 2 eigenvalues.

For the converse, suppose that Ġ is not switching equivalent to Kn or −Kn. By

Corollary 4.2, the eigenvalues of Ġ, say µ and λ, are nonsimple, and therefore the

same eigenvalues appear in the spectrum of Ḣ. Moreover, since both have 2 eigen-

values, Ġ and Ḣ are regular and have a common vertex degree (equal to −µλ, which

follows by considering their minimal polynomials), which is impossible. �

Corollary 4.4. Every vertex-deleted subgraph of a connected signed graph Ġ

with 2 eigenvalues has 3 eigenvalues if and only if Ġ is not switching equivalent

to Kn or −Kn.

P r o o f. By eigenvalue interlacing, a vertex-deleted subgraph has at most 3 eigen-

values, and so the assertion follows from Corollary 4.3. �

Clearly, every vertex-deleted subgraph from the previous corollary is nonregular.

Accordingly, this corollary provides an easy first construction of nonregular signed

graphs with 3 eigenvalues.

In the following two results we consider specified signed graphs with 3 eigenvalues.

Similar results in the framework of graphs can be found in Van Dam’s paper, see [25].

Lemma 4.5. If Ġ is connected with 3 eigenvalues, one of which is simple and

nonintegral, then Ġ is switching equivalent to a complete bipartite graph.

P r o o f. Denote by θ a simple nonintegral eigenvalue and by µ, λ the remaining

two. Without loss of generality, we may assume that θ > 0, since otherwise (along

with the observation that a complete bipartite graph is switching equivalent to its

negation) we can consider −Ġ. At least one of µ, λ, say λ, is also simple and
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nonintegral. If µ is simple, we have Ġ ≃ K1,2, and so we assume further that µ is

nonsimple. We have θ, λ = 1
2 (a±

√
b), for a, b ∈ Z and b 6= 0.

If a = 0, then µ = 0, and by Lemma 4.1, Ġ is switching equivalent to a complete

multipartite graph, moreover since λ is simple, to a complete bipartite graph.

In what follows, we eliminate the possibility that a 6= 0. We consider only a > 0,

since the other case is analogous. So, for a > 0, since tr (AĠ) = 0, we have a =

(2 − n)µ, where n is the number of vertices of Ġ. It follows that µ is negative and

integral.

For µ = −1 we have λ = 1
2 (n − 2 −

√
b). If λ < −1, we have n <

√
b, i.e.,

θ > n− 1, a contradiction. If λ > −1, then Ġ is complete, for otherwise it contains

the path with 3 vertices as an induced subgraph (which is impossible since then

the least eigenvalue of Ġ would be at most −
√
2). At the same time, since µ has

multiplicity n − 2, Ġ contains a subgraph with 2 vertices that avoids −1 in the

spectrum, necessarily 2K1 – a contradiction. When µ = −2, we know from [15]

that Ġ has at most 4 vertices, and we resolve this situation by inspection. For

µ 6 −3 we have a > 3(n− 2) giving θ > n, the final contradiction. �

Lemma 4.6. Let Ġ be a nonintegral signed graph with spectrum [θ, µm, λl], where

1 +m+ l = n. If Ġ is not switching equivalent to a complete bipartite graph, then

m = l and one of the following holds:

(i) θ = 0, µ, λ = ±
√
b/2 for b ≡ 0 (mod 4),

(ii) θ = 1
2 (1− n), µ, λ = 1

2 (1±
√
b) for b ≡ 1 (mod 4) or

(iii) θ = 1
2 (n− 1), µ, λ = 1

2 (−1±
√
b) for b ≡ 1 (mod 4).

P r o o f. Since Ġ is not switching equivalent to a complete bipartite graph, θ is

integral by Lemma 4.5; then m = l = 1
2 (n− 1) and µ, λ = 1

2 (a±
√
b) for a, b ∈ Z and

b 6= 0. It follows that θ + 1
2 (n− 1)a = 0, which gives a ∈ {0, 1,−1}, since otherwise

we would have |θ| > n− 1, which is impossible.

For a = 0 we obtain (i), where b ≡ 0 (mod 4) since µλ is integral (as we see by

considering the coefficients of the minimal polynomial of AĠ). In a very similar way,

we find that the possibilities a = 1 and a = −1 lead to (ii) and (iii), respectively. �

5. Main results

We first consider the join of two connected net-regular signed graphs both

with 2 nonsimple eigenvalues. We show that the join cannot have 2 eigenvalues

and determine when it has 3 eigenvalues.

Theorem 5.1. Let Ġ and Ḣ be connected net-regular signed graphs such that

neither of them is switching equivalent to a complete graph or its negation. Assume
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that Ġ and Ḣ have spectra [̺r, µm] and [νv, λl], respectively (with r +m = n1 and

v + l = n2), and let ̺, ν be the main eigenvalues.

(i) Ġ∇ Ḣ cannot have 2 eigenvalues.

(ii) If Ġ and Ḣ either do not have a common eigenvalue or share the same set of

eigenvalues, then Ġ∇ Ḣ cannot have 3 eigenvalues.

(iii) If Ġ and Ḣ have exactly one eigenvalue in common, then Ġ∇Ḣ has 3 eigenvalues

if and only if ̺ = ν, 2̺ = µ + λ and µλ = ̺2 − n1n2. In this situation, the

spectrum of Ġ∇ Ḣ is [((µ+ λ)/2)r+v−2, µm+1, λl+1].

P r o o f. By Theorem 3.1, we have

(5.1) PĠ∇Ḣ(x) = (x − ̺)r(x− µ)m(x− ν)v(x − λ)l
(

1− n1n2
1

(x− ̺)(x− ν)

)

= (x − ̺)r−1(x− µ)m(x− ν)v−1(x − λ)l((x− ̺)(x − ν)− n1n2).

By Corollary 4.2, we have r,m, v, l > 2, and so none of the first four terms of the

right-hand side vanishes.

For (i) we have either ̺ = ν, µ = λ or ̺ = λ, µ = ν. In the former case we also

have (x−̺)2−n1n2 = (x−̺)(x−µ) or (x−̺)2−n1n2 = (x−µ)2. In both situations,

by equating coefficients of x, we find that ̺ = µ, a contradiction. In the latter case

we also have (x − ̺)(x − ν) − n1n2 = (x − ̺)2 or (x− ̺)(x − ν) − n1n2 = (x − ν)2,

which both lead to the forbidden scenario ̺ = ν, and we are done.

For (ii), if Ġ and Ḣ do not have a common eigenvalue, we see immediately

that Ġ∇ Ḣ has at least 4 eigenvalues, namely ̺, µ, ν and λ.

Assume now that they share the same eigenvalue set. As in the proof of (i), we

have either ̺ = ν, µ = λ or ̺ = λ, mu = ν.

In the former case we also have (x−̺)2−n1n2 = (x−µ)(x−θ) or (x−̺)2−n1n2 =

(x − ̺)(x − θ) for some θ /∈ {̺, µ}. The second equality immediately gives θ = ̺.

The first equality implies 2̺ = θ+µ (coefficients of x) and θµ = ̺2−n1n2 (constant

terms). The last two equalities give

(5.2) (̺− µ)2 = n1n2,

but since Ġ and Ḣ are not switching equivalent to complete graphs or their negations,

we have |̺|, |µ| > 2 (which follows easily by observing that the net-degree ̺ is integral,

and then µ is also integral). This implies that ̺−µ 6 −̺µ. Since −̺µ is the vertex

degree of both Ġ and Ḣ , we also have −̺µ < ni, i ∈ {1, 2}, which contradicts (5.2).
In the latter case we also have (x − ̺)(x − ν) − n1n2 = (x − ̺)(x − θ) or

(x− ̺)(x − ν) − n1n2 = (x − ν)(x − θ) for some θ /∈ {̺, ν}, but the last restric-
tion on θ makes both equalities impossible.
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For (iii), the possibility ̺ = λ is eliminated as in the previous part of the proof

(i.e., by equating coefficients of x and those of x0).

By setting ̺ = ν, we arrive at either (x− ̺)2 − n1n2 = (x− ̺)(x− µ), (x− ̺)2 −
n1n2 = (x− ̺)(x−λ) or (x− ̺)2 −n1n2 = (x−µ)(x−λ). The first two possibilities

are eliminated as before. The last one gives 2̺ = µ+ λ and µλ = ̺2 − n1n2.

Conversely, if ̺ = ν, 2̺ = µ+ λ and µλ = ̺2 − n1n2, then equality (5.1) reduces

to PĠ∇Ḣ(x) = (x− ̺)r+v−2(x− µ)m+1(x− λ)l+1, which completes the proof. �

Observe that in part (iii) of the previous theorem, Ġ ∇ Ḣ has vertex degrees

n1 − ̺λ and n2 − ̺µ, and is regular if n1 − n2 = ̺(λ − µ). It is net-regular for

n1 = n2 (with net-degree ̺+n1). At this moment we are unable to give an example,

notwithstanding several numerical experiments.

Using Theorem 3.1, we find easily that if Ḣ is a connected signed graph with 2 non-

simple eigenvalues, then (n1K1)∇ Ḣ has more than 2 eigenvalues. In what follows

we determine whether (n1K1)∇ Ḣ has 3 eigenvalues.

Theorem 5.2. Let Ḣ be a connected signed graph with spectrum [νv, λl] such

that v, l > 2 and v + l = n2.

(i) If n1 > 2, then (n1K1)∇ Ḣ has more than 3 eigenvalues.

(ii) K1 ∇ Ḣ has 3 eigenvalues if and only if Ḣ has exactly one main eigenvalue and

if this eigenvalue is ν, then n2 = λ(λ − ν). In this situation, the spectrum of

K1 ∇ Ḣ is [ν − λ, νv−1, λl+1].

P r o o f. By Theorem 3.1, we have

(5.3) P(n1K1)∇Ḣ(x) = xn1−1(x− ν)v−1(x− λ)l−1

× (x(x − ν)(x − λ)− n1n2(γ
2(x− λ) + (1− γ2)(x − ν))),

where γ is the main angle of ν.

For (i), suppose by way of contradiction that (n1K1)∇Ḣ has at most 3 eigenvalues.

Equality (5.3) shows that the roots of

(5.4) x(x − ν)(x− λ)− n1n2(γ
2(x− λ) + (1 − γ2)(x − ν)) = 0

must belong to {0, ν, λ}. As in the previous theorem, after straightforward algebraic
computation, we easily eliminate all the possibilities that arise.

Consider (ii) and assume first that K1 ∇ Ḣ has exactly 3 eigenvalues. It follows

that exactly one root of (5.4) (with n1 = 1) differs from ν, λ. (There cannot be

two such roots, by eigenvalue interlacing.) If ν is the unique main eigenvalue of Ḣ ,

then γ2 = 1, and (5.4) reduces to a quadratic equation. If its roots are θ and ν, we
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obtain n2 = 0, which is impossible. If they are θ and λ, then we have θ = ν − λ and

−θλ = n2, which leads to λ(λ− ν) = n2.

If now both eigenvalues of Ḣ are main, then the case in which the roots of (5.4)

are θ, ν and λ is eliminated as before (it leads to n2 = 0). The case in which θ and λ

(of multiplicity 2) are the roots in question leads to the system

θ + 2λ = λ+ ν, λ(2θ + λ) = λν − n2, −θλ2 = n2(γ
2λ+ (1 − γ2)ν),

which arises by equating the coefficients of x2, x and x0. Solving this system, we

obtain θ = ν−λ, n2 = λ(λ−ν) and γ2 = 1. The last equality means in fact that λ is

nonmain, and reduces this case to the case with one main eigenvalue. Of course, the

case in which θ and ν (of multiplicity 2) are the corresponding roots is analogous.

Conversely, if ν is the unique main eigenvalue of Ḣ and n2 = λ(λ−ν), by inserting

n1 = 1, γ2 = 1 and n2 = λ(λ − ν) into (5.3), we get

PK1∇Ḣ(x) = (x− ν + λ)(x − ν)v−1(x− λ)l+1,

and we are done. �

Evidently, K1 ∇ Ḣ is neither regular or net-regular. Here is a simple corollary.

Corollary 5.3. Under the assumptions on Ḣ formulated in Theorem 5.2, if

K1 ∇ Ḣ has 3 eigenvalues, then the eigenvalues of Ḣ and the eigenvalues of K1 ∇ Ḣ

are integers.

P r o o f. By Theorem 5.2 (ii), Ḣ has exactly one main eigenvalue; then this is the

net-degree, hence an integer. Evidently, the other eigenvalue must also be integral.

Consequently, the eigenvalues of K1 ∇ Ḣ (expressed in terms of those of Ḣ as in the

corresponding theorem) are also integral. �

We continue with an example, in fact an infinite family of signed graphs Ḣ

with 2 eigenvalues, such that K1 ∇ Ḣ has 3 eigenvalues.

Example 5.4. It has been proved in [23] that an inhomogeneous net-regular

complete bipartite signed graph Ḣ with 2n vertices has 2 eigenvalues if and only if

AḢ+ is the incidence matrix of a symmetric balanced incomplete design with param-

eters (4(r − l), r, l). Now, it is a matter of routine (but the reader can consult the

same reference once again) to see that the eigenvalues of Ḣ are ±
√
r − l. Further,

the parameters of a Menon design (given by (4s2, s(2s+1), s(s+1)) for s ∈ Z \ {0})
have the required form, and moreover, the eigenvalues of Ḣ (±2s) satisfy the as-

sumption of Theorem 5.2 (ii). Therefore, in this case K1 ∇ Ḣ has the spectrum

[4s, (2s)n−1, (−2s)n+1]. For s = 1 we obtain the cone over the signed graph obtained

by reversing the sign of every edge in a perfect matching of K4,4.
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We proceed with cones over net-regular signed graphs with 3 eigenvalues, such

that the net-degree is a simple eigenvalue.

Theorem 5.5. Let Ḣ be a net-regular signed graph with spectrum [ν, µm, λl]

such that m, l > 2, 1 +m+ l = n, ν is equal to the net-degree and µ > λ.

(i) If ν /∈ (λ, µ), then K1 ∇ Ḣ has at least 3 eigenvalues and if their number is 3,

then either µ(µ−ν) = n and µ > 0 > λ > ν or λ(λ−ν) = n and ν > µ > 0 > λ.

(ii) If ν ∈ (λ, µ) and K1 ∇ Ḣ has at most 3 eigenvalues, then µ(µ − λ) = n or

λ(λ− µ) = n, with 2 eigenvalues precisely if both equalities are satisfied, equiv-

alently ν = µ+ λ.

Conversely, if µ(µ − ν) = n or λ(λ − ν) = n, then K1 ∇ Ḣ has 2 eigenvalues if

ν = µ+ λ, and 3 eigenvalues otherwise.

P r o o f. Since ν is the unique main eigenvalue of Ḣ , by Corollary 3.2, we have

(5.5) PK1∇Ḣ(x) = (x− µ)m(x− λ)l(x2 − νx − n).

Consider (i). If K1 ∇ Ḣ has 2 eigenvalues, then x2 − νx − n = (x − µ)(x − λ),

giving ν = µ+ λ, which is impossible under the assumption on the location of ν.

IfK1∇Ḣ has 3 eigenvalues, then either x2−νx−n = (x−θ)(x−µ) or x2−νx−n =

(x−θ)(x−λ) for θ /∈ {µ, λ}. We consider the former case, while the latter one follows
analogously. We have θ + µ = ν and θµ = −n, which yields µ(µ − ν) = n, and it

remains to prove the given chain of inequalities. We have 2 possibilities: ν < λ or

ν > µ. For ν < λ we immediately get µ > 0 (because θ = ν − µ < 0 and θµ = −n).

When λ > 0, K1 ∇ Ḣ has exactly one negative eigenvalue (namely θ), and by

Lemma 4.1 it is switching equivalent to the negation of a complete multipartite

graph with 3 eigenvalues. This is impossible since a complete multipartite graph

with 3 eigenvalues is not a cone unless it is a star (see [9], page 47), but then m = 1.

For ν > µ, in a similar way we obtain µ < 0, but this is impossible as before by the

latter part of Lemma 4.1.

Now consider (ii). As before, from x2−νx−n = (x−θ)(x−µ) we obtain θ = ν−µ

and µ(µ − ν) = n. If K1 ∇ Ḣ has 2 eigenvalues, then θ = µ or θ = λ. For the first

possibility we have ν = 2µ, which contradicts the location of ν. For the second

possibility we find ν = µ + λ. The case x2 − νx − n = (x − θ)(x − λ) is again

analogous, and the case of 2 eigenvalues again implies ν = µ + λ, which completes

this part of the proof.

Conversely, if µ(µ− ν) = n, then x2 − νx−n = (x− (ν−µ))(x−µ), which means

that K1 ∇ Ḣ has at most 3 eigenvalues with 2 eigenvalues exactly if ν − µ = λ, and

similarly for λ(λ− ν) = n. �
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In the previous theorem, the spectrum of K1 ∇ Ḣ depends on which of the two

possible equalities is attained, but it can easily be computed from (5.5). Evidently,

K1 ∇ Ḣ is regular if and only if Ḣ is complete. Since Ḣ is net-regular, K1 ∇ Ḣ is

never net-regular.

Example 5.6. Examples of signed graphs for Theorem 5.4 with ν = µ+ λ can

easily be found. Namely, if Ḣ is a complete signed graph with n vertices whose

negative edges induce a strongly regular graph with parameters (n, 2f, e, f), then

the eigenvalues of Ḣ (which are the Seidel eigenvalues of the corresponding strongly

regular graph) are ν = n− 2f − 1 and µ, λ = f − e ±
√

(e− f)2 + 4f − 1. Observe

that ν, µ and λ are distinct, which follows by examining the parameters, but also

by Corollary 4.3. Using the relation between the parameters of a strongly regular

graph, which, for example, can be found in [21], Theorem 3.4.6, we confirm that in

our case ν = µ+λ holds. Thus, by Theorem 5.4 (ii), K1 ∇ Ḣ has 2 eigenvalues. The

reader will recognize that this construction produces signed graphs that arise from

the so-called regular two-graph equivalence class, see [19].

6. More examples

In the first of the following two subsections we propose a definition of semi-

complements of signed graphs. As an immediate application, we use them to con-

struct signed graphs with a small number of eigenvalues which arise from 3-class

association schemes. In the second subsection, we consider bipartite signed graphs

with at most 3 eigenvalues. We believe that the reader is familiar with association

schemes and related definitions. In fact, all terminology and undefined notions can

be found in [7].

6.1. Semi-complements and 3-class association schemes. Let Ġ be a signed

graph of order n with adjacency matrix A = (aij), and let π be the cyclic permu-

tation −1 7→ 1 7→ 0 7→ −1. We define the semi-complements of Ġ as the signed

graphs Ġ′, Ġ′′ with adjacency matrices B = (bij), C = (cij), respectively, where

bij =

{

0 if i = j,

π(aij) if i 6= j
and cij =

{

0 if i = j,

π(bij) if i 6= j.

Accordingly, A = A1−A2, B = A2−A3 and C = A3−A1, where Ai is the adjacency

matrix of a graph Gi (1 6 i 6 3), A1 +A2 +A3 = J − I and

(6.1) E(Kn) = E(G1)∪̇E(G2)∪̇E(G3).
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It is convenient to write Ġ1,2, Ġ2,3, Ġ3,1 for Ġ, Ġ
′, Ġ′′, respectively. IfG1

∼= G2
∼= G3,

then the tripartition (6.1) is said to be a 3-decomposition ofKn, as in [9], Section 9.4.

We note that G1, G2, G3 determine a 3-class association scheme if and only if

each Gi is regular of positive degree and each AiAj is a linear combination of I, A1,

A2, A3. In this situation we see (by taking transposes) that AiAj = AjAi and so

〈I, A1, A2, A3〉 is a 4-dimensional commutative R-algebra A (called a Bose-Mesner
algebra). For any matrixM ∈ A, the matrices I,M ,M2,M3,M4 are linearly depen-

dent, and soM has at most 4 eigenvalues. In particular, this is true for the adjacency

matrices of signed graphs Ġi,j , and below we give examples with 3 and 4 eigenvalues.

It is known that if G1, G2, G3 are strongly regular, then they determine a 3-class

association scheme (see [26], page 78) and all are of Latin square or negative Latin

square type (see [26], page 76). Previously it was shown in [16] that if G is a strongly

regular graph with parameters (n, r, e, f) and Gi
∼= G (1 6 i 6 3), then there exists

k ∈ N such that (with a consistent choice of sign)

n = (3k ± 1)2, r = 3k2 ± 2k, e = k2 − 1, f = k2 ± k.

Example 6.1. Consider the 3-decomposition E(K7) = E(G1)∪̇E(G2)∪̇E(G3),

where G1, G2, G3 are the 7-cycles 12345671, 13572461, 14736251, respectively

(see [9], Remark 9.4.3). It is straightforward to check that this 3-decompositon gives

rise to an association scheme by expressing each AiAj as a linear combination of I,

A1, A2, A3. One can find the eigenvalues of G1,2 explicitly using the eigenvalues of

the 7-cycles, but to demonstrate that there are 4 distinct eigenvalues one can make

use of the relations A2
1 = A2 + 2I, A2

2 = A3 + 2I, A1A2 = A1 + A3 to show that A

(= A1−A2) satisfies x(x
3 − 7x+7) = 0. Since Aj = 0 and x3 − 7x+7 is irreducible,

the eigenvalues of G1,2 are 0 and the three (conjugate) roots of x
3 − 7x+ 7.

If instead we take E(K7) = E(G1)∪̇E(G2)∪̇E(G3), where G1, G2, G3 are the

7-cycles 12345671, 14275361, 13746251, then A2A3 6= A3A2 (as noted in [9], Re-

mark 9.4.3), and so in this case the 3-decomposition does not determine an associa-

tion scheme.

Example 6.2. Here we consider the 3-decomposition of Kn into strongly regular

graphs with parameters

n = (3k + 1)2, r = 3k2 + 2k, e = k2 − 1, f = k2 + k

(see [16] or [9], Example 9.4.4). The nonmain eigenvalues of Gi are ̺1 = k and

̺2 = −2k − 1. From [9], Remark 9.4.3 we have

EA1
(̺2) = EA2

(̺1) ∩ EA3
(̺1), EA2

(̺2) = EA3
(̺1) ∩ EA1

(̺1),

EA3
(̺2) = EA1

(̺1) ∩ EA2
(̺1) and R

n = 〈j〉 ⊕ EA1
(̺2)⊕ EA2

(̺2)⊕ EA3
(̺2).
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We know that (A1−A2)j = 0. Now suppose that θ is a nonzero eigenvalue of A1−A2

with an eigenvector x orthogonal to j. Then x = x1 + x2 + x3, where xi ∈ EAi
(̺2)

(1 6 i 6 3). We have

A1x1 = ̺2x1, A1x2 = ̺1x2, A1x3 = ̺1x3

and

A2x1 = ̺1x1, A2x2 = ̺2x2, A2x3 = ̺1x3.

Hence, θx1 + θx2 + θx3 = (̺2 − ̺1)x1 + (̺1 − ̺2)x2 + 0x3, and so either x3 = 0,

x2 = 0, θ = ̺2 − ̺1 or x3 = 0, x1 = 0, θ = ̺1 − ̺2. Each eigenspace EAi
(̺2)

(1 6 i 6 3) has dimension 1
3 (n− 1) = 3k2 +2k, and so the eigenvalues of Ġ1,2 are 0,

̺1−̺2 = 3k+1 and ̺2−̺1 = −3k− 1 with multiplicities 3k2+2k+1, 3k2+2k and

3k2+2k, respectively. When k = 1, the corresponding tripartition is the well-known

3-decomposition of K16 into three copies of the Clebsch graph.

Motivated by the notion of a self-complementary graph, we investigate the situ-

ation in which Ġ1,2
∼= Ġ2,3. In this case there exists a permutation matrix P such

that P−1A1P = A2 and P−1A2P = A3. Then

P−1A3P = P−1(J − I −A1 −A2)P = J − I − P−1A1P − P−1A2P

= J − I −A2 −A3 = A1.

Hence, P−1(A3 − A1)P = A1 − A2, and so Ġ1,2
∼= Ġ2,3

∼= Ġ3,1. We say that the

isomorphic signed graphs Ġ1,2, Ġ2,3, Ġ3,1 are semi-complementary. For a simple

example we may take

A =









0 1 0 −1

1 0 −1 0

0 −1 0 1

−1 0 1 0









.

An infinite family of examples arises in [9], Example 9.4.3 as a particular case of

Example 6.2 above. These are illustrations of the following result.

Theorem 6.3. Suppose that Kn has a 3-decomposition into (isomorphic) con-

nected regular graphs G1, G2, G3 which determine a 3-class association scheme.

Then each of the signed graphs Ġ1,2, Ġ2,3, Ġ3,1 has just 3 or 4 eigenvalues. If Ġ1,2,

Ġ2,3, Ġ3,1 are semi-complementary with just 3 eigenvalues, then

⊲ these eigenvalues are 0, λ, −λ for some λ ∈ R, and

⊲ the graphsG1, G2, G3 are strongly regular of Latin square or negative Latin square

type.
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P r o o f. Let Gi have the adjacency matrix Ai (1 6 i 6 3), and let A = A1 −A2.

We have already noted that A has at most 4 eigenvalues. Since one of them is 0, A

has at least 3 eigenvalues.

Now suppose that Ġ1,2, Ġ2,3, Ġ3,1 are semi-complementary, with just 3 eigenval-

ues 0, λ, µ. Let r be the vertex degree in each Gi. In view of the simultaneous

diagonalizability of A1, A2, A3, we may write

A1xi = λixi, A2xi = µixi, A3xi = νixi (1 6 i 6 n),

where the common eigenvectors x1, x2, . . . ,xn are linearly independent and we take

x1 = j, λ1 = µ1 = ν1 = r. Note that λi + µi + νi = −1 (i > 2), the µj (j > 1) are

the λi (i > 1) in some order and the νk (k > 1) are the λi (i > 1) in some order.

Suppose by way of contradiction that each Gi has 4 distinct eigenvalues r, a, b, c.

If a = λi, then i 6= 1 and since λi − µi, µi − νi ∈ {0, λ, µ}, there are initially 9
possibilities for (λi, µi, νi), namely:

(a) a a a,

(b) a a a− λ,

(c) a a− λ a− λ,

(d) a a a− µ,

(e) a a− µ a− µ,

(f) a a− µ a− µ− λ,

(g) a a− λ a− λ− µ,

(h) a a− λ a− 2λ,

(j) a a− µ a− 2µ.

Cases (a), (h) and (j) are ruled out immediately because there 3a = −1 or

3(a− λ) = −1 or 3(a− µ) = −1, contradicting the fact that a, a− λ and a− µ are

algebraic integers. In cases (b)–(e) we have λ + µ = 0, because νi − λi ∈ {0, λ, µ}.
If λ + µ 6= 0, then cases (f) and (g) remain and yield −λ − µ ∈ {λ, µ}, whence
2λ+ µ = 0 or λ+ 2µ = 0.

We now distinguish two possibilities for λ+ µ.

The case λ+µ = 0. In cases (b) and (c), we have 3a−λ = −1 and 3a− 2λ = −1,

respectively. We may take a− λ = b = λj . The possibilities for (λj , µj , νj) are:

(i) b b b− λ,

(ii) b b− λ b− λ,

(iii) b b b− µ,

(iv) b b− µ b− µ.

In subcase (i) we have 3a − 4λ = −1, leading to the contradiction λ = 0. In

subcase (ii) we have 3a−5λ = −1, leading to the same contradiction. In subcase (iii)

we have the consistent triples

a a− λ a− λ

b b b− µ
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and we consider the fourth eigenvalue. If c = λk, then the possibilities for

(λk, µk, µk) are:
c c c− λ

c c− λ c− λ

c c c− µ

c c− µ c− µ

In the first case we have 3c− λ = −1, leading to the contradiction 3(2c− a) = −1.

In the second case we have 3c− 2λ = −1, leading to the contradiction a = c. In the

third case we have 3c−µ = −1, leading to the contradiction b = c. In the fourth case

we have 3c− 2µ = −1, leading to the contradiction 3(2b− c) = −1. In subcase (iv)

we have the consistent triples

a a a− λ

b b− µ b− µ

and we consider the fourth eigenvalue as before. In turn, the contradictions are

a = c, 3(2a− c) = −1, 3(2c− b) = −1, b = c.

We can deal similarly with cases (d) and (e) by interchanging λ and µ.

The case λ + µ 6= 0. It remains to consider cases (f) and (g), where again we

write b = a − λ. In case (f) we have 3a − 2µ − λ = −1, and in case (g) we have

3a− 2λ− µ = −1. If b = λj , then the possibilities for (λj , µj , νj) are:

(i) b b− µ b− µ− λ, (ii) b b− λ b− λ− µ.

For the first possibility we have 3b− 2µ−λ = −1 and 3a−µ− 2λ = −1, since a 6= b.

Equivalently, 3a− 2µ− 4λ = −1 and 3a− µ − 2λ = −1, from which we obtain the

contradiction 3a = −1. For the second possibility we have 3b − 2λ − µ = −1 and

3a− λ− 2µ = −1, equivalently 3a− 5λ− µ = −1 and 3a− λ− 2µ = −1. We deduce

that µ = 4λ, and this is a contradiction because λ and µ must have different signs.

It follows that G1 has at most 3 eigenvalues and is strongly regular. Since G1

is not complete, it is of Latin square type or negative Latin square type (see [26],

Theorem 4.1). Finally, we have λ + µ = 0, for otherwise we obtain a contradiction

as in the case λ+ µ 6= 0 above. �

There arises a question in relation to a possible converse: If Kn admits a 3-

decomposition into strongly regular graphs G1, G2, G3 of Latin square type or nega-

tive Latin square type, are the signed graphs Ġ1,2, Ġ2,3, Ġ3,1 semi-complementary?

6.2. Bipartite signed graphs. If Ġ is a bipartite signed graph, then its adja-

cency matrix can be written in the form

(6.2) AĠ =

(

O N⊺

N O

)

,
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which gives

A2
Ġ
=

(

N⊺N O

O NN⊺

)

.

Thus, if Ġ has 2 eigenvalues, then by considering the minimal polynomial, we see

that N is a square matrix satisfying N⊺N = NN⊺ = rI, in other words, N is

a weighing matrix of weight r. (We recall that a weighing matrix M of weight r > 0

is a square (0, 1,−1)-matrix satisfying M⊺M = rI; then we also have MM⊺ = rI.)

Conversely, if N is a weighing matrix of weight r, then the eigenvalues of Ġ are ±√
r.

We record this as the following lemma.

Lemma 6.4. A signed graph with adjacency matrix (6.2) has 2 eigenvalues if and

only if N is a weighing matrix.

It is conjectured by Seberry (cf. [4]) that if n is a multiple of 4, then a weighing

matrix exists for all r (1 6 r 6 n); there are plenty of examples (not listed here).

It is also known that for n ≡ 2 (mod 4), every weighing matrix of order n satisfies

r 6 n−1, where r must be the sum of two squares. Finally, every weighing matrix of

odd order is such that r is a square and (n− k)2+n− k+1 > n. More details and a

classification of weighing matrices of orders up to 15 and order 17 can be found in [10].

In the particular case where N is a (1,−1)-matrix (i.e., N is a Hadamard matrix),

the existence of a bipartite net-regular signed graph with 2 eigenvalues is resolved in

terms of balanced incomplete block designs, as we already mentioned in Example 5.4.

Assume further that N is a p×q matrix with p 6 q. If N⊺N has 2 eigenvalues such

that one of them is zero, then A2
Ġ
has the same eigenvalues, which means that Ġ has

at most 3 eigenvalues. Moreover, by Lemma 6.2, it cannot have 2 eigenvalues, so it

has exactly 3. Thus, we have the following.

Lemma 6.5. If N is a p × q (0, 1,−1)-matrix (with p 6 q) and N⊺N has ex-

actly 2 eigenvalues, one of them being zero, then the signed graph with adjacency

matrix (6.2) has 3 eigenvalues.

Observe that for p < q, zero is an eigenvalue of N⊺N , since N⊺N and NN⊺

share the same nonzero eigenvalues (together with their multiplicities) and the latter

matrix has smaller order. For p = q, by setting N to be the adjacency matrix of

a signed graph with 3 eigenvalues ±λ and 0, we see that Ġ has 3 eigenvalues.

We conclude the subsection with another construction. Let Ḣ be a signed multi-

graph in which two vertices are either nonadjacent, adjacent by a positive or a neg-

ative edge or adjacent by one positive and one negative edge (such a pair of edges

form the so-called negative digon). We introduce the vertex-edge orientation η :

V (Ḣ) × E(Ḣ) → {0, 1,−1} formed by obeying the following rules: (1) η(i, jk) = 0
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if i /∈ {j, k}, (2) η(i, ij) = 1 or η(i, ij) = −1 and (3) η(i, ij)η(j, ij) = −σ(ij). The

vertex-edge incidence matrix Bη is the matrix whose rows and columns are indexed

by V (Ġ) and E(Ġ), respectively, such that its (i, e)-entry is equal to η(i, e).

Now, if Ḣ is connected and |V (Ḣ)| 6 |E(Ḣ)|, then we deduce from [24], The-
orem 4.3 that B⊺

ηBη has 2 eigenvalues, one of them being zero, if and only if Ḣ

is switching equivalent to either the complete graph or the signed multigraph ob-

tained by inserting a negative parallel edge between every pair of adjacent vertices

of a regular graph. By the same result, for |V (Ḣ)| > |E(Ḣ)|, BηB
⊺

η never has such

eigenvalues. This leads to the following result.

Proposition 6.6. If N is the vertex-edge incidence matrix of a connected signed

multigraph Ḣ described above, then Ġ with adjacency matrix (6.2) has 3 eigenvalues

if and only if Ḣ is switching equivalent to either the complete graph or the signed

graph obtained by inserting a negative parallel edge between every pair of adjacent

vertices of a regular graph.

We note that B⊺

ηBη − 2I is the adjacency matrix of the signed line graph of Ḣ

(in the sense of [3], [24]) and BηB
⊺

η is the Laplacian matrix of Ḣ .
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[20] S.K. Simić, Z. Stanić: Polynomial reconstruction of signed graphs. Linear Algebra Appl.
501 (2016), 390–408. zbl MR doi
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