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NON-STATIONARY DEPARTURE PROCESS
IN A BATCH-ARRIVAL QUEUE WITH FINITE BUFFER
CAPACITY AND THRESHOLD-TYPE CONTROL
MECHANISM

Wojciech M. Kempa and Dariusz Kurzyk

Non-stationary behavior of departure process in a finite-buffer MX/G/1/K-type queueing
model with batch arrivals, in which a threshold-type waking up N -policy is implemented, is
studied. According to this policy, after each idle time a new busy period is being started
with the Nth message occurrence, where the threshold value N is fixed. Using the analytical
approach based on the idea of an embedded Markov chain, integral equations, continuous total
probability law, renewal theory and linear algebra, a compact-form representation for the mixed
double transform (probability generating function of the Laplace transform) of the probability
distribution of the number of messages completely served up to fixed time t is obtained. The
considered queueing system has potential applications in modeling nodes of wireless sensor
networks (WSNs) with battery saving mechanism based on threshold-type waking up of the
radio. An illustrating simulational and numerical study is attached.

Keywords: departure process, finite-buffer queue, N -policy, power saving, transient state,
wireless sensor network (WSN)

Classification: 60K25, 90B22

1. INTRODUCTION

Queueing models with a finite buffer capacity for accumulating incoming messages are
widely used nowadays. First of all, they can be used in the analysis of the message
processing process in computer and telecommunication network nodes (such as Internet
network routers, base stations in wireless communication, etc.), in which messages are
naturally queued and delays occur. This is a consequence of the fluctuation of the in-
put stream intensity (most often being a superposition of streams coming from many
sources), as well as the speed of message processing, which depends on technical parame-
ters of the switch and/or the throughput of the output link. Particularly noteworthy are
queueing models in which the mechanism of managing the process of restarting the ser-
vice station after a period of inactivity is introduced, or other discipline, which results in
temporary suspension of messages processing despite their presence in the accumulating
buffer. Various types of mechanisms limiting the access to service stations for some time

DOI: 10.14736/kyb-2022-1-0082

http://doi.org/10.14736/kyb-2022-1-0082


Departure process in a finite-buffer queue with threshold-type control mechanism 83

are used in modeling, among others energy saving mode in wireless communication, e. g.
wireless sensor networks (WSNs). The extensive use of sensor networks to monitor the
state of the natural environment, e. g. detecting the risk of fire, controlling the state of
air pollution, water pollution, etc. is connected with the need for trouble-free operation
of the network for long time. On the other hand, sensors that are powered by batteries
are often placed in hard-to-reach places where battery replacement can be problematic.
In the queueing theory, many models have been proposed in which the service station
remains for some time inaccessible to handling the input traffic, despite the potential
presence of messages in the accumulating buffer. In particular, these are mechanisms
like single and multiple vacations, in which the server takes, respectively, exactly one
or a number of repeated vacations during which the processing of messages is blocked;
T -policy in which the service station is being activated T time units after completing
the last busy period; and a threshold-type N -policy in which the server restarts the
processing if there are N messages present in the system. In [7], and [31] one can find
detailed studies devoted to various types of models with vacation policies.

Queueing models with a control mechanism based on the N -policy were initiated
by the fundamental paper [32]. Currently, they have extensive literature. However,
analytical results concern mainly the stationary state of the system. Generally, there
is quite a lack of new results for transient state of such systems. A lot of publications
consider systems with the N -policy implemented with another vacation mechanism, like
e. g. single or multiple vacation policy. One of the first analysis of the batch-arrival
system with N -policy can be found in [22] (see also [24]), where the decomposition
property and the optimal threshold value N under a linear cost structure where derived
for the MX/G/1-type queue. Results for similar system but with additional server
repeated vacations (multiple vacation policy) are obtained in [23] and [25]. For more
complex modifications of the classical N -policy control mechanism applied for infinite-
buffer queues see [3] and [4], where the grand vacation process was considered in the
case of single and batch Poisson arrivals, respectively, and [2, 11] and [21], where setup
times were added. The Mx/G/1-type queueing system with two phases of heterogeneous
service under N -policy was studied in [5]. Analytical results about finite-buffer queueing
models with the N -policy control mechanism can be found e. g. in [30] and [33], where
the M/G/1/N and GI/M/1/N -type systems were analyzed, respectively. In [12] a
recursive method for the G/M/1 queueing system with finite capacity operating under
the N -policy is proposed.

One can find in [10] and [27] an interesting application of the queueing model with the
N -policy in modeling the energy saving control mechanism in wireless networks. In the
approach, after each busy period (the period of uninterrupted transmission) the radio
transmitter/receiver of the network node (e. g. a sensor in wireless sensor network) is
being turned off, and becomes active if the number of messages accumulated and waiting
in the buffer queue reaches the fixed level N. One can find new transient-state results
for an infinite-buffer queueing model in [13], [14] and [18]. Queue-size distribution in
the model with batch Poisson arrivals is studied in [16] and [17], where a threshold-type
N -policy and the single vacation policy is implemented, respectively (see also [16]). The
departure counting process is analyzed in [15] and [19] in the system with infinite and
finite buffer capacity, respectively.
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In this paper, we investigate the MX/G/1/K-type queue with batch arrivals and the
N -policy in the transient state. We are interested in departure counting process that at
fixed time t takes on a random value equal to the number of messages (jobs, packets,
customers etc.) completely processed up to time t. As it seems, the departure process is
a stochastic characteristic rather occasionally analyzed. However, as it was noted in [28],
the investigation of the transient departure process is an integral part of analyzing time-
dependent queues in queueing networks. Indeed, the composite nodal arrival process
rather rarely can be approximated by a concrete probability distribution or family of
distributions. Moreover, the approximation of the arrival stream to a “transitional”
network node by using a classical Poisson process can lead to inaccurate results (see
e. g. [9]). Hence, using the transient departure process as the approximate composite
arrival process to downstream node(s) in a network of tandem queues seems to be a good
solution of the problem. In real network devices, the input stream contains messages
of different sizes measured in bytes, therefore, considering the group arrivals allows for
better modeling the actual input stream. Finally, we investigate the system in the
transient (non-stationary state). As it seems, in some situations transient analysis is
recommended or is even necessary. In particular, it can be used

— in the case of the observation of the system just after the starting moment, when
the steady state is not reached yet;

— after the application of a control mechanism that destabilizes the system operation
temporarily;

— in the situation of frequently changing arrival intensity; e. g. the offered IP traffic
entering the Internet node: only on short time periods the input flow can be well
approximated by a Poisson process with constant rate;

— in wireless sensor networks in which the traffic load is often not very large, hence
the stabilization of the system is relatively long.

In this article, we study the transient departure process in the considered queueing
model, applying analytical approach based on the paradigm of an embedded Markov
chain, integral equations, continuous total probability law, renewal theory and linear
algebra. The departure process is analyzed separately on a single buffer loading period,
during which the queue reaches the prefixed levelN, and on a busy period. The main the-
oretical contribution of the paper is a compact-form representation for the mixed double
transform (probability generating function of the Laplace transform) of the probability
distribution of the number of messages completely served up to fixed time t (departure
process). Numerical utility of analytical formulae is visualized in numerical examples
motivated by the operation of a hypothetical network node. Two different simple prob-
ability distributions of batch sizes are considered. The impact of the threshold level N
and the offered load % on the mean number of departures up to fixed time t and on the
transient loss ratio and the power saving ratio is examined.

The remaining part of the paper is organized as follows. In the next Section 2, the
considered queueing model is described mathematically in details. In Section 3, we find
the formula for the Laplace transform of the departure process during the buffer loading
period and give the representation for the probability distribution of the duration of
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this period. In Section 4, we analyze the departure process during a single busy period.
Section 5 contains analytical results for the busy period in the considered model. The
representations for probability distributions of its duration and the number of messages
completely processed during the busy period are derived there. The main result, namely
the formula for the mixed double transform of the departure process is presented in
Section 6. Section 7 contains numerical examples and the last Section 8 contains a short
conclusion.

2. QUEUEING MODEL

In this article, we deal with the MX/G/1/K-type queueing model with batch arrivals
and finite buffer capacity. The arriving batches occur according to a Poisson process
with rate λ. Sizes of successive batches are independent random variables with the
same probability mass function, and pk denotes the probability that an arriving batch
consists of k messages,

∑∞
k=1 pk = 1. Messages are processed individually with a CDF

(=cumulative distribution function) F (·) of the processing time, according to the FIFO
service discipline. However, the results obtained in the paper are independent on the
order of processing of incoming messages, i. e. they are of a more general nature. By
f(·) we denote the LST (=Laplace–Stieltjes transform) of the CDF F (·). The number
of messages present simultaneously in the system is bounded by a non-random value K,
i. e. we have K−1 places in the accumulating buffer and one place at the service station.

It is assumed that the system starts the evolution being empty and the service process
is being initialized simultaneously with the arrival of batch consisting the Nth message
(threshold-type waking up N -policy), where 1 ≤ N ≤ K is fixed. After each idle time
a new busy period begins in the same way, namely it is preceded by a buffer loading
period during which messages accumulate in the buffer up to the level N. During a busy
period all accumulated messages are processed, one by one. Evidently, each busy period
begins with a number of messages being less than or equal to K due to a finite buffer
capacity, namely until the number of messages present in the system equals K (the
buffer is saturated and the service station “seat” is occupied) all next arriving messages
are lost. Hence, the operation of the system can be observed during successive buffer
loading periods L1, L2, . . . followed by busy periods B1, B2, . . . , during which the system
becomes empty. By virtue of the memoryless property of exponential distribution of
interarrival times, start epochs of successive buffer loading periods and busy periods are
Markov moments, so (Lk) and (Bk), k = 1, 2, . . . , are sequences of totally independent
random variables with the same CDFs in each sequence considered separately. In the
article we usually identify a particular period in the evolution of the system (a buffer
loading or busy period) with its duration.

In the article, δi,j stands for the Kronecker delta function and pj∗i denotes the ith
term of the j-fold convolution of the sequence (pk) with itself, namely

p0∗i = δi,0, pj∗i =

i∑
k=0

pi−kp
(j−1)∗
k , j ≥ 1.

So, pj∗i expresses the probability that exactly i messages arrive in j batches.
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Denote by h(t) the number of messages completely processed until the moment t. The
stochastic process {h(t), t ≥ 0} is called the departure process. We are interested in the
closed-form representation for the double transform of the probability P{h(t) = m}, i. e.
for the functional

ĥ(s, z)
def
=

∞∑
m=0

zm
∫ ∞
0

e−stP{h(t) = m} dt, (1)

where |z| < 1 and Re(s) > 0.
In the next sections, using the idea of embedded Markov chain and the continuous

version of the total probability law, and applying integral equations and linear algebra,
we derive the formulae for the mixed double transform of h(t) on a single buffer loading
period and during a busy period. Next we obtain the representation for the PGF (=prob-
ability generating function) of the number of messages completely processed during the
busy period, conditioned by the initial buffer state. Finally, using the renewal-theory
approach, we get the formula for ĥ(s, z) defined in (1).

3. DEPARTURE PROCESS DURING BUFFER LOADING PERIOD

In this section, we analyze the behavior of departure process h(t) on the first buffer
loading period L1 that starts at time t = 0. Note that the following equation is true:

P{
(
h(t) = m

)
∩ (t ∈ L1)} = δm,0

N−1∑
i=0

i∑
j=0

pj∗i
(λt)j

j!
e−λt. (2)

Moreover, observe that
∑N−1
i=0

∑i
j=0 p

j∗
i

(λt)j

j! e−λt corresponds to the probability that
L1 > t.

Introducing the following notation:

ĥL(s, z)
def
=

∞∑
m=0

zm
∫ ∞
0

e−stP{
(
h(t) = m

)
∩ (t ∈ L1)} dt, (3)

where |z| < 1 and Re(s) > 0, leads to

ĥL(s, z) = ĥL(s) =

N−1∑
i=0

i∑
j=0

pj∗i

∫ ∞
0

e−(s+λ)t
(λt)j

j!
dt =

N−1∑
i=0

i∑
j=0

pj∗i
λj

(λ+ s)j+1
. (4)

Besides, since each buffer loading period Lk, k ≥ 1, completes simultaneously with the
arrival of the batch consisting the Nth message, we obtain the following formula for the
LST of the CDF of a single buffer loading period duration:

d̂L(s)
def
=

∫ ∞
0

e−st dP{Lr < t} =

N∑
k=1

N−1∑
i=0

p
(k−1)∗
i

∞∑
j=N−i

pj

∫ ∞
0

e−st
λk

(k − 1)!
tk−1e−λt dt

=

N∑
k=1

(
λ

λ+ s

)k N−1∑
i=0

p
(k−1)∗
i

∞∑
j=N−i

pj , (5)

where k denotes here the number of the batch in which the Nth message arrives.
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4. DEPARTURE PROCESS DURING BUSY PERIOD

In this section we investigate the departure process during the first busy period B1 and
find the formula for the double mixed transform of the probability distribution of h(t),
conditioned by the number of messages accumulated in the buffer queue at the starting
moment t = 0.

Assume temporarily that the system may initialize the busy period with any possible
number of messages 1 ≤ n ≤ K. Introduce the following notation for the conditional
probability distribution of departure process h(t) :

HB
n (t,m)

def
= P{

(
h(t) = m

)
∩
(
t ∈ B1

)
|X(0) = n}, (6)

where t > 0, 0 ≤ m ≤ K and X(t) denotes the number of messages present in the
system at the moment t. Since successive departure epochs are Markov moments in the
M/G/1-type model (see e. g. [6]), then applying the continuous total probability law
with respect to the first departure moment y after t = 0, we obtain the following system
of integral equations:

HB
1 (t,m) =I{m ≥ 1}

(
K−2∑
i=1

∫ t

0

i∑
j=0

pj∗i
(λy)j

j!
e−λyHB

i (t− y,m− 1) dF (y)

+

∞∑
i=K−1

i∑
j=0

∫ t

0

pj∗i
(λy)j

j!
e−λyHB

K−1(t− y,m− 1) dF (y)

)
+ F (t)δm,0, (7)

and, for 2 ≤ n ≤ K,

HB
n (t,m) =I{m ≥ 1}

(
K−n−1∑
i=0

i∑
j=0

∫ t

0

pj∗i
(λy)j

j!
e−λyHB

n+i−1(t− y,m− 1) dF (y)

+

∞∑
i=K−n

i∑
j=0

∫ t

0

pj∗i
(λy)j

j!
e−λyHB

K−1(t− y,m− 1) dF (y)

)
+ F (t)δm,0. (8)

The notation I{A} stands for the indicator of random event A and F (t)
def
= 1− F (t).

Comment shortly the formulae (7)–(8). Indeed, if the first message leaves the system
at time y < t and the number of messages which arrive until y equals 0 ≤ i ≤ K−n−1,
then the system “renews” the operation at time y with exactly n+i−1 messages present
and must serve m−1 messages during time period of length t−y (the first summand on
the right side of (7)–(8)). If the system becomes overloaded before y then after departure
at time y, then it contains exactly K−1 messages (second summand on the right side of
(7)–(8)). If the first departure occurs after t (third summand) then the only possibility
is m = 0.

After introducing the following notations:

ĥBn (s, z)
def
=

∞∑
m=0

zm
∫ ∞
0

e−stHB
n (t,m) dt (9)
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and

ai(s, z)
def
= z

∫ ∞
0

e−(s+λ)t
i∑

j=0

pj∗i
(λt)j

j!
dF (t), (10)

where Re(s) > 0, |z| < 1, we can transform the system (7)–(8) as follows:

ĥB1 (s, z) =

K−2∑
i=1

ai(s, z)ĥ
B
i (s, z) + ĥBK−1(s, z)

∞∑
i=K−1

ai(s, z) +
1− f(s)

s
, (11)

ĥBn (s, z) =

K−n−1∑
i=0

ai(s, z)ĥ
B
n+i−1(s, z) + ĥBK−1(s, z)

∞∑
i=K−n

ai(s, z) +
1− f(s)

s
, (12)

where 2 ≤ n ≤ K. Let us note that ai(s, z) is the Laplace Transform (LT for short) of
the probability that i messages enter the system during a service time, multiplied by z.

To obtain the solution of the system (11)–(12) in a compact form we must firstly
rewrite it in another way.

Denoting

gn(s, z) = ĥBK−n(s, z), 0 ≤ n ≤ K − 1, (13)

we transform the equation (12) as follows:

n∑
i=−1

ai+1(s, z)gn−i(s, z)− gn(s, z) = ϕn(s, z), (14)

where 0 ≤ n ≤ K − 2, and

ϕn(s, z)
def
= an+1(s, z)g0(s, z)− g1(s, z)

∞∑
i=n+1

ai(s, z)−
1− f(s)

s
. (15)

Similarly, from (11) we get

gK−1(s, z) =

K−2∑
i=1

ai(s, z)gK−i(s, z) + g1(s, z)

∞∑
i=K−1

ai(s, z) +
1− f(s)

s
. (16)

In [20] the following linear system with infinite number of equations was considered:

n∑
i=−1

ai+1gn−i − gn = ϕn, n ≥ 0, (17)

where (gn)∞n=0 is the sequence of unknowns, and (an)∞n=0 and (ϕn)∞n=0 are, respectively,
the sequences of coefficients and free terms, where a0 6= 0. As it was proved in [20], each
solution of (17) can be written in the following form:

gn = CRn+1 +

n∑
i=0

Rn−iϕi, n ≥ 0, (18)



Departure process in a finite-buffer queue with threshold-type control mechanism 89

where C is a constant and the sequence (Rn)∞n=0, called potential, is defined recursively
by means of coefficients of the system, namely

R0 = 0, R1 = a−10 , Rn+1 = R1

(
Rn −

n∑
i=0

ai+1Rn−i
)
, (19)

where n ≥ 1.
Comparing (14) to (17), one can observe that the representation (18) can be used

for gn(s, z), n ≥ 0, where the sequences (an)∞n=0, (Rn)∞n=0, (ϕn)∞n=0 and C will be
now, in general, dependent on s and z. Since the number of equations in (14) is finite,
the relationship (16) may be utilized as a boundary condition allowing for finding the
formulae for C(s, z), and g0(s, z), g1(s, z) occurring in the definition of ϕn(s, z) (see (15)).

Indeed, let us start with substituting n = 0 into (18), where the role of g0 plays
g0(s, z). Referring to (19), we obtain

C(s, z) = a0(s, z)g0(s, z). (20)

Similarly, substituting n = 0 into (14) leads to

g1(s, z) = a−10 (s, z)
[
ϕ0(s, z) + g0(s, z)

(
1− a1(s, z)

)]
. (21)

Hence we get g1(s, z) in a function of g0(s, z), namely

g1(s, z) =
[
zf(s)

]−1(
g0(s, z)− 1− f(s)

s

)
. (22)

Introducing now (20)–(21) into (18), we can write gn(s, z) for n ≥ 0 in a function of
g0(s, z) in the following way:

gn(s, z) = γn(s, z)g0(s, z) + θn(s, z), (23)

where n ≥ 0 and the functional sequences
(
γn(s, z)

)∞
n=0

and
(
θn(s, z)

)∞
n=0

are defined
as follows:

γn(s, z)
def
= a0(s, z)Rn+1(s, z) +

n∑
i=0

Rn−i(s, z)

[
ai+1(s, z)−

(
zf(s)

)−1 ∞∑
j=i+1

aj(s, z)

]
(24)

and

θn(s, z)
def
=

n∑
i=0

Rn−i(s, z)

[
1− f(s)

zsf(s)

∞∑
j=i+1

aj(s, z)−
1− f(s)

s

]

=
1− f(s)

s

n∑
i=0

Rn−i(s, z)

[(
zf(s)

)−1 ∞∑
j=i+1

aj(s, z)− 1

]
, (25)

where

f(s)
def
=

∫ ∞
0

e−st dF (t), Re(s) > 0. (26)
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Introducing (23) in (16) allows for eliminating g0(s, z) in the form

g0(s, z) = T1(s, z)T−12 (s, z), (27)

where

T1(s, z) =

K−2∑
i=1

ai(s, z)θK−i(s, z)− θK−1(s, z)− 1− f(s)

zsf(s)

( ∞∑
i=K−1

ai(s, z)− zf(s)
)

(28)

and

T2(s, z) = γK−1(s, z)−
K−2∑
i=1

ai(s, z)γK−i(s, z)−
1

zf(s)

∞∑
i=K−1

ai(s, z). (29)

Collecting (13), (23)–(25) and (27)–(29), we can formulate the following theorem that

states the representation for the mixed double transform (PGF of LT) ĥBn (s, z) of the
probability distribution of the number of messages successfully processed up to the fixed
time t on the first busy period of the MX/G/1/K-type queue:

Theorem 4.1. For Re(s) > 0, |z| < 1 and 0 ≤ n ≤ K the following representation is
true:

ĥBn (s, z) = γK−n(s, z)T1(s, z)T−12 (s, z) + θK−n(s, z), (30)

where the formulae for γj(s, z), θj(s, z), T1(s, z) and T2(s, z) are given explicitly in (24),
(25), (28) and (29), respectively.

5. BUSY PERIOD PERFORMANCE MEASURES

In this section we give the representations for the performance measures of a single busy
period in the considered MX/G/1/K-type system with threshold server’s waking up,
namely the formulae for the LT of the busy period duration and for the PGF of the
number of packets served during the busy period.

Let us denote now by d̂Bn (s)
def
= E[e−sBk |X(0) = n], k ≥ 1, the LST of CDF of busy

period duration in the system that starts working with 1 ≤ n ≤ K messages present
in the buffer queue. It is easy to note that for d̂B1 (s), . . . , d̂BK(s) the following system of
equations can be written:

d̂B1 (s) =

K−2∑
i=1

ai(s, 1)d̂Bi (s) + d̂BK−1(s)

∞∑
i=K−1

ai(s, 1) + f(λ+ s), (31)

d̂Bn (s) =

K−n−1∑
i=0

ai(s, 1)d̂Bn+i−1(s) + d̂BK−1(s)

∞∑
i=K−n

ai(s, 1), 2 ≤ n ≤ K. (32)

Indeed, the first terms on the right sides of (31) and (32) relate to the case in that
there is no buffer saturation before the first service completion after t = 0; the second
terms present the situation in which the buffer becomes full before the first departure.
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Note that the last term on the right side of (31) corresponds to the case where there
is no arrival before the first service completion epoch t; in such a case the busy period
duration equals exactly t, so we have

∫∞
0
e−ste−λt dF (t) = f(λ+ s).

Observe now that to obtain the solution of the system (31)–(32), we may use the
step-by-step procedure described in the Section 4. In fact, since in the original system
with threshold-type policy each busy period begins with exactly N packets present, the
only representation we need is the formula for d̂BN (s). The exact solution of (31)–(32)
can be found in [19]:

d̂B(s)
def
= d̂BN (s) = γK−N (s, 1)Π̃1(s)Π−12 (s) + η̃K−N (s), n ≥ 0, (33)

where

η̃n(s)
def
=

n∑
i=0

Rn−i(s, 1)
[ 1

f(s)

∞∑
j=i+1

aj(s, 1)θ̃K(s)− θ̃K−i(s)
]
,

Π2(s)
def
= γK−1(s, 1)−

K−2∑
i=1

ai(s, 1)γK−i(s, 1)− 1

f(s)

∞∑
i=K−1

ai(s, 1),

θ̃n(s)
def
=

{
f(λ+ s), n = 1,

0, n ≥ 2,

and

Π̃1(s)
def
=

K−2∑
i=1

ai(s, 1)η̃K−i(s)−
θ̃K(s)

f(s)

∞∑
i=K−1

ai(s, 1) + θ̃1(s)− η̃K−1(s).

Next, let ε(B1) be the (random) number of messages completely processed during the
first busy period of the ordinary MX/G/1/K-type queueing system (without N -policy).
If we denote

qn(z) = E[zε(B1) |X(0) = n], 1 ≤ n ≤ K, |z| < 1,

then we can write the following system of equations (compare (7)–(8)), applying the
total probability law with respect to the first departure epoch y > 0 :

q1(z) = z

K−2∑
i=1

qi(z)

∫ ∞
0

i∑
j=0

pj∗i
(λy)j

j!
e−λy dF (y)

+ zqK−1(z)
∞∑

i=K−1

∫ ∞
0

i∑
j=0

pj∗i
(λy)j

j!
e−λy dF (y) + zf(λ) (34)

and

qn(z) = z

K−n−1∑
i=0

qn+i−1(z)

∫ ∞
0

i∑
j=0

pj∗i
(λy)j

j!
e−λy dF (y)

+ zqK−1(z)

∞∑
i=K−n

∫ ∞
0

i∑
j=0

pj∗i
(λy)j

j!
e−λy dF (y), (35)
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where 2 ≤ n ≤ K. Indeed, the first terms on the right sides of (34)-(35) relate to the
case in which the buffer does not become full before the first service completion epoch
after the starting time, while the second ones - to the case of buffer saturation occurring
before the first departure time. The last term on the right side of (35) corresponds
to the case in which there is no arrival before the first service completion epoch (with
probability

∫∞
0
e−λt dF (t) = f(λ)); hence during a busy period exactly one packet is

processed (z).
Utilizing (10), the system (34)–(35) can be rewritten in the form (compare (11)–(12))

q1(z) =

K−2∑
i=1

ai(0, z)qi(z) + qK−1(z)

∞∑
i=K−1

ai(0, z) + zf(λ) (36)

and

qn(z) =

K−n−1∑
i=0

ai(0, z)qi(z) + qK−1(z)

∞∑
i=K−n

ai(0, z), 2 ≤ n ≤ K. (37)

Substituting

rn(z) = qK−n(z), 0 ≤ n ≤ K − 1, (38)

we get from (36)–(37) (compare (14) and (16))

n∑
i=−1

ai+1(0, z)rn−i(z)− rn(z) = ψn(z), 0 ≤ n ≤ K − 2,

where

ψn(z) = an+1(0, z)r0(z)− r1(z)

∞∑
i=n+1

ai(0, z),

and

rK−1(z) =

K−2∑
i=1

ai(0, z)rK−i(z) + r1(z)

∞∑
i=K−1

ai(0, z)+zf(λ).

Using the same procedure as in the case of the system (14) and (16), we obtain

r1(z) = z−1r0(z)

and a more general identity

rn(z) = γn(0, z)r0(z), n ≥ 0.

Finally, we eliminate r0(z) in the form

r0(z) =
zf(λ)

γK−1(0, z)−
∑K−2
i=1 ai(0, z)γK−i(0, z)− z−1

∑∞
i=K−1 ai(0, z)

.

Thus, taking into consideration (38), we can formulate the following
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Lemma 5.1. For |z| < 1 and 1 ≤ n ≤ K the following formula holds true:

qn(z) = rK−n(z) =
zf(λ)γK−n(0, z)

γK−1(0, z)−
∑K−2
i=1 ai(0, z)γK−i(0, z)− z−1

∑∞
i=K−1 ai(0, z)

,

(39)

where the formulae for ai(0, z) and γi(0, z) can be found in (10) and (24), respectively.

Remark 5.2. Let us observe that, if we denote by q(z) the PGF of the number of
messages processed during a busy period in the original system with threshold server’s
waking up (N -policy), then we have

q(z) =

K−1∑
i+j=N

p̃i+jqi+j(z) + qK(z)

∞∑
i+j=K

p̃i+j , (40)

where p̃i+j denotes the probability that a busy period starts with exactly i+ j packets
present, where j denotes the capacity of the last batch for which the number of accumu-
lated packets reaches N, and i is the number of packets being accumulated before this
“last” batch. So we have

p̃i+j =

{ ∑N−1
i=0

∑i
r=0 p

r∗
i

∑K−i−1
j=N−i pj for N ≤ i+ j ≤ K − 1,∑N−1

i=0

∑i
r=0 p

r∗
i

∑∞
j=K−i pj for i+ j = K.

(41)

6. DEPARTURE PROCESS IN GENERAL CASE

In this section, by using the renewal-theory approach, as the main result, we derive a
compact-form representation for the CDF of LT of departure process in general case,
i. e. at fixed time epoch t. So, we have

Theorem 6.1. The mixed double transform ĥ(s, z) of departure process in theMX/G/1/K-
type queueing system with threshold server’s waking up mechanism (N -policy) can be
written as follows:

ĥ(s, z) =

∞∑
m=0

zm
∫ ∞
0

e−stP{h(t) = m} dt =
ĥL(s) + d̂L(s)ĥBN (s, z)

1− d̂L(s)d̂B(s)q(z)
, (42)

where Re(s) > 0, |z| < 1, and the formulae for ĥL(s), d̂L(s), ĥBN (s, z), d̂B(s) and q(z)
were found in (4), (5), (30), (33) and (39), respectively.

P r o o f . Let FL(·) and FB(·) be, respectively, CDFs of arbitrary buffer loading period
Li and busy period Bi (i ≥ 1) durations in the MX/G/1/K-type queue with N -policy.
Besides, let qi = P{ε(B1) = i |X(0) = N}, i ≥ 1, so determines the probability distri-
bution of the number of messages successfully processed during the first busy period of
the system. Firstly, observe that

P{h(t) = m} =

∞∑
i=1

(
P{
(
h(t) = m

)
∩
(
t ∈ Li

)
}+ P{

(
h(t) = m

)
∩
(
t ∈ Bi

)
}
)

(43)
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and, since (Li)
∞
i=1 and (Bi)

∞
i=1 are, separately, sequences of independent and identically

distributed random variables, we get

P{
(
h(t) = m

)
∩
(
t ∈ Li

)
}

= I{m ≥ i− 1}q(i−1)∗m

∫ t

0

P{
(
h(t− y) = 0

)
∩
(
t− y ∈ L1

)
}

× d
(
FL ∗ FB

)(i−1)∗
(y) (44)

and

P{
(
h(t) = m

)
∩
(
t ∈ Bi

)
}

= I{m ≥ i− 1}
m∑

k=i−1

q
(i−1)∗
k

∫ t

0

P{
(
h(t− y) = m− k

)
∩
(
t− y ∈ B1

)
}

× d
[(
FL
)i∗ ∗ (FB)(i−1)∗](y), (45)

where the notation
(
FL
)j∗

(or, similarly,
(
FB
)j∗

) stands for the j−fold Stieltjes convo-

lution of the appropriate CDF with itself. The symbol qj∗k denotes the kth term of the
j−fold convolution of the sequence (qi)

∞
i=1 with itself.

The representations (44)–(45) lead to

∞∑
i=1

∞∑
m=0

zm
∫ ∞
0

e−stP{
(
h(t) = m

)
∩
(
t ∈ Li

)
}dt =

ĥL(s)

1− d̂L(s)d̂B(s)q(z)
(46)

and, similarly,

∞∑
i=1

∞∑
m=0

zm
∫ ∞
0

e−stP{
(
h(t) = m

)
∩
(
t ∈ Bi

)
} dt =

d̂L(s)ĥBN (s, z)

1− d̂L(s)d̂B(s)q(z)
. (47)

Now, collecting (46) and (47) and referring to (43), we obtain the conclusion (42). �

Remark 6.2. The probability distribution of the departure process h(t) can be obtained
by the usage of one of algorithms of numerical inversion of the mixed double transform.
In the next section we use the algorithm proposed in [1], where the LT is inverted
applying the Bromwich integral and Euler’s summation formula, and for the PGF the
Cauchy integral summation formula is used.

Remark 6.3. According to the property of the probability generating functions, the
Laplace transform of the mean number of packets served up to the fixed time t can be
expressed as∫ ∞

0

e−stE[h(t)] dt =
∂

∂z

( ∞∑
m=0

zm
∫ ∞
0

e−stP{h(t) = m} dt

)∣∣∣∣∣
z=1

. (48)

Remark 6.4. Having the intensity of λ(t) of sending messages in a function of time,
we can estimate the transient loss ratio LR(t) function in following way

LR(t) ≈ 1− E[h(t)]

E[λ(t)]
. (49)
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7. NUMERICAL STUDY

In this section, we show the utility of analytical results in numerical examples. Let
us consider the system of size K = 8. Assume that a stream of messages of average
sizes 500 B arrive at the WSN node with the threshold-type mechanism according to a
compound Poisson process with intensity 450 kb/s. Let us take into consideration two
different simple batch distributions:

• P1 : p1 = 0.8, p2 = 0.2, pk = 0, k > 2,

• P2 : p1 = 0.2, p2 = 0.8, pk = 0, k > 2,

which gives following arrival rate parameters λ1 = 375 and λ2 = 250, respectively.
Let messages be transmitted with rates 2.4 and 1.8 Mb/s, respectively. Assuming the
exponential service time distribution, these rates correspond to the mean processing
times 1.6 and 2.2 ms (milliseconds), respectively. Under the assumptions about arrival
and serving rates the occupation rate ρ of the system equals to 0.75 or 1.00.

Notice that the mean busy and loading period duration can be expressed as

E[e−sL] = −∂d̂
L(s)

∂s

∣∣∣∣∣
s=0

, E[e−sB ] = −∂d̂
B(s)

∂s

∣∣∣∣∣
s=0

, (50)

respectively. Moreover, let us introduce the power-saving ratio as

PSR
def
=

E[e−sB ]

E[e−sL]
. (51)
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Fig. 1. PSR in dependence on threshold N for P1, P2 and

ρ = 0.75, ρ = 1.

Since, typically, the power consumption in the buffer loading mode is lower than
during busy period, then the minimization of the PSR is desired. Figure 1 shows the
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values of PSR in dependence on the threshold level N for occupation rates 0.75, 1.00 and
batch distributions P1, P2. The obtained results show that the PSR decreases essentially
with increasing of the threshold N .

Next, we are interested in the transient distribution of the number of messages com-
pletely processed until the fixed time t (departure process) and in the mean number of
departures up to the same time. Transient mean number E[h(t)] of completely processed
messages (see 6.3) and transient loss ratio LR(t) (see 6.4) for rates ρ = 0.75, 1.00 and
batch distributions P1, P2 are presented in Fig. 2 and Fig. 3. Observe that the results
show that increasing of the threshold level N leads to decreasing of the number of pro-
cessed messages up to time t. However, the differences in the number of departured
messages are not too high.
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(a) E[h(t)] for P1 and ρ = 0.75.
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(c) E[h(t)] for P2 and ρ = 0.75.
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Fig. 2. E[h(t)] and LR(t) for P1, P2 and ρ = 0.75.
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Fig. 3. E[h(t)] and LR(t) for P1, P2 and ρ = 1.
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8. CONCLUSION

In the paper the explicit representation for the mixed double transform of departure
process in a batch-arrival MX/G/1/K-type queue with N -policy is obtained. The ana-
lytic approach based on the idea of embedded Markov chain, renewal theory and linear
algebra was applied. Numerical utility of theoretical results is shown via computational
examples.

This kind of a queueing system can be used in modelling the operation of a wireless
sensor network with a threshold-type power saving mechanism (waking up of nodes).
The obtained representations can be useful in performance evaluation of such a network
or a single node under different “input” parameters (like arrival rate, service speed, buffer
size or threshold level). In particular, transient mean number of messages completely
processed up to the fixed time , loss ratio and power saving ratio can be estimated.

(Received September 20, 2021)

R E F E R E N C E S

[1] J. Abate, G. L., Choudhury, and W. Whitt: An introduction to numerical transform
inversion and its application to probability models. In: Computational Probability (W.
Grassmann, ed.), Kluwer, Boston 2000, pp. 257–323. DOI:10.1007/978-1-4757-4828-4 8

[2] R. Arumuganathan and S. Jeyakumar: Steady state analysis of a bulk queue with multiple
vacations, setup times with N -policy and closedown times. Appl. Math. Model. 29 (2005),
972–986. DOI:10.1016/j.apm.2005.02.013

[3] G. Choudhury and H. K. Baruah: Analysis of a Poisson queue with a threshold policy
and a grand vacation process. Sankhya Ser. B 62 (2000), 303–316. DOI:10.1007/978-3-
642-59691-9 34

[4] G. Choudhury and A. Borthakur: Stochastic decomposition results of batch arrival
Poisson queue with a grand vacation process. Sankhya Ser. B 62 (2000), 448–462.

[5] G. Choudhury and M. Paul: A batch arrival queue with an additional service channel un-
der N -policy. Appl. Math. Comput. 156 (2004), 115–130. DOI:10.1016/j.amc.2003.07.006

[6] J. W. Cohen: The Single Server Queue. North-Holland, Amsterdam 1982.

[7] B. T. Doshi: Queueing systems with vacations-a survey. Queueing Syst. 1 (1986), 29–66.
DOI:10.1007/BF01149327
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