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K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 1 , P A G E S 2 5 – 4 2

BAYESIAN REFERENCE ANALYSIS FOR
PROPORTIONAL HAZARDS MODEL OF
RANDOM CENSORSHIP WITH WEIBULL DISTRIBUTION

Maria Ajmal, Muhammad Yameen Danish and Ayesha Tahira

This article deals with the objective Bayesian analysis of random censorship model with
informative censoring using Weibull distribution. The objective Bayesian analysis has a long
history from Bayes and Laplace through Jeffreys and is reaching the level of sophistication
gradually. The reference prior method of Bernardo is a nice attempt in this direction. The
reference prior method is based on the Kullback-Leibler divergence between the prior and the
corresponding posterior distribution and easy to implement when the information matrix exists
in closed-form. We apply this method to Weibull random censorship model and compare it
with Jeffreys and maximum likelihood methods. It is observed that the closed-form expressions
for the Bayes estimators are not possible; we use importance sampling technique to obtain
the approximate Bayes estimates. The behaviour of maximum likelihood and Bayes estimators
is observed via extensive numerical simulation. The proposed methodology is used for the
analysis of a real-life data for illustration and appropriateness of the model is tested by Henze
goodness-of-fit test.

Keywords: Jeffreys prior method, reference prior method, random censorship model,
Kaplan–Meier survival estimate, Henze goodness-of-fit test

Classification: 62N01, 62N05, 62F10, 62F15

1. INTRODUCTION

The nice development of reference prior method enables the Bayesian researchers to
fit more and more realistic and sophisticated models which were not previously possi-
ble. The reference prior method, initiated in [5] and further developed by Berger and
Bernardo [3, 4], is the best known of available objective Bayesian methods in the sense
of invariance, consistent marginalization, consistent sampling properties, generality, and
admissibility. The essence of any Bayesian analysis is the posterior distribution which
combines the experimental data with the available prior information. However, the
formal Bayesian analysis has a reputation of producing vested results using the priors
which fit into the model at hand. Although there are well known non-informative prior
methods in the form of Laplace and Jeffreys, these prior methods have inconsistency
and dimensional issues in some cases. The need for model-based prior that has minimal
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effect on the posterior inference relative to the data at hand was being felt and the
reference prior is a good attempt in this direction.

The Weibull distribution is one the most widely used distributions for modeling fail-
ure time data from reliability and life testing experiments. It is mainly due to the
variety of shapes of its density function and the behaviors of its failure rate function.
Literally thousands of references to the Weibull distribution can be found in the statisti-
cal literature. The distributional properties, estimation of parameters and applications
in different fields can be seen in [15]. Readers are referred to [21] for a detailed com-
prehensive overview of the Weibull family of distributions, its modifications, and its
relation to other distributions. Hossain and Zimmer [13] compared several methods for
estimating the parameters of two-parameter Weibull distribution with complete, mul-
tiply time censored and type II censored samples based on extensive simulation study.
Kundu [20] dealt with the progressively censored Weibull distribution for the Bayesian
estimation of unknown parameters. Abu-Taleb, Smadi and Alawneh [1] conducted the
maximum likelihood estimation of randomly censored exponential distribution. Joarder,
Krishna and Kundu [14] considered the statistical inferences of the unknown parame-
ters of Weibull distribution when the data are type-I censored and proposed a simple
algorithm to compute the maximum likelihood estimators and the approximate max-
imum likelihood estimators based on Taylor series expansions. Danish and Aslam [7]
considered the Bayesian inference of the unknown parameters of the randomly censored
Weibull distribution assuming survival time and censoring time variables have the same
shape parameter but different scale parameters. More recent treatment on the topic
may be found in Krishna et al. [19]; Garg et al. [10] and Danish et al. [8].

Although much work has been done on the statistical inferences for the parameter
of Weibull distribution both in classical and Bayesian contexts, however, we provide an
alternative methodology for the analysis of failure time data based on reference prior
method and compare it with the Jeffreys and maximum likelihood methods both in term
of simulation study and actual data application.

The rest of the article is organized as follows. In the next section we define the Weibull
random censorship model and associated assumptions. Section 3 provides maximum
likelihood (ML) estimators and corresponding Fisher information matrix. In Section 4
we derive Jeffreys and reference priors and obtain the Bayes estimates using importance
sampling procedure. This section also describes the procedure to obtain the highest
posterior density (HPD) intervals. A simulation study is carried out in Section 5 and
finally a real data analysis is performed in Section 6.

2. PROBLEM FORMULATION

Suppose a sample of n identical patients enter a life testing experiment after some
medical treatment and their survival times during the experiment are recorded. Each
patient in the sample will have either failure time or censoring time. Let the random
variables X1, X2,. . . ,Xn with distribution function FX(x) and density function fX(x)
represent their failure times and the random variables T1, T2,. . . ,Tn with distribution
function GT (t) and density function gT (t) denote their censoring times. Since we do not
know for each patient whether the failure will happen first or the censoring, we define
Yi = min(Xi, Ti) and Di = I(Xi ≤ Ti) for i = 1, 2, . . . , n. The fundamental assumption
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in the theory of survival analysis is the independence of censoring and failure times.
This is due to the fact that in medical investigations the patients often have random
entry into the study with fixed censoring time at the end of the study. If it is reasonable
to assume that the variables X and T are independent, then joint density of Y and D
can be expressed as

f(Y,D)(y, d) = [fX(y){1−GT (y)}]d[gT (y){1− FX(y)}](1−d). (1)

There are two cases of this random censorship model in medical studies: informative
and non-informative censoring. In informative censoring the censoring time variable is
related to survival time variable in terms of distribution function. In this case Koziol
and Green [18] introduced a special model assuming that the survival time variable and
the censoring time variable are independent, and they are connected by the relation

GT (y) = 1− {1− FX(y)}β ; ∀ y ≥ 0 (2)

for some positive constant β. [17] obtained the same Koziol–Green model under the
assumption of independence of the observable survival time variable Y and the censoring
indicator variable D. The Koziol-.Green model allowed the censored observations to the
estimation of survival function and started the era of informative censoring in the life
testing application.

The parameter β in (2) is defined as

p = P (D = 1) = P [(X ≤ T ) = (1 + β)−1. (3)

Under the assumption (2), the random censorship model in (1) takes the form

fY,D(y, d) = fX(y)[{1− FX(y)}]ββ1−d. (4)

The density function of Weibull distribution is

fX(x; θ, λ) = θλxθ−1e−λx
θ

; x > 0, θ > 0, λ > 0, (5)

and corresponding distribution function is

FX(x;λ) = 1− e−λx
θ

. (6)

Using (5) and (6) in (4), we obtain the joint distribution Y and D with density function

fY,D(y, d; θ, λ, β) = θλyθ−1e−(1+β)λyθβ1−d; y > θ. (7)

3. MAXIMUM LIKELIHOOD ESTIMATION

For an observed sample (y1, d1),. . . ,(yn, dn) = (y, d) from (7), the likelihood function is

l(θ, λ, β) = θnλn
n∏
i=1

yθ−1
i e−(1+β)λ

∑n
i=1 y

θ
i β
n−

∑n
i=1 di . (8)
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The corresponding log-likelihood function is

l(θ, λ, β) = nlnθ + nlnλ+ (θ − 1)

n∑
i=1

lnyi − λ(1 + β)

n∑
i=1

yθi + (n−
n∑
i=1

di)lnβ. (9)

The ML estimates are obtained from (9) as

β =
(n−

∑n
i=1 di)∑n

i=1 di
, λ(θ) =

∑n
i=1 di∑n
i=1 y

θ
i

and θ = h(θ),

where
1

h(θ)
=

∑n
i=1 y

θ
i lnyi∑n

i=1 y
θ
i

−
∑n
i=1 lnyi
n

.

Once the ML estimate of θ is obtained from the nonlinear equation θ = h(θ) using any

of the available iterative procedure, the ML estimate of λ can be obtained from λ(θ̂).
The Fisher information matrix is derived as

I(θ, λ, β) =


n
θ2 (π

2

6 + k2) nk
θλ

nk
θ(1+β)

nk
θλ

n
λ2

n
λ(1+β)

nk
θ(1+β)

n
λ(1+β)

n
β(1+β)

 ,
where k = Ψ(2)− ln(λ(1 + β)) and Ψ(.) is digamma function.

4. OBJECTIVE BAYESIAN ANALYSIS

This section provides the objective Bayesian estimation of unknown parameters with
respect to squared error loss function. For this purpose, we consider two different priors:
(a) Jeffreys prior and (b) Reference prior.

4.1. Jeffreys prior

In some realistic sense the non-informative priors make the Bayesian analysis a dif-
ferent entity and the Jeffreys prior is the most commonly used non-informative prior.
It is defined as πJ(θ, λ, β) ∝ |I(θ, λ, β)|1/2. The determinant |I(θ, λ, β)| of the Fisher
information matrix is

|I(θ, λ, β)| = n3π2

6θ2λ2β(1 + β)2

so

πJ(θ, λ, β) =
1

θλ(1 + β)β1/2
. (10)

4.2. Reference prior

Suppose f(x|θ) is a parametric model indexed with parameter vector θ ∈ Θ and I(θ) is
the corresponding Fisher information matrix with full rank, where θ = (θ1, θ2, . . . , θm).
Define S(θ) = I−1(θ), θ[j] = (θ1, . . . , θj) with θ[0] = {}, θ[j] = (θj+1, . . . , θm) with
θ[0] = θ = (θ1, θ2, . . . , θm), Sj(θ)= upper left j × j submatrix of S(θ) and hj(θ)= lower
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right element of S−1
j (θ). Further assume that for Θ = Θ1 × . . . × Θm with θi ∈ Θi,

{Θl
i}, i = 1, 2, . . . ,m, l = 1, 2, . . . , is an increasing sequence of compact subsets of Θi

and Θl
[j] = Θl

j+1 × . . . × Θl
m. We borrow the following algorithm from Theorem 22 in

[6] for further development.

Algorithm 1
The reference prior π(θ) relative to the ordered parameterisation θ = (θ1, θ2, . . . , θm) is

π(θ) = lim
l→∞

πl(θ)

πl(θ∗)
,

for some θ∗ ∈ Θ, where πl(θ) is defined by the following three steps:

(i) For j = m and θm ∈ Θl
m

πlm
(
θ[m−1]|θ[m−1]

)
= πlm(θm|θ1, . . . , θ[m−1]) =

{hm(θ)}1/2∫
Θlm
{hm(θ)}1/2 dθm

.

(ii) For j = m− 1,m− 2, . . . , 2, and θj ∈ Θl
j ,

πlj
(
θ[j−1]|θ[j−1]

)
= πlj+1(θ[j]|θ[j])

exp{Elj [ln{hj(θ)}1/2]}∫
Θlj
exp{Elj [ln{hj(θ)}1/2]}dθj

,

where

Elj [ln{hj(θ)}1/2] =

∫
Θl

[j]

[ln{hj(θ)}1/2]πlj+1(θ[j]|θ[j]) dθ[j].

(iii) For j = 1, θ[0] = θ = (θ1, θ2, . . . , θm) and

πl(θ) = πl1(θ[0]|θ[0]) = πl1(θ1, θ2, . . . , θm).

The interested readers are referred to [6] for further detail on the development of refer-
ence prior Algorithm 1 and for the following heuristic result.

Let us consider what can be said about the form of the posterior distribution of θ,
for an observed data x of large size n, given by

π(θ|x) ∝ l(θ)π(θ) ∝ exp{lnπ(θ) + lnl(θ)}. (11)

Expansion of the two logarithmic terms about their respective maxima, mθ and θ̂n, gives

lnπ(θ) = lnπ(m0)− 1

2
(θ −m0)′H0(θ −m0) +R0

lnl(θ) = lnl(θ̂n)− 1

2
(θ − θ̂n)′H(θ̂n)(θ − θ̂n) +Rn,

where R0, Rn denote remainder terms and H0, H(θ̂n) are minus the hessians of lnπ(θ)
and lnl(θ), respectively evaluated at their respective maxima.
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For small R0 and Rn, expression (11) can be written as

π(θ|x) ∝ exp{lnπ(m0)− 1

2
(θ −m0)′H0(θ −m0) + lnl(θ̂n)− 1

2
(θ − θ̂n)′H(θ̂n)(θ − θ̂n)}

∝ exp{−1

2
(θ −mn)′Hn(θ −mn)}, (12)

where

Hn = H0 +H(θ̂n)

and

m0 = H−1
n

(
H0m0 +H(θ̂n)θ̂

)
.

We note that the expression in (12) resemble the multivariate normal distribution mean
vector mn and covariance matrix Hn.

Theorem 4.1. Consider the probability model in (7) with parameter space Θ = {Θ1×
Θ2 × Θ3} = {(θ, λ, β) : 0 < θ < ∞, 0 < λ < ∞, 0 < β < ∞}. Suppose that the asymp-
totic posterior distribution of (θ, λ, β) is multivariate normal with covariance matrix

S(θ̂, λ̂, β̂) = I−1(θ̂, λ̂, β̂), where θ̂, λ̂ and β̂ are the consistent estimates of θ, λ and β.

(a) If θ is parameter of interest and ordered parameterisation is (θ, λ, β), then the
reference prior is same as the Jeffreys prior, that is

πR(θ, λ, β) = πJ(θ, λ, β) =
1

θλ(1 + β)β1/2

(b) If θ is parameter of interest and the natural parameterisation is (θ, λ, β), then the
reference prior is

πR(θ, λ, β) =
1

θλ(1 + β)1/2β1/2
. (13)

P r o o f . (a) Using Algorithm 1 with θ = (θ1, θ2, θ3) = (θ, β, λ), H((θ, β, λ)) = I(θ, β, λ),

H−1(θ, β, λ) = S(θ, β, λ)


6θ2

nπ2 0 − 6θλk
nπ2

0 β(1+β)2

n −λβ(1+β)
n

− 6θλk
nπ2 −λβ(1+β)

n
λ2{π2(1+β)+6k2}

nπ2

 ,
presuming the assumptions of the theorem, we have

h1(θ, β, λ) = nπ2

6θ2 , h2(θ, β, λ) = n
β(1+β)2 and h3(θ, β, λ) = n

λ2 .

(i) For j = 3 and λ ∈ Θ3 = {λ : 0 < λ < ∞}, the conditional reference prior of λ
given θ and β defined by

π3(λ|θ, β) =
{h3(θ, β, λ)}1/2∫∞

0
{h3(θ, β, λ)}1/2dλ

=
1

λ
∫∞

0
λ−1 dλ
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is not proper, consider a nested sequence Θl
3 = (λ : l−1 < λ < l), l = 1, 2, . . . of compact

sets of Θ3 such that

πl3(λ|θ, β) =
1

λ
∫∞
l−1

λ−1 dλ
=

1

2λln(l)
, λ ∈ Θl

3,

is proper density.

(ii) For j = 2 and β ∈ Θ2 = {β : β > 0}, the conditional reference prior of λ, β
given θ is

πl2(β, λ|θ) = πl3(λ|θ, β)
exp{El2[{h2(θ, β, λ)}1/2]}∫∞

0
exp{El2[{h2(θ, β, λ)}1/2]}dβ

; β ∈ Θ2, λ ∈ Θl
3,

where
El2[{h2(θ, β, λ)}1/2] =

∫ l
1/l
ln[ n

β(1+β)2 ]1/2πl3(λ|θ, β) dλ = ln[ n
β(1+β)2 ]1/2.

Substituting this in πl2(β, λ|θ) above, we have

πl2(β, λ|θ) =
1

2λln(l)

β−1/2(1 + β)−1∫∞
0
β−1/2(1 + β)−1 dβ

=
π

2λln(l)(1 + β)β1/2
, β ∈ Θ2, λ ∈ Θl

3.

(iii) For j = 1 and θ ∈ Θl
3 = (θ : θ−1 < θ < l), the joint reference prior of (θ, β, λ), is

πl1(θ, β, λ) = πl2(β, λ|θ) exp{El1[{h1(θ, β, λ)}1/2]}∫ l
1/l
exp{El1[{h1(θ, β, λ)}1/2]} dθ

,

where
El1[{h1(θ, β, λ)}1/2] =

∫∞
0

∫ l
1/l
ln[nπ

2

6θ2 ]1/2πl2(β, λ|θ) dβdλ = [nπ
2

6θ2 ]1/2.

Substituting this in πl1(θ, β, λ) above, we have

πl1(θ, β, λ) =
π

2λln(l)(1 + β)β1/2

θ−1∫ l
1/l
θ−1 dθ

=
π

4{ln(l)}2θλ(1 + β)β1/2
.

Thus reference prior for (θ, β, λ) is

π(θ, β, λ) = lim
l→∞

π
4{ln(l)}2θλ(1+β)β1/2

π

4{ln(l)}2θ0λ0(1+β0)β
1/2
0

=
1

θλ(1 + β)β1/2
,

where (θ0, β0, λ0) is some fixed point in Θ.

(b) To prove this part take (θ1, θ2, θ3) = (θ, λ, β), H(θ, β, λ) = I(θ, β, λ) so that

H−1(θ, λ, β) = S(θ, λβ)


6θ2

nπ2 − 6θλk
nπ2 0

− 6θλk
nπ2

λ2{π2(1+β)+6k2}
nπ2 −λβ(1+β)

n

0 −λβ(1+β)
n

β(1+β)2

n

 ,
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h1(θ, λ, β) = nπ2

6θ2 , h2(θ, λ, β) = n
λ2(1+β) and h3(θ, λ, β) = n

β(1+β) .

(i) For j = 3 and β ∈ Θ3 = {β : 0 < β < ∞}, the conditional reference prior of β
given θ and λ defined by

π3(β|θ, λ) =
{h3(θ, λ, β)}1/2∫∞

0
{h3(θ, λ, β)}1/2 dβ

=
1√

β(1 + β)
∫∞

0

√
β(1 + β) dβ

is not proper, consider a nested sequence Θl
3 = (β : l−1 < β < l), l = 1, 2, . . . of compact

sets of Θ3 = {β : 0 < β <∞} such that

πl3(β|θ, λ) =

(
(β + β2)

)−1/2∫∞
l−1

√
β(1 + β) dβ

=

(
(β + β2)

)−1/2

A1(l)
, β ∈ Θl

3,

is proper, where

A1(l) = ln[
l{2l + 1 + 2

√
l(l + 1)}

2 + l + 2
√

1 + l
].

(ii) For j = 2 and λ ∈ Θl
2 = {λ : l−1 < λ < l}, the conditional reference prior of λ, β

given θ is

πl2(λ, β|θ) =

(
(β + β2)

)−1/2

2λA1(l)ln(l)
, β ∈ Θl

3, λ ∈ Θl
2.

(iii) Finally, for j = 1 and θ ∈ Θl
3 = (θ : l−1 < θ < l), the marginal reference prior of θ

can be obtained as

πl1(θ) =
exp{El1[{h1(θ, λ, β)}1/2]}∫ l

1/l
exp{El1[{h1(θ, λ, β)}1/2]} dθ

,

where
El1[{h1(θ, λ, β)}1/2] =

∫ l
1/l

∫ l
1/l
ln[ πn

1/2

θ(6)1/2
] (β+β2)−1/2

2λA1(lln(l)) dλdβ = ln(πn
1/2

θ61/2 ).

Therefore, the marginal reference prior of θ is

πl1(θ) =
exp{ln(πn

1/2

θ61/2 )}∫ l
1/l
{ln(πn

1/2

θ61/2 )} dθ
=

1

2θln(l)
.

The joint reference prior with respect to the compact space Θl
3 is

πl1(θ, λ, β) = πl2(λ, β|θ)πl1(θ) =
(β + β2)−1/2

2λA1(l)ln(l)

1

2θln(l)
.

Thus, the reference prior for (θ, λ, β) is

π(θ, λ, β) = lim
l→∞

1
4A1(l)ln(l)θλ(1+β)β1/2

1

4A1(l)ln(l)θ0λ0(1+β0)β
1/2
0

=
1

θλ(1 + β)1/2β1/2
,

This completes the proof. �
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Remark 1. The reference prior π(θ, λ, β) is invariant under scale transformation of
the observed data.

P r o o f . First note from the joint density in (7) that Y is independently distributed
from D as Weibull with density

fY (y; θ, λ, β) = θλ(1 + β)yθ−1e−λ(1+β)yθ

and D as Bernoulli with density

fD(d;β) = (1 + β)−1β1−d.

Suppose the original data follow a Weibull distribution with density

fY ′(y
′; θ, λ′, β) = θλ′(1 + β)y′θ−1e−λ

′(1+β)yθ .

Let y = y′/a, so that y′ = ay and dy′/dy = a. The distribution of the transformed
variable is

fY (y; θ, λ′, β) = θ(1 + β)λ′(ay)θ−1e−λ
′(1+β)(ay)θ = λ′(1 + β)aθyθ−1e−λ

′(1+β)aθyθ

or
fY (y; θ, λ, β) = λ(1 + β)yθ−1e−λ(1+β)yθ ,

where λ = λ′aθ. Now suppose that we have constructed the reference prior under the
transformed model fY (y; θ, λ, β) with density

π(θ, λ, β) ∝ 1

θλ(1 + β)1/2β1/2

and want to find the reference prior under the original model fY ′(y
′; θ, λ′, β). Set θ′ = θ,

λ′ = λ/aθ and β′ = β, so that the inverse transformation is θ = θ, λ = λ′/aθ
′

and
β = β′. The Jacobian of transformation is aθ

′
and the reference prior in terms of

original parametrization is

π(θ, λ′, β) =
1

θλ′aθ(1 + β)1/2β1/2aθ
=

1

θλ′(1 + β)1/2β1/2
.

�

4.3. Posterior analysis

The Jeffreys prior in (10) and the reference prior in (13) can be expressed in more general
form as

πb(θ, λ, β) =
1

θλ(1 + β)bβ1/2
, b ≥ 0, (14)

where b = 1 represents the Jeffreys prior and b = 0.5 the reference prior. Combining the
likelihood function in (8) and the joint prior in (14), the joint posterior distribution of
(θ, λ, β) given data (y, d) can be written as

π(θ, λ, β|y, d) ∝ θnλn
n∏
i=1

yθ−1
i e−(1+β)λ

∑n
i=1 y

θ
i βn−

∑n
i=1 di × 1

θλ(1 + β)bβ1/2
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∝ θn−1λn−1eθ
∑n
i=1 lnyie−(1+β)λ

∑n
i=1 y

θ
i βn−

∑n
i=1 di−0.5 1

(1 + β)b
,

∝ θn−1eθ
∑n
i=1 lnyi

(
(1 + β)

∑n
i=1 y

θ
i

)n
(

(1 + β)
∑n
i=1 y

θ
i

)nλn−1e−(1+β)λ
∑n
i=1 y

θ
i
βn−

∑n
i=1 di−0.5

(1 + β)b
,

∝ θn−1eθ
∑n
i=1 lnyi

(
∑n
i=1 y

θ
i )n

(
(1 + β)

n∑
i=1

yθi

)n
λn−1e−(1+β)λ

∑n
i=1 y

θ
i
βn−

∑n
i=1 di−0.5

(1 + β)b+n
,

∝ g1

(
n,−

n∑
i=1

lnyi

)
h(θ)g2

(
n, (1+β)

n∑
i=1

yθi

)
b11

( n∑
i=1

di+ b− 1

2
, n−

n∑
i=1

di+
1

2

)
, (15)

where

g1

(
n,−

n∑
i=1

lnyi

)
=

(−
∑n
i=1 lnyi)

n

Γ(n)
θn−1eθ

∑n
i=1 lnyi ,

g2

(
n, (1 + β)

n∑
i=1

yθi

)
=
{(1 + β)

∑n
i=1 y

2
i }n

Γ(n)
λn−1e−(1+β)λ

∑n
i=1 y

θ
i ,

b11

( n∑
i=1

di + b− 1

2
, n−

n∑
i=1

di +
1

2

)
=

Γ(n+ b)βn−
∑n
i=1 di+0.5(1 + β)−n−b

Γ(
∑n
i=1 di + b− 0.5)Γ(n−

∑n
i=1 di + 0.5)

and

h(θ) =

( n∑
i=1

yθi

)−n
.

We see from (15) that it is possible to use the importance sampling procedure to generate
the posterior samples and to obtain the Bayes estimates and then in turn to obtain the
HPD credible intervals. We propose the following algorithm for this purpose assuming
there exists at least one observation non-censored and

∑n
i=1 lnyi < 0. Dividing data

values by their maximum will put all the observations in interval (0, 1] which guaranteed
that

∑n
i=1 lnyi < 0.

Algorithm 2

(i) Generate β(1) ∼ b11

(∑n
i=1 di + b− 0.5, n−

∑n
i=1 di = 0.5

)
.

(ii) Generate θ(1) ∼ g1

(
n, −

∑n
i=1 lnyi

)
.

(iii) Generate λ(1)|β(1), θ(1) ∼ g2

(
n, (1 + β(1))

∑n
i=1 y

θ(1)
i

)
.

(iv) Repeat steps (i-iii) M times to obtain
(
θ(1), λ(1), β(1)

)
,· · · ,

(
θ(M), λ(M), β(M)

)
.
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(v) The Bayes estimate of any inference function, say u(θ, λ, β), with respect to squared
error loss function is

û(θ, λ, β) =

∑M
j=1 u(θ(j), λ(j), β(j))h(θ(j))∑M

j=1 h(θ(j))
.

The Bayes estimate of û(θ, λ′, β) with reference to Remark 1 can be obtained as

û′(θ, λ′, β) =

∑M
j=1 u(θ(j), λ′(j), β(j))h(θ(j))∑M

j=1 h(θ(j))
,

where

λ′(j) =
λ(j)

aθ(j)
; j = 1, 2, 3, . . . ,M.

The HPD credible interval for u(θ, λ, β) can be obtained using the above generated im-

portance sampling procedure as follows: Let wj = h(θ(j))

h(
∑M
j=1 θ

(j))
and uj = u(θ(j), λ(j), β(j)).

Arrange (u1, w1),· · · , (uM , wM ) as (u(1), w(1)),. . ., (u(M), w(M)), where u(1) ≤ · · · ≤
u(M) and w(j)’s are not ordered but are associated with u(j)’s. Construct all the

100(1 − α)% credible intervals for u(θ, λ, β) as
(
u[Mk], u[Mk+1−α]

)
for k = w(1), w(1) +

w(2), · · · ,
∑M1−α
j=1 w(j), where [Mp] is the integer satisfying

∑Mp

j=1 w(j) ≤ p <
∑Mp+1
j=1 w(j).

Now the HPD credible interval for u(θ, λ, β) is the interval which has the shortest length.

5. SIMULATION

In this section we perform a simulation study to observe the behaviour of Bayes es-
timators and to compare with the ML estimators for different sample sizes, different
parameters values and for different censoring rates. To control the non-censoring rate
to some extent, we used the following mechanism. The generated sample is accepted
only if r − 2 ≤

∑n
i=1 di ≤ r + 2 for n = 20, r − 4 ≤

∑n
i=1 di ≤ r + 4 for n = 40 and

if r − 6 ≤
∑n
i=1 di ≤ r + 6 for n = 60, where r = n ∗ p and p = (1 + β)(−1), otherwise

rejected. We compute the average values of Bayes estimates and corresponding mean
square errors, ML estimates and corresponding mean square errors, average lengths of
95% confidence/credible intervals and corresponding coverage percentages based on 1000
importance samples. The results are reported in Tables 1 - 6. It is observed that as the
sample size increases the biases, MSEs and lengths of confidence intervals of the estima-
tors decrease. The Bayes estimators perform slightly better than the ML estimators for
small sample sizes and for large sample sizes their behaviour is approximately similar.
The Bayes estimators of the shape and scale parameters θ and λ perform better than the
corresponding ML estimators in terms of biases and MSEs. However, the ML estimator
of censoring parameter β performs better than the corresponding Bayes estimators. It
is further seen that the Bayes estimators of θ and λ based on reference prior perform
slightly better than the corresponding Bayes estimators based on Jeffreys prior in terms
of biases and MSEs. However, the Bayes estimator of the censoring parameter β based
on Jeffreys prior performs better than the corresponding Bayes estimator based on refer-
ence prior. When comparing the estimators based on the lengths of confidence/credible
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intervals and the corresponding coverage percentages, it is noted that the coverage per-
centages depend on the corresponding lengths in the sense that greater the length, the
better the coverage percentage. It is very difficult to draw a general rule regarding the
lengths and coverage percentages as Bayes estimators and ML estimators have different
behaviour. However, it can be said that ML estimators have lager confidence interval
lengths with higher coverage and Bayes estimators have smaller credible interval lengths
with smaller coverage.

The same model is analysed in Ajmal et al. [2]; however, the paper suffers from
the following two major faults pointed out by the peers. First, the data analysed by
the authors clearly do not satisfy the assumptions of the model, namely proportionality
of censoring; this violation is eminent in Chemotherapy and Radiation group where
censored observations are fully concentrated on the right tale. Second, the authors
investigated the appropriateness of the model using the goodness-of-fit test proposed by
Hollander and Proschan [12]. This test certainly does not test the fit with proportionality
assumption (that most likely does not apply). But nor this test can be employed to verify
assumption on the Weibull distribution of the lifetimes only, because the data are used
twice (once when fitting the model and once in the test) while the test is designed with
the model distribution fixed, not estimated. Hence resulting p-values are wrong.

6. REAL DATA ANALYSIS

In this section, we analyze a real data set from [9]. The data belongs to Group IV of the
Primary Biliary Cirrhosis (PBC) liver study conducted by Mayo Clinic. The event of
interest is the time to death of PBC patients. The data on the survival times (in days)
of 36 patients who had the highest category of bilirubin are 400, 77, 859, 71, 1037, 1427,
733, 334, 41, 51, 549, 1170, 890, 1413, 853, 216, 1882+, 1067+, 131, 223, 1827, 2540,
1297, 264, 797, 930, 1329+, 264, 1350, 1191, 130, 943, 974, 790, 1765+, 1320+. The
observations with ‘+’ indicate censored times. For computational ease, each observation
is divided by 1000. To move further, we first apply the goodness-of-fit test proposed by
Henze [11] to check whether the data at hand can be analyze or not by assuming the
proportional hazards model of random censorship. The test is based on the number of
runs (Rn), sample size and the number of uncensored observations (Nn). The p-value
of the test is given by

p(j, l) = P [Rn ≤ j|min(Nn, n−Nn) = l],

where

P [Rn = 2s|Nn = k] =
2
(
k−1
s−1

)(
n−k−1
s−1

)(
n
k

)
and

P [Rn = 2s+ 1|Nn = k] =

(
k−1
s−1

)(
n−k−1
s−1

)
+
(
k−1
s

)(
n−k−1
s−1

)(
n
k

) ,

see [11] for further detail. In our case n = 36, n−Nn = 5, Rn = 9 and

p(9, 5) = P [Rn ≤ 9|(n−Nn) = 5] =
20n(n3 − 15n2 + 80n− 150)

n(n− 1)(n− 2)(n− 3)(n− 4)
= 0.4766.
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Based on the observed p-value, we can say that the proportional hazards model holds.
Now to fit the proposed model we compute the ML estimates and the Bayes estimates
under Jeffreys and reference priors and the results are reported in Table 7. To further
investigate the goodness of fit of the Weibull random censorship model, we plot the
Kaplan–Meier empirical survival estimates and the fitted survival function in Figure 1.
The figure shows a good agreement between the Kaplan–Meier survival curve and the
fitted Weibull survival functions.

Method n θ̂ Length λ̂ Length β̂ Length
ML 20 0.5400 0.3736 1.0890 1.3937 1.1327 2.0669

(0.0129) (95) (0.1705) (95) (0.3948) (93)
Jeffreys 0.5304 0.3202 1.0651 1.1885 1.262 2.0558

(0.0115) (90) (0.1434) (92) (0.5913) (92)
Reference 0.5301 0.3182 1.0385 1.1784 1.3559 2.2638

(0.0111) (90) (0.1327) (91) (0.8504) (92)
ML 40 0.5179 0.2518 1.0341 0.9263 1.0687 1.3452

(0.0048) (95) (0.0651) (95) (0.1312) (93)
Jeffreys 0.509 0.2013 1.0223 0.8058 1.1255 1.2615

(0.0043) (87) (0.0604) (92) (0.1638) (91)
Reference 0.5087 0.2011 1.0063 0.7937 1.1557 1.309

(0.0043) (86) (0.0574) (91) (0.1814) (92)
ML 60 0.5125 0.2031 1.0298 0.7479 1.0319 0.0551

(0.0029) (96) (0.0405) (95) (0.0821) (95)
Jeffreys 0.5045 0.1518 1.0202 0.6306 1.0681 0.9495

(0.0028) (84) (0.0379) (90) (0.0923) (88)
Reference 0.5032 0.1522 1.0069 0.6237 1.0901 0.9717

(0.0026) (82) (0.0353) (89) (0.107) (90)

Tab. 1. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 0.5, λ = 1 and β = 1.

Method n θ̂ Length λ̂ Length β̂ Length
ML 20 1.6280 1.1276 1.0890 1.3969 1.1231 2.0401

(0.1128) (95) (0.1686) (94) (0.3423) (95)
Jeffreys 1.5920 0.9541 1.0592 1.1909 1.2512 2.0514

(0.0963) (89) (0.1268) (91) (0.5251) (93)
Reference 1.5944 0.9560 1.0360 1.1841 1.3410 2.2380

(0.0938) (89) (0.1297) (90) (0.7025) (94)
ML 40 1.5541 0.7555 1.0380 0.9258 1.0575 1.3319

(0.0398) (96) (0.0650) (95) (0.1359) (92)
Jeffreys 1.5303 0.6120 1.0208 0.7972 1.1155 1.2599

(0.0380) (88) (0.0573) (91) (0.1696) (91)
Reference 1.5290 0.6070 1.0100 0.8011 1.1453 1.3025

(0.0363) (88) (0.0571) (90) (0.1885) (92)
ML 60 1.5453 0.6118 1.0318 0.7502 1.0340 1.0571

(0.0284) (96) (0.0404) (95) (0.0811) (96)
Jeffreys 1.5163 0.4512 1.0196 0.6330 1.0678 0.9514

(0.0268) (82) (0.0372) (90) (0.0958) (86)
Reference 1.5154 0.4520 1.0095 0.6322 1.0929 0.9779

(0.0256) (80) (0.0365) (90) (0.1097) (90)

Tab. 2. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 1.5, λ = 1 and β = 1.
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Method n θ̂ Length λ̂ Length β̂ Length
ML 20 2.6929 1.8601 1.0943 1.3889 1.0985 1.9936

(0.2911) (96) (0.1642) (95) (0.3211) (95)
Jeffreys 2.6479 1.6051 1.0738 1.1996 1.2242 1.9967

(0.2570) (91) (0.1440) (91) (0.4795) (93)
Reference 2.6463 1.6036 1.0414 1.1895 1.3106 2.1673

(0.2501) (92) (0.1293) (90) (0.6270) (93)
ML 40 2.5927 01.2606 1.0467 0.9383 1.0701 1.3487

(0.1257) (94) (0.0671) (94) (0.1437) (93)
Jeffreys 2.5479 0.9969 1.0325 0.8090 1.1271 1.2668

(0.1148) (85) (0.0607) (90) (0.1746) (91)
Reference 2.5441 0.9970 1.0148 0.8041 1.1610 1.3244

(0.1152) (85) (0.0565) (90) (0.2010) (93)
ML 60 2.5554 1.0133 1.0333 0.7497 1.0240 1.0458

(0.0778) (94) (0.0396) (95) (0.0713) (95)
Jeffreys 2.5031 0.7416 1.0219 0.6322 1.0546 0.9441

(0.0742) (82) (0.0380) (90) (0.0813) (89)
Reference 2.5014 0.7497 1.0115 0.6373 1.0757 0.9698

(0.0682) (80) (0.0352) (92) (0.0850) (91)

Tab. 3. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 2.5, λ = 1 and β = 1.

Method n θ̂ Length λ̂ Length β̂ Length
ML 20 0.5391 0.3735 1.0689 1.1595 0.5364 0.9995

(0.0114) (96) (0.1216) (94) (0.0789) (94)
Jeffreys 0.5358 0.3486 1.0448 1.0608 0.6002 1.0014

(0.0111) (92) (0.1063) (92) (0.1047) (92)
Reference 0.5353 0.3494 1.0323 1.0626 1.6289 1.0584

(0.0110) (92) (0.1081) (92) (0.1272) (92)
ML 40 0.5176 0.2519 1.0346 0.7908 0.5251 0.6889

(0.0047) (95) (0.0474) (94) (0.0322) (95)
Jeffreys 0.5160 0.2385 1.0225 0.7424 0.5558 0.6763

(0.0047) (92) (0.0461) (92) (0.0383) (94)
Reference 0.5155 0.2385 1.0152 0.7450 0.5664 0.6907

(0.0046) (93) (0.0431) (93) (0.0410) (94)
ML 60 0.5109 0.2027 1.0197 0.6340 0.5133 0.5506

(0.0028) (96) (0.0265) (96) (0.0191) (94)
Jeffreys 0.5096 0.1939 1.0121 0.6063 0.5332 0.5380

(0.0028) (94) (0.0256) (94) (0.0213) (96)
Reference 0.5094 0.1940 1.0077 0.6039 0.5401 0.5479

(0.0028) (94) (0.0250) (94) (0.0224) (96)

Tab. 4. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 0.5, λ = 1 and

β = 0.5.
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Method n θ̂ Length λ̂ Length β̂ Length
ML 20 1.0807 0.7482 1.0595 1.1500 0.5449 1.0130

(0.0481) (95) (0.1093) (94) (0.0799) (94)
Jeffreys 1.0738 0.7012 1.0383 1.0585 0.60945 1.0170

(0.0473) (91) (0.1012) (91) (0.1063) (93)
Reference 1.0751 0.6994 1.0223 1.0498 0.6371 1.0725

(0.0480) (91) (0.0966) (91) (0.1273) (93)
ML 40 1.0305 0.5008 1.0313 0.7845 0.5110 0.6728

(0.0180) (95) (0.0379) (95) (0.0277) (96)
Jeffreys 1.0276 0.4784 1.0197 0.7422 0.5402 0.6623

(0.0184) (93) (0.0359) (94) (0.0320) (95)
Reference 1.0267 0.4768 1.0135 0.7444 0.5511 0.6788

(0.0180) (93) (0.0360) (94) (0.0344) (94)
ML 60 1.0157 0.4032 1.0183 0.6329 0.5132 0.5508

(0.0118) (94) (0.0274) (94) (0.0219) (94)
Jeffreys 1.0129 0.3850 1.0112 0.6047 0.5328 0.5371

(0.0117) (94) (0.0264) (92) (0.0241) (94)
Reference 1.0127 0.3837 1.0074 0.6036 0.5389 0.5486

(0.0117) (92) (0.0266) (92) (0.0255) (94)

Tab. 5. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 1, λ = 1 and β = 0.5.

Method n θ̂ Length λ̂ Length β̂ Length
ML 20 1.6196 1.1204 1.0718 1.1713 0.5551 1.0281

(0.1081) (96) (0.1203) (94) (0.0763) (94)
Jeffreys 1.6131 1.0465 1.0488 1.0750 0.6191 1.0257

(0.1200) (92) (0.1083) (92) (0.1014) (94)
Reference 1.6150 1.0468 1.0314 1.0628 0.6484 1.0826

(0.1170) (92) (0.1027) (91) (0.1217) (94)
ML 40 1.5609 0.7603 1.0406 0.7927 0.5137 0.6762

(0.0457) (95) (0.0474) (95) (0.0319) (94)
Jeffreys 1.0276 0.4784 1.0197 0.7422 0.5402 0.6623

(0.0184) (93) (0.0359) (94) (0.0320) (95)
Reference 1.5558 0.7164 1.0204 0.7450 0.5553 0.6806

(0.0463) (92) (0.0429) (93) (0.0397) (93)
ML 60 1.5395 0.6100 1.0225 0.6364 0.5172 0.5542

(0.0251) (96) (0.0302) (94) (0.0209) (94)
Jeffreys 1.5374 0.5827 1.0145 0.6073 0.5376 0.5450

(0.0247) (92) (0.0285) (92) (0.0232) (94)
Reference 1.5349 0.5836 1.0094 0.6081 0.5442 0.5523

(0.0247) (94) (0.0282) (92) (0.0246) (94)

Tab. 6. Average estimates and corresponding MSEs (in parentheses),

average 95% confidence/credible interval lengths and corresponding

coverage percentages (in parentheses) when θ = 1.5, λ = 1 and

β = 0.5.
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Method θ̂ λ̂ β̂ λ̂′

ML 1.296 0.946 0.161 0.000
5 5 3 122

Jeffreys 1.298 0.929 0.181 0.000
6 3 1 229

Reference 1.298 0.934 0.180 0.000
1 5 0 226

Tab. 7. The Bayesian and classical estimates of the parameteres for

the real data.

Fig. 1. Kaplan–Meier survival curve and the fitted survival functions

for the real data set.

APPENDIX

R code
Generate sample of size n as
for (i in 1: n)
{
x[i] < − rweibull(1, shape=theta, scale=1/lambda ˆ (1/theta))
t[i] < − rweibull(1, shape=theta, scale=1/(beta*lambda) (1/theta))
d[i] < − if(x[i]¡t[i]) 1 else 0
y[i] < − d[i]*x[i]+(1-d[i])*t[i]
}
sd < − sum(d)
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sly < − sum(-log(y))
For ML estimation, use R function to obtain MLEs
fn < − function(p) - (n*log(p[1]) + n*log(p[2])+(n-sum(d))
*log(p[3])- p[2]*(1+p[3])*sum(y p[1])+(p[1]-1)*sum(log(y)))
out < − nlm(fn, p = c(1.5, 0.8, 0.7), hessian = TRUE)
MLEs < − out estimate
For importance samples, use the algorithm
library(GB2)
for (k in 1:1000)
{
p3[k] < − rbeta(1, shape1=(b+sd-0.5), shape2=(n-sd+0.5))
p1[k] < − rgamma(1, shape=n, scale=1/sly)
w[k] < − sum(y p1[k])
p2[k] < −rgamma(1, shape=n, scale=1/((1+p3[k])*w[k]))
wf[k] < − (w[k]) -n
}
Obtain the Bayes estimates from
Btheta < − sum(p1*wf)/sum(wf)
Blambda < − sum(p2*wf)/sum(wf)
Bbeta < − sum(p3*wf)/sum(wf)
End of R code
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