
Zpravodaj Československého sdružení uživatelů TeXu

Philip Taylor
Computer Typesetting or Electronic Publishing? New trends in scientific
publication

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 5 (1995), No. 1-4, 61–89

Persistent URL: http://dml.cz/dmlcz/149741

Terms of use:
© Československé sdružení uživatelů TeXu, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149741
http://dml.cz

Computer Typesetting or Electronic
Publishing?
New trends in scientific publication

Philip Taylor

Abstract. Whilst computer (assisted) typesetting has completely re-
placed more traditional technologies such as hot lead during the last fif-
teen years, it too is now coming under threat from an even more radical
technology in the form of electronic publishing (e.p.). Unlike both tradi-
tional and computer typesetting, e.p. avoids the use of paper completely
and replaces it with a computer display. The potential advantages of e.p.
are obvious: massive savings in cost, virtually instantaneous transmis-
sion; but there are disadvantages too, such as the difficulty of avoiding
unauthorised copying, plagiarism, and re-distribution. There are also fun-
damental philosophical differences: whereas typesetting systems dictate
the exact appearance of the finished page, e.p. systems may allow a far
more abstract representation, with the final appearance being left very
much up to the viewer. In this paper, I will outline recent developments
in both computer typesetting and electronic publishing, and compare and
contrast the two approaches.

A Brief History of TEX

Until about fifteen years ago, typesetting was virtually ignored by
the vast majority of mathematicians, scientists, and scholars in general:
manuscripts were prepared using a typewriter, the more esoteric symbols
(which meant almost all symbols for mathematicians) were laboriously
inserted by hand, and the whole was then simply dispatched to the pub-
lisher. Some time later galleys would be returned, emendations noted in
the margin, and once again the whole would be sent to the publisher.
A similar but shorter cycle was probably repeated for the page proofs,
and finally the author’s intentions appeared in final form in the finished
book. At no point did the author and the typesetter communicate di-
rectly, and indeed the former was almost certainly virtually unaware of
the latter’s existence.

61

The typesetter, however, was only too aware of the author: mathe-
matical copy is traditionally referred to as ‘penalty copy’ in the printing
trade, since it is notoriously difficult to set correctly. In the time that
his colleague could set ten pages of straight text, the mathematical type-
setter was barely able to accomplish a single page, and even when set he
knew that there was every possibility that it would have to be re-set more
than once, since mathematicians are only too keen to invent new sym-
bols of their own when no existing symbol seems entirely appropriate.
And since the typesetter would never have encountered such a symbol
before, he would (quite reasonably) assume that it was simply a badly
drawn version of a symbol with which he was familiar, and substitute
the latter. . .

Needless to say, some of the more aware authors began experimenting
with computer technology as soon as it became generally accessible, and
for a while the academic world seemed convinced that if it were possible
to get just a couple more symbols onto the daisy-wheel of a Diablo
printer, all would become possible: there were even specialist companies
who would re-mould a daisy-wheel, replacing an apparently unwanted
glyph with one which its owner deemed indispensable. Of course, the
approach was doomed to failure: one can no more set mathematics with
a fixed set of 144 glyphs than can one with a set of 128, and despite the
best efforts of all concerned, the daisy-wheel printer was soon consigned
to the scrap bin.

In parallel with this, the dot-matrix printer manufacturers first be-
gan to have a significant impact. With a 7 × 5 dot matrix, there are
potentially

∑35
i=0

(35
i

)
(= 235) different characters (a very large number

indeed!), but unfortunately a number of these are virtually indistinguish-
able: a single dot at co-ordinates (4, 3) looks astonishingly like another
single dot at at co-ordinates (4, 4) to even the most astute reader (I
believe that there are 33 034 338 305 distinct characters, as opposed to
a total of 34 359 738 368 characters, where a character is regarded as
distinct if it’s not simply the result of sliding another character hori-
zontally, vertically, or both: this figure is based on an analysis by Dr
Warren Dicks of the Autonomous University of Barcelona). Further-
more, the print quality of a 7 × 5 dot matrix printer is so appallingly
bad that no attempt should ever be made to set a book using one –
unfortunately this well-meant advice was seldom heeded at the time.

Of course, in order to exploit these technological revolutions, suitable
software had to be written, and the Unix world in particular decided

62

to standardise on ROFF and its derivatives: NROFF, TROFF and fi-
nally DITROFF all made their mark. Unfortunately none of the ROFF

derivatives ever directly supported the typesetting of mathematics, and
so adjunct programs such as EQN and TBL had to be used to add math-
ematical functionality. There were also commercial systems, used to
set publications such as the Transactions of the American Mathematical
Society, but these were both expensive and arcane, using a rather non-
mnemonic syntax to represent the possible mathematical constructions.

Fortunately (as is absolutely clear in retrospect), at least one emi-
nent mathematician believed that something better not only could, but
should , be created; and being not only a mathematician but a computer
scientist, he decided to create it. His name was Knuth, and his creation
was TEX.

Yet had it not been for a happy co-incidence, TEX might never have
been born. At the time, Knuth was working on his opus magnum, a
seven-book series entitled The Art of Computer Programming, and by
1977 the popularity of the early volumes of this series had proved so
great that Volume 2 had already run to a second edition. Unfortunately
the timing of this was such that whilst the first edition had been set
using traditional hot-lead technology, the second edition was produced
using one of the first phototypesetters [an aside to readers: throughout
this paper I use the term typesetter to mean both the person performing
the task of setting type, and the equipment used to achieve that end: I
hope that it is always clear from the context which of these two mean-
ings is to be inferred, since there is no other word which could easily
and felicitously be substituted for either of these usages]. And whilst
the new phototypesetter was more than capable in theory of achieving
results as good as, if not better than, the traditional hot lead device used
previously, the results in practice left a great deal to be desired. Knuth,
as mathematician and computer scientist, was convinced that the fault
lay not in the technology but in the software used to drive it, and he de-
cided that rather than see his life’s work appear in second-rate format, he
would devote a short portion of his professional life to developing a suite
of software which would exploit the full potential of the phototypesetter.
Little did he know when he took this brave decision that it was to take
not the anticipated one year but at least ten, although he most certainly
had a demonstrably working version within his anticipated time-frame.

The first published reference to TEX is probably Mathematical Ty-
pography, published as report STAN-CS-78-648 by the Computer Sci-

63

ence Department of Stanford University; in the bibliography to this,
Knuth gives the definitive reference as being Tau Epsilon Chi, a sys-
tem for technical text which was at the time “in preparation” and is
now sadly out of print. For those interested in the subject, the former
paper makes fascinating reading, and the bibliography alone makes it
a more than worthwhile acquisition; it was reproduced in the Bulletin
of the American Mathematical Society, in which form it should still be
available.

TEX was both typical and atypical of programs of its era: it was typical
in that it was completely script-oriented, pre-dating as it did any widely-
used graphical user interface; it was atypical in that it was a completely
programmable macro programming language, in which there were no
reserved words, and in which even individual characters could change
their semantics on the fly. Thus a TEX document consisted both of the
text to be typeset and the commands to accomplish that typesetting, and
only TEX itself could unambiguously determine whether any particular
element of the document was to be interpreted as ‘program’ or ‘data’.

Despite being created primarily in order to accomplish one particular
end – the typesetting of Volume 2 of The Art of Computer Program-
ming – TEX rapidly took on a life of its own, and soon became the de
facto standard for typesetting within much of Stanford University. Be-
fore long its fame had spread, and by 1980 the TEX Users Group had
sprung into existence, with members of the Steering Committee drawn
from far beyond the restricted domain of Stanford faculty. The American
Mathematical Society were represented on that Committee, and liaison
between the AMS and Knuth was very close: Knuth assigned the TEX
logo to the AMS who then applied for trademark protection to prevent
it being used to describe any unauthorised modification of TEX – un-
fortunately this application was rejected because of a prior registration
of TEX (sic) by Honeywell, but despite this lack of formal registration,
Knuth’s high profile and high standing ensure that the TEX logo (or its
non-typeset equivalent, TeX) is universally recognised and respected.

Within a couple of years, it became clear that the initial implementa-
tion of TEX left something to be desired, both in terms of functionality
and in terms of portability, and Knuth set out to redress both by re-
implementing TEX from scratch. This time he decided to eschew SAIL

(‘Stanford Artificial Intelligence Language’) as the language of imple-
mentation, and instead to adopt the far more widely available program-
ming language Pascal. To further increase its portability, he adopted

64

only a strict subset of Pascal, encompassing only those features which
he was confident could be found (or easily emulated) on all Pascal im-
plementations; but he also decided to take this opportunity to render
the program in a form which he termed ‘literate’: that is, he wanted
people to be able to read the source of TEX in the same way that they
might read a book, and to therefore be able to benefit by being exposed
to a major piece of software engineering presented in a highly literate
manner. Once again Knuth decided that there were no adequate tools
available for this, and once again he digressed from the main project by
breaking off to design and implement the concept of a WEB program,
together with its two adjunct programs TANGLE and WEAVE.

A WEB program consists of a highly stylised dialect of Pascal, in-
terspersed by lengthy comments describing the purpose and function of
every element and module of the program (I suspect that Knuth would
deny this, and say that a WEB program consists of a highly elaborate
description of the workings of the program, interspersed by occasional
fragments of Pascal which implement that functionality: and I suspect
that he would almost certainly be right!). By permitting the elements
of a Pascal program to be presented in arbitrary order (as opposed to
the strict order of presentation required by the Pascal standard), WEB

allows the programmer the opportunity to present the elements of a pro-
gram in a natural and logical order, as opposed to the artificial order
imposed by the Pascal design criterion of ‘efficient compilability’: it is
then the task of TANGLE to paste together these fragments in the order
required by Pascal, and the task of WEAVE to bring together both the
program fragments and the comment fragments into a form which can
immediately be typeset by TEX.

Thus for the first time TEX became self-referential: in order to be
able to produce the Pascal code from the WEB source, one needed a
working version of TANGLE; to be able to produce a literate listing of the
WEB source, one needed a working copy of WEAVE; but both TANGLE

and WEAVE are themselves written in WEB, so to produce a working
TANGLE one needs a working TANGLE, and so ad infinitum. Of course
‘bootstrapping’ (as the technique is generally termed) is well understood
in the Computer Science world, and it was estimated that the task of
‘hand compiling’ TANGLE from the WEB source was well within the
competence of ‘the average implementor’: however, I remember only too
clearly the trauma through which a colleague went when he attempted
this bootstrapping for himself. . .

65

During the re-implementation, Knuth re-wrote almost the complete
TEX program: he had learned much about its limitations during the
first couple of years of use, and by 1982 a completely re-written TEX
had emerged. This version of TEX (often referred to as TEX 82, to dif-
ferentiate it from the earlier version which analogously became known
as TEX 78) was rapidly ported to a wide range of machines, and is quite
possibly the most widely available program in the world today, being
available on every class of system from the smallest PC to the largest
super-computer. Its almost universal acceptance as the standard pack-
age for computer typesetting is almost certainly the result of a large
set of very positive attributes: the source of the program, and the vast
majority of implementations, are available either free of charge or at a
modest cost which covers no more than the media on which they are
supplied; the program is virtually bug-free, a claim which Knuth backed
up until very recently by offering a cheque for every bug found, the value
of the cheque doubling each year since the scheme’s inception (he still
offers a cheque, but the value no longer doubles, since he estimated that
before too long it might exceed the total Federal reserves. . .); the pro-
gram is highly stable (there were virtually no major changes during the
period 1982–90, and similarly there have been virtually no changes at all
since 1990, nor will there be at any point in the future); and there are
an enormous number of users throughout the world, most of whom are
only too keen to pass on their expertise to any who need it, so any real
problems resulting from a lack of experience with TEX can be rapidly
resolved by a message to any one of a number of TEX-related mailing
lists and news groups (even those without network access are not cut
off, as the TUG (TEX Users Group) office offers telephone support from
03:00 in the morning until late in the evening – a service which is not
restricted to members of TUG).

So, during the 1980’s, TEX emerged as the standard package for com-
puter typesetting: it was available on almost every conceivable system,
device drivers were written for everything from dot-matrix printers to
2400 dpi phototypesetters (but not daisy wheel printers!), and an ever-
increasing number of publications appeared which were either typeset
using TEX, or were about TEX, or both. Many scientific journals adopted
it (or one of its derivatives such as LaTEX, which may be thought of as
a somewhat restrictive but more user-friendly ‘front end’ to TEX) as the
standard format in which papers were to be prepared. Since an author
could very easily proof a paper using a local implementation of TEX,

66

and since TEX was guaranteed to produce identical results no matter on
which system it was run, the number of iterations between author and
publisher was reduced to the bare minimum, and all benefitted. And
since TEX has been designed by a mathematician, and since a part of
its raison d’être had been to allow mathematics to be typeset almost as
easily as running text, its take-up by the mathematical community was
if anything even faster than its take-up by the scientific and academic
communities in general.

To give a simple example of why TEX is ideally suited to the typeset-
ting of mathematics, consider the following set of equations:(∫ ∞

−∞
e−x2 dx

)2
=

∫ ∞

−∞

∫ ∞

−∞
e−(x

2+y2) dx dy

=
∫ 2π

0

∫ ∞

0
e−r2r dr dθ

=
∫ 2π

0

(
−e−r2

2

∣∣∣∣
r=∞

r=0

)
dθ

= π. (11)

A mathematician writing this by hand would almost certainly start with
the left-most element of the first line, proceed from left to right, and
alternate between baseline, subscript and superscript elements as logic
dictated; a pure WYSIWYG (‘What you see is what you get’) word pro-
cessor, on the other hand, would require the typist to analyse each row of
the equations into horizontal strata (thus the top stratum might contain
only ∞, 2, ∞ and ∞, for example) and to enter these stratum by stra-
tum; since, in general, WYSIWYG systems do not automatically displace
preceding or following lines of text horizontally when an intervening line
is shortened or lengthened, the correction of such equations is tedious
and error-prone in the extreme. More recent, WYSIWYG-like, systems
require a different approach in which the author has to enter the formula
in the order dictated by its parse-tree; needless to say, this approach too
demands more of the author than should reasonably be expected.

TEX allows the mathematician to enter the formulæ in the most nat-
ural manner, starting at the left and finishing at the right; alignment is
automatically maintained if insertions or deletions are made, and even
the horizontal alignment of the four primary = signs is performed au-
tomatically, virtually regardless of the length of individual left- or right

67

elements. To clarify this, here is the exact TEX source which was used
to set the table:

$$

\vbox \bgroup

\eqalignno

{\biggl (\int_{-\infty}^\infty e^{-x^2}\,dx \biggr)^2

&=\int_{-\infty}^\infty

\int_{-\infty}^\infty e^{-(x^2+y^2)}\,dx\,dy \cr

&=\int_0^{2\pi}\int_0^\infty e^{-r^2}r\,dr\,d\theta \cr

&=\int_0^{2\pi}\biggl (-{e^{-r^2}\over 2}

\bigg \vert_{r=0}^{r=\infty}\,\biggr)\,d\theta \cr

&=\pi.&(11)\cr

}

\egroup

$$

It is worth noting that TEX completely ignores any spaces in math-
ematical text, since the rules for typesetting mathematics are complex,
and cannot be expected to be understood by mere mathematicians! Thus
the layout of the equations above is simply for the convenience of the
author, and is completely ignored by TEX, which is far more concerned
by special characters such as dollars, backslashes, braces, underscores,
carets and ampersands. And whilst each of these characters has a dis-
tinct meaning to TEX (a dollar symbol, for example, both introduces
and terminates a stretch of mathematical text), that meaning may at
any time be overridden, and either assigned to a different character or,
if not needed, turned off completely. So, for example, if some particular
computer lacked a backslash key, it would be trivial to assign the se-
mantics of backslash to some other key (say, yen, if a Japanese keyboard
were to be used).

Furthermore, it can be seen that TEX is highly mnemonic in its choice
of control sequences (‘commands’, preceded by a backslash); to pick
out just a few examples, \int represents an integral sign, \infty an
infinity, \exp the exp operator (representing the exponential e) and so
on. Compound subscripts and superscripts are presented in logical order,
rather than in order of their appearance vertically on the page; and
facilities are provided for the author to give TEX hints about the logical
structure of the expression, so that (for example), \, is used to set off
differentials such as dθ from the preceding text by a little extra white

68

space, thereby improving both the appearance and the legibility of the
expression.

Thus the attraction of TEX for mathematicians is clear: a highly logical
markup language, capable of being entered from any keyboard; access
to a very wide range of mathematical symbols; professional standards of
layout; widespread acceptability by journals; and the ability to proof on
anything from a dot-matrix printer to a 600 dpi laser printer. Add to
this the now universal ability to preview the document on the computer
screen (something the early advocates of TEX could only dream of), and
it is hard to explain why any mathematician with access to a computer
would not typeset his papers using TEX!

However, use of TEX is restricted neither to mathematicians nor to
North Americans, and at the TEX User Group conference in 1989, an in-
fluential and voluble group of European TEX users ganged up on Knuth
and succeeded in convincing him that, despite his assertion on the pre-
vious day of the conference that the development of TEX was finished,
there were features missing from the current implementation which made
TEX entirely useless to the majority of the world, since whilst it behaved
perfectly in unaccented languages, it was grossly deficient for typesetting
any language which made more than occasional use of diacritics. And
Knuth, recognising the validity of this argument, agreed that something
had to be done.

The result of all this was TEX 3: TEX 82 became known simply as
TEX 2, and TEX 3 became the One True TEX. In practice, this just didn’t
happen: those who had no need for the extended diacritic support offered
by TEX 3 simply continued to use TEX 2, and for quite a while TEX
macro writers had to write very defensive code which first checked the
environment before making any assumptions about (for example) the
number of distinct characters with which TEX could internally deal (this
was 128 prior to TEX 3, and 256 thereafter). With the release of TEX 3,
Knuth made it absolutely clear that this really did represent the end of
the TEX evolutionary line: he had better things to do with his time, and
TEX was now frozen (modulo any essential bug fixes, which he undertook
to continue to make if and only if it could be shewn that their fixing was
essential). Furthermore he made it equally plain that TEX could not be
further evolved by anyone else: he wished to leave for his children, and
for his children’s children, and for all perpetuity, TEX as his creation,
and not as his-creation-as-modified-by-someone-else.

69

In general, the TEX world took this in good part: Knuth is enormously
highly respected by those who use TEX, and there were very few who ad-
vocated ignoring his wishes and who were prepared to suggest modifying
TEX. But there were also a quite significant number of TEX users, among
them the present author, who felt that if TEX did not evolve, then it
would simply die. Not because of any fundamental deficiencies in TEX –
it is generally accepted that there are very few – but because the world
had moved on since 1978, and whilst a script-driven language might have
been state-of-the-art then, it most certainly was not state-of-the-art now.
Furthermore, despite increasing the number of distinct internal charac-
ters from 128 to 256, Knuth had done little if anything to enhance TEX
to deal with Asian languages, in which the number of distinct characters
may be measured in thousands if not in tens of thousands. And finally,
there were those who felt that there were some areas in which a very sig-
nificant increase in functionality could be gained (particularly from the
perspective of the macro programmer, who is also known as a ‘format
writer’ when the suite of macros provides a complete functional system
in its own right) with relatively little investment in terms of modifying
TEX.

The implementation of these ideas probably represents the leading
edge of TEX technology (‘TEXnology’) today: companies such as Blue
Sky have produced instantaneous/incremental TEX interpreters, which
are capable of displaying the effects of a change to the source code of
a TEX document in real time; Advent Publishing have produced 3B2,
which allows both a graphical and a textual specification of a layout, au-
tomatically updating one to reflect changes in the other; John Plaice and
Yannis Haralambous have implemented a 64-bit version of TEX which
uses Unicode internally; and the group with which I am most closely
associated (the NTS group, where NTS stands for ‘New Typesetting Sys-
tem’) have produced a completely compatible successor to TEX, called e-
TEX, which adds functionality without compromising compatibility (the
NTS group also wish to re-implement TEX from scratch, using a modern
rapid-prototyping language such as Prolog or CLOS, the idea being to
allow rapid experimentation with alternative typesetting algorithms or
paradigms). Whether or not any of these ideas will catch on remains to
be seen, although among Apple Macintosh aficionados Classic Textures
(the Blue Sky product referred to above) is already highly thought of.
One fundamental question is that of stability: since one of the great
strengths of TEX is its stability, how will the world feel about systems

70

which encompass TEX but which are specifically intended to remain evo-
lutionary and responsive, rather than fossilised and unyielding? Only
time will tell.

What is perhaps worth noting is that all of these projects have ensured
that Knuth’s wishes are honoured not only in the letter but in the spirit:
none seeks to call itself TEX (indeed, that of John Plaice and Yannis
Haralambous is called Omega, which could never be confused with TEX),
yet all acknowledge the debt which they owe to Knuth and to TEX:
without them, none of these other projects would ever have seen the
light of day.

Parallel Developments

Of course, while TEX was evolving, the rest of the world did not stand
still: computer science continued to develop, and computer networking
moved from the laboratory to the military and the Universities and ulti-
mately to the whole world. Line-oriented editors fell by the wayside, and
were replaced by full-screen editors (except in the rather time-warped
world of MS/DOS, which continued to offer only EDLIN until compar-
atively recently). Script-oriented markup languages such as the ROFF

family referred to earlier were challenged by increasingly sophisticated
word-processors, and WYSIWYG (‘What You See is What You Get’),
GUI (‘Graphical User Interface’), and WIMP (‘Windows, Icons, Menus
and Pull-down lists’) became the order of the day.

At about the same time that Knuth was starting work on TEX, John
Warnock and Martin Newell re-implemented an earlier language (‘the
Design System’) as ‘JaM’ (‘John and Martin’ !) whilst working at Xerox
PARC, and from this cloistered beginning ultimately emerged both the
Interpress (Xerox printing protocol) and PostScript languages. Whilst
Interpress remained relatively unfamiliar, Adobe PostScript took the
computing world by storm: for the first time there was a de facto page
description language, which allowed complex pages to be described al-
gorithmically (and thus very efficiently). Although Hewlett Packard’s
Printer Control Language (PCL) continued (and continues) to be both
widely supported and widely emulated, PostScript rapidly established
itself as the standard for high-level printers (by which I mean laser
printers and better), and fairly quickly printer manufacturers sought
to provide either PostScript interpreters or PostScript emulators
for their high-end products. Unfortunately (for the emulator writers)

71

PostScript is a complex language, and many of the earlier emulations
were deficient in one or more respects; Adobe, of course, as designers of
the language had far fewer problems in this respect, although even they
released improved versions of their interpreter as time went by.

For a long while parts of PostScript remained a closely guarded se-
cret: the mysterious eexec operator was undocumented, and whilst the
PostScript manual gave information on the format of so-called ‘type 3’
fonts, the equally mysterious ‘type 1’ fonts remained undocumented. Of
course, reverse engineering is a well-understood tool, and finally the bar-
riers were broken: descriptions of eexec started to appear in the press,
and ultimately Adobe themselves relented and gave full documentation
of both eexec and their type-1 fonts.

Before long, type-1 fonts established themselves as as much a standard
for fonts as PostScript was a standard for page-description languages;
companies such as Corel started to release type-1 fonts of their own,
closely modelled on industry-standard fonts but sufficiently different (at
least in name) to avoid accusations of font piracy (although this latter
problem continues to worry top font designers such as Hermann Zapf to
this day). All the major font foundries started to offer their fonts in type-
1 format, and many gave a commitment to have all of their fonts in type-
1 format within the foreseeable future. The so-called ‘font magic’ which
enabled early Adobe fonts to render well even on relatively low resolution
devices such as 300 dpi laser printers was renamed ‘font hinting’, and this
too was eventually documented by Adobe. New features continued to
be added to the PostScript language, and in 1990, Adobe announced
a completely new version of the PostScript language, ‘PostScript
Level 2’. This new version unified all previous additions to the language,
and added many new features as well, such as the ability to have compact
(binary) representations of a PostScript document as well as the earlier
(ASCII) representation; new colour models were introduced, and support
was added for composite fonts.

PostScript was originally conceived as an embedded language for
printers, but before long it became clear that a version of PostScript
which could drive a computer screen would be extremely useful. Adobe
created their own version of this called ‘Display PostScript’, but in
the meantime L. Peter Deutsch had started work on a PostScript
interpreter of his own, called ‘Ghostscript’, and fundamental to its func-
tionality was the ability to drive the screen of any computer on which it
was used (it also contained drivers for a wide-range of non-PostScript

72

printers, as well as pseudo-drivers for some of the more popular graphics
interchange formats). During 1995 Peter finally announced Ghostscript
version 3, which provided almost a complete Level 2 emulation, and
whilst the official Adobe interpreter remained a licensed (and relatively
expensive) product, Ghostscript was and remains free of charge to those
who do not use it for profit-making purposes; a very significant debt of
gratitude is owed by the computer world to L. Peter Deutsch, both to his
skill in writing Ghostscript and to his generosity in making it so freely
available, and also to the many individuals who have donated their own
drivers and/or enhancements to the Ghostscript project (PS-View, from
Bogus law Jackowski and Piotr Pianowski warrants special mention).

From the ARPAnet to the Web

A few years before Knuth started work on TEX, the American military
as personified by [D]ARPA (the [Defence] Advanced Research Projects
Agency), had initiated a pilot project to link computers over very wide
distances; whilst local computer links were not uncommon, links across
thousands of miles were unheard of, but [D]ARPA realised the potential
military importance of such links and therefore initiated a whole series
of research projects aimed at making this a reality. Whilst these projects
initially started in isolation, as soon as the pilot network was available
the project gained a momentum – indeed, a very existence – of its own,
and the whole development strategy henceforth was established by dis-
cussion across , as well as about , the network. This network, known as
the ARPAnet for obvious reasons, evolved a mechanism for distributed
discussion and voting known as the ‘Request for Comments’ (‘RFC’),
and any new idea for anything from a protocol to a picnic was likely
to find itself the subject of an RFC. From these RFCs emerged some of
the most important de facto standards on which we still to this day:
TCP (‘Transmission Control Protocol’), IP (‘Internet Protocol’), SMTP

(‘Simple Mail Transfer Protocol’) and so on were all enshrined in the
published versions of the RFCs, and each was allocated a unique num-
ber: electronic mail, for example, was addressed by and specified in, RFC

822.
Although the American military launched the networking initiative, it

was the American universities which were actually the primary contribu-
tors to its success, and once the network was well established it ceased to
be ‘the ARPAnet’ and became instead ‘the Internet’, the name by which

73

it is still known today. Strictly speaking, the Internet is not a network
per se, but a network-of-networks; however, the distinction is of little
significance, and most now regard the Internet simply as the interna-
tional computer network. From its military origins, where permission-
to-connect almost required a personal interview with a five-star general,
the Internet has now become the network to which even the most hum-
ble private citizen may aspire to gain access: Internet service providers
have sprung up across much of the Western world, and connecting to
the Internet today requires little more formality than a letter (and a
fairly modest cheque!) to an Internet service provider, together with the
purchase of a equally modest personal computer and a modem: at the
time of writing, there are Internet connections from something like 150
countries throughout the world (the number of actual Internet nodes is
far harder to gauge, but it is already estimated to lie between five and
ten million).

Initially the protocols used, and services provided, on the Internet
were very primitive: FTP (‘File Transfer Protocol’), TELNET (remote
terminal access), PING (check if a remote node is alive), and SMTP were
probably the most common, with FINGER (check if a remote user is
logged in) coming not far behind. But whilst the end-user protocols
were fairly simple, the underlying mechanisms were not, and the DNS

(‘Domain Name Service’) provided a quite sophisticated mechanism for
a distributed node lookup protocol. As more experience was gained,
the range of protocols and services increased, and things such as Usenet
News (a distributed bulletin board) and NFS (‘Network File System’,
providing remote access to a complete file system) were added. Then
the information explosion really took off, and tools for information re-
trieval and display began to proliferate: GOPHER and WAIS (‘Go for’,
and ‘Wide Area Information Service, respectively) were early candidates,
shortly followed by WWW (the ‘World Wide Web’, now usually short-
ened to ‘the Web’). It should be emphasised that there is no connection
between WEB programs and the World Wide Web; within this document
at least, the former is consistently shewn in upper case, whilst the latter
is consistently shewn in mixed case.

With the advent of the Web came one major breakthrough: whereas
previously each protocol had specified its own unique method of identi-
fying a remote resource, WWW brought with it the concept of the URL

(the ‘Universal Resource Locator’), so that from within a single pro-
gram (the ‘browser’), almost any Internet resource could be specified.

74

For example, a remote FTP resource would commence ftp://, a remote
GOPHER resource would be gopher://, and the Web’s native resource,
HTTP (‘HyperText Transfer Protocol’) would commence http:// (aware
readers may appreciate that this is a slight over-simplification, but the
deviations from reality are essentially very small).

With the Web and URLs came unified browsers: tools such as MOSAIC

which allowed access to a wide range of Internet resources from a single
graphical front end. Even if a resource had no unique URL, it was still
possible to associate with it an adjunct renderer which would display
it correctly: thus, for example, although there is no unique URL for
an MPEG file (‘Motion Picture Expert Group’: a compact standard for
encoding and storing full-motion video), a correctly configured browser
such as MOSAIC could identify an MPEG resource from its file type (the
portion of the file name which follows the period), and on down-loading
such a resource would then spawn off an instantiation of the appropriate
renderer, so that down-loading and viewing were essentially indivisible
entities.

Native-mode documents for access over the Web are coded in a lan-
guage called HTML (‘HyperText Markup Language’): this is a direct
derivative of an earlier (but still current) specification for a generalised
markup language called SGML (‘Standard Generalised Markup Lan-
guage’), and a conformant HTML document is also normally a confor-
mant SGML document, although as is often the case the converse does
not necessarily obtain. Both HTML and (typical but not all) SGML doc-
uments are characterised by the frequent occurrence of tags which are
enclosed in angle-brackets: they therefore resemble the ‘metalinguistic
variables’ of a much earlier standard – the BNF (or Backus Naur/Normal
Form) of the original Algol-60 report – although they do not perform the
same function. In an HTML document, each tag specifies the nature of
the entity to which it refers: whilst this can be augmented by a spec-
ification of how the entity should appear, in the purest form only the
nature of the entity is specified, and it is left to the browser to deter-
mine how the entity should appear. This represents a very significant
philosophical breakthrough: no longer need a document be formatted by
its author, the reader then requiring the technology to resolve that for-
mat; instead, using HTML, a document is simply tagged using high-level
content-oriented markup, and the reader may then display that docu-
ment using whatever technology is available. For example, most Internet
systems are capable of running a browser called LYNX: this is a purely

75

textual browser, and so it makes no attempt to represent subtleties of
the document; it simply takes advantage of whatever text-mode func-
tionality is available to it (for example, emboldening or underlining) to
display the document to the best of its ability. Images which would nor-
mally require a graphics mode browser to resolve are simply displayed
as the word [IMAGE]. On more sophisticated systems, graphics mode
browsers such as MOSAIC (previously referred to), or the now ubiqui-
tous NETSCAPE, can be used: these will exploit the graphics capability
of their platforms to the full, and are capable of displaying full-colour,
and even motion-picture-insertions, either using inherent functionality
or through the medium of adjunct software which has been used to cus-
tomise the browser.

But an HTML document is far more than just a passive entity: ele-
ments of it can be designated as ‘hot spots’, and if a hot spot is selected
(using the mouse on a graphical system, or the tab and/or cursor keys
on a line-mode system), a further document may be downloaded and
displayed entirely automatically: the document containing the hot spot
and the document referred to by the hot spot do not need to originate
from, or be stored at, the same site: a document stored at (say) the Uni-
versity of Western Ontario can reference, through a hot spot, another
document stored at (say) the University of Queensland. Furthermore,
although the discussion so far has been concerned with ‘documents’, hot
spots can in fact be linked to any Internet resource, provided only that
the resource is specifiable via a URL. Thus a document which was fetched
using HTTP can reference another document that can be fetched using
only GOPHER; that document could specify a third document which
is accessible only via FTP: that could contain a reference to a Usenet
Newsgroup; and so on.

Yet even this does not represent the limits of a Web document: such
documents can also be forms , with fields which must be completed by the
reader; when the form is completed, a further hot spot can transfer it to a
remote site, where it will be interpreted and acted upon. In this way, the
original ARCHIE protocol (ARCHIE is an Internet tool for locating files
available via anonymous FTP) has been extended from its traditional
usage in which it is launched from a command line invocation specifying
the file of interest and some constraints on the manner of search; with the
HTML version (a.k.a. ‘Archiplex’), the Archie user invokes his preferred
Web browser to fetch an Archie form from a convenient server; he then
completes the form, and uses a hot spot to return it to the Archie server;

76

the latter then locates the file of interest, and returns a list of places at
which it can be found, where the list of places is possibly constrained
by options selected on the form by the user (for example, he may say
that he’s only interested in copies of the file that can be found within
his own domain). The list of hits is then displayed by the browser, and
once again using the mouse, tab key and/or cursor keys, the user selects
one instance of the file of interest; the file has associated with it a hot
spot, so the instant he selects the file from the list, a request is issued to
retrieve the file; assuming that there are no hiccups, the file is fetched
entirely automatically and displayed on the originating screen. If the file
is not displayable for some reason (perhaps it is an executable image,
or something else for which the concept of ‘display’ is ill-defined), the
browser will inform the user and ask if he wishes to save it to a local
disk.

Whilst previous introductions such as GOPHER and WAIS had a rel-
atively modest impact on overall use of the Internet, which in general
continued to be used mainly by academics and hackers, the introduc-
tion of HTML and the concept of the Web brought about a revolution in
Internet usage: commercial companies clamoured to get on-line, govern-
ments put up their own Web pages, and every man and his dog suddenly
appeared to be beset by the need to create a unique and highly individu-
alistic ‘home page’ (Web documents are often regarded as being divided
into pages, by analogy with a paper document, and a ‘home page’ is a
(usually brief) document giving information about the individual who
owns it; many institutions provide facilities whereby each user can cre-
ate his or her own home page without formal approval). The reason for
this sudden change in usage patterns is not hard to explain: whereas the
more traditional Internet tools such as FTP required a modicum of ex-
pertise before they could be successfully used, the various Web browsers
were intentionally designed to be ‘user friendly’ from the very outset,
and this user friendliness together with the ability to seamlessly down-
load and display documents in an astonishing variety of formats without
any expertise whatsoever resulted in an unprecedented rate of take-up
and an almost universal acceptance. There can be little doubt that the
current near-exponential rise in Internet registrations and usage results
almost entirely from the concept and ease of use of the Web.

77

The Web and Publishing: Unlikely Bedfellows?

Whilst it might initially seem that the two themes of this paper rep-
resent quite distinct branches of the evolutionary tree, it did not take
long for those involved in publishing to realise the untapped potential
of the Web: even prior to the establishment of the Web there had been
some experimental use of the Internet for electronic publishing. In par-
ticular, the so-called e-journal EJournal (subtitled Electronic Journal
for Humanists) was a direct electronic analogue of a more traditional
journal, containing scholarly essays as well as shorter “letters to the
editor”. However, EJournal uses simply ASCII text as the communica-
tions medium, whilst the Web potentially allows even greater richness
of medium than any traditionally produced journal, since unlike a paper
journal a Web journal could contain not only text and static graphics
but full motion video and sound as well.

In July 1994 the American Mathematical Society launched a project
entitled “New Media”, chaired by Frank Quinn of Virginia Tech., to
investigate the possibility of developing a multimedium, interactive, hy-
pertextual version of TEX: the brief of the sub-committee established
to investigate this was to “co[-]ordinate the development of a technical
authoring tool which will integrate text, graphics video, non[-]linear doc-
uments, hypertext links, and interactive computation. [The] tool should
share the characteristics of the TEX typesetting system which have made
it so remarkably useful: open file structures, open and portable source
code, a stable standard core, and an uncompromising commitment to
the highest quality. [It] is expected to be an extension of TEX.”.

The rationale behind this proposal is also interesting: “Educational
communities need interactive texts. Technical communities need hyper-
text and non[-]linear document types to tie together complex or cumu-
lative efforts. Users of computation need better ways to document and
illustrate programs. All these capabilities are available now in primi-
tive forms, and authors are pushing ahead. Some are writing interactive
texts using computer mathematics programs. Others are experimenting
with hypertext extensions of TEX, [WWW] documents, etc. Commer-
cial publishers are experimenting with hypertext, CD ROM publication,
and linked databases. In a few years we can expect powerful tools for
constructing interactive multimedia documents. But they may be ‘ac-
cessible’ in the same sense that typesetting was accessible before TEX:
publishers will use expensive proprietary systems with closed file formats,

78

and authors will use a multitude of free or inexpensive systems which
require professional resetting to get professional results. Our experience
with TEX shows that this fragmentation is undesirable and unnecessary.
The HyperMath Project is being organized to avoid it.”.

The introductory document for the project then went on to explain:
“The HyperMath Project is primarily a framework to co[-]ordinate work
already in progress. Several groups have already incorporated simple
hypertext links into versions of TEX. The NTS (New Typesetting Sys-
tem) group is exploring improvements to traditional paper-and-ink type-
setting. Most implementations of TEX have methods for incorporating
graphic material, and there are publicly available packages which do
this. The ‘Interactive Mathematics Text’ project and many groups in
the calculus reform movement are using Mathematica, Maple, MatLab,
and other programs to write interactive texts. These and similar ini-
tiatives can be brought together in the development of a general tool.
But the opportunity is limited. As development proceeds, the costs of
switching to a common standard increase, and the benefits become less
obvious. We should not let this opportunity pass. The Project will spon-
sor working groups and conferences. The working groups will develop
standards and goals, and work on prototypes. Communications among
working groups will be maintained to ensure coherence and uniformity.
And contacts will be developed between developers and end-users to en-
sure that real needs are being addressed. Working groups are planned in
the following areas: traditional text; non[-]linear documents (including
hypertext); inclusions (graphics, video, and sound); interactivity; and
users. The first HyperMath conference is planned for the San Francisco
area in conjunction with the combined math society meeting early in
January, 1995, contingent on funding. The ‘New Media’ subcommittee
of the Publications Policy Committee of the American Mathematical
Society will serve as the advisory board for the HyperMath Project.”

This was heady stuff: sadly by September of the same year it had been
abandoned as being “too ambitious”, and replaced by a more incremental
approach, now entitled “non-traditional forms of publication”. Whereas
the earlier project had been predicated on the development and adop-
tion of enhanced TEX, the new project proposed that “the AMS should
adopt the Adobe portable document format 2.0 as the standard (out-
put) format for electronic publication of documents”. It then went on
to explain that “This does not mean giving up TEX, nor does it solve all

79

TEX problems. It is a proposed replacement for DVI as output, not the
use of TEX source in authoring.” What did this mean?

The first thing to realise is that by now all three threads of this pa-
per have finally come together: TEX, Adobe, and the Web. Whilst
Adobe had been very successful in developing PostScript as a page-
description language, and marketing embedded PostScript inter-
preters for incorporation in laser printers and the like, it had been
somewhat less successful in ensuring that Display PostScript became
established as another de facto standard. Indeed, with the advent
of Ghostscript, a significant future for Display PostScript was by
no means certain, and the proliferation of Web-based browsers (MO-

SAIC, NETSCAPE and the like) which could slave Ghostscript was
a further challenge to Adobe’s position in the marketplace. Unlike
Adobe’s PostScript interpreters and Display PostScript systems,
Web browsers were (and remain) freely available: that is, they are
literally available free of charge, even when they are as sophisticated
as NETSCAPE (which is developed and supplied by a commercial or-
ganisation). Whilst Adobe could maintain its niche as a supplier of
PostScript interpreters, it was becoming clear this was a limited, and
possibly even diminishing, market: if Web-based publication rather than
paper-based publication ever became the norm, the rôle of PostScript
printers and image setters might be seriously challenged as more and
more documents were read from a computer screen rather than from
paper. It was therefore no great surprise when Adobe finally announced
(there had been clues previously, such as their work on so-called ‘multi-
ple master fonts’ and Carousel) their alternative to a Web browser as a
universal document rendering engine: Adobe Acrobat. Just as with the
Web browsers, Adobe Acrobat is available free of charge (indeed, they
send complete CD ROMs containing a full multi-lingual installation kit
at the slightest provocation). And, rather like NETSCAPE, who seek to
recover the costs of developing their browser by selling their Web server,
Adobe will endeavour to recover the cost of the development and produc-
tion of their Acrobat reader by selling the technology which is required
to produce an Acrobat document in the first place.

And what is an Acrobat document? The very same thing that the AMS

are investigating as a possible standard for their mathematical publica-
tions: something written in Adobe Portable Document Format (PDF).
And although in theory one can develop applications of one’s own which
will write PDF, in practice many will elect simply to purchase Adobe Ac-

80

robat (which acts as a pseudo-printer driver for MicroSoft Windows, Ap-
ple Macintosh or Unix systems), or Adobe Acrobat Pro[fessional] (which
also includes Adobe’s “Distiller” to convert PostScript documents into
PDF documents), or Adobe Acrobat Capture (which uses the TWAIN

protocol for scanners to generate PDF documents directly from a scan-
ner). Thus despite their apparent generosity in giving away Acrobat free
of charge, Adobe are (of course) really seeking to increase their market
share by encouraging the purchase of other Adobe products.

HTML or PDF?

With HTML and PDF emerging as the two portable hypertext ex-
change standards, organisations (and, to a lesser extent, individuals) are
going to be forced to make a choice. It may well be that for some appli-
cations the choice will be clear-cut, but for others there may seem little
to choose between the two. It is therefore worth exploring the basic dif-
ferences between HTML and PDF, in order to better allow an informed
choice to be made.

HTML, being SGML, is essentially a very high level, content-oriented,
markup language: its forte is the specification of the content of a doc-
ument, and its weakness is the relatively little control that an HTML

author has over the final appearance of the document. Because it is
so high level, it is not possible using the current received wisdom of
computer science to automatically generate HTML from an arbitrary
document: if a word-processor, for example, is used to prepare a doc-
ument, and if that document has been created ex nihilo without con-
sideration for its logical structure, so that only the final appearance of
the document has been considered, then it is almost certainly impossi-
ble to reverse-engineer the document to ascertain its logical structure: in
these circumstances HTML would have little option but to represent it as
an indivisible bit-map, thereby effectively wasting almost all of HTML’s
functionality. Despite this restriction, HTML has much to offer, for two
main reasons: (1) the tools needed to generate it are already in the pub-
lic domain, although the interface between those tools and pre-existing
software such as word-processors is unlikely to be available (it is far more
likely that word-processor packages will start to be shipped with HTML

drivers, but their use may require a major re-think by the user con-
cerning the the way in which a document is created); and (2) high-level
markup is increasingly recognised as being the way in which to mark

81

up a document: as experience of the use of typesetting systems such as
TEX/LaTEX is gained, it becomes ever more clear that low-level, form-
oriented, markup is simply a dead-end and should rapidly be expunged
from the practices of responsible authors.

PDF, on the other hand, consists essentially of a strict subset of
PostScript with the added functionality of hypertext: PDF documents
can reference other PDF documents using hot spots, rather like HTML.
According to the PDF blurb (this paper is written before my copy of
Adobe Acrobat Pro has arrived, so what follows must be taken as spec-
ulative at the moment):
. Create electronic documents as easily as printing from existing appli-

cations with PDF Writer.
. Protect files with passwords; control access, printing, changing the

document, adding and changing notes, copying text and graphics.
. Find exactly what is needed across multiple PDF files by searching on

keywords, author, title, subject synonyms, etc.
. Re-use information easily by extracting, copying, reordering and re-

placing pages among PDF files – with bookmarks, links and notes
preserved.

. Create custom views into information.

. Add value, set priorities and maintain a dynamic information network
with links, bookmarks, notes and connections to external applications
and documents.

. Take advantage of third-party plug-ins to add new features to Acrobat.

. Integrate Acrobat with desktop applications with Acrobat’s support
for OLE automation, Notes F/X, AppleEvents, and more.
Although perhaps it is too soon to compare HTML and PDF with any

real accuracy, it would seem that at the moment they are intended for,
and best suited for, rather different applications: HTML documents can
either be created ex nihilo (for those who have no better way, simply
cloning and modifying an existing HTML document is an excellent way
to get started), or by using an HTML editor (of which there are already
several in the public domain), or by using a package or packages (for
example, a suitable word-processor) for which an HTML driver already
exists. PDF documents may be created using one of the Adobe tools –
Acrobat Writer, Distiller or Capture – depending on whether or not the
source documents pre-exist. As HTML allows only a degree of control
in the formatting and placement of entities, it is not really suitable for
the presentation of anything other than simple mathematics, although

82

HTML 3 demonstrates that the designers of HTML are aware of many of
the limitations of the previous version, and are working towards a spec-
ification which may ultimately allow arbitrarily complex formulæ to be
displayed. [A comment in the HTML 3 discussion document reads “In-
cluding support for equations and formulæ in HTML 3.0 adds relatively
little complexity to a browser. The proposed format is strongly influ-
enced by TEX.”]. Of course, since HTML allows reference to be made to
non-HTML documents, many of these difficulties can be overcome: an
HTML browser such as NETSCAPE can be configured to invoke an exter-
nal renderer if no internal renderer is suitable for the entity referenced,
and in that way both DVI (from TEX) and PostScript documents can
be referenced from, and displayed from within, an HTML document.
Since both DVI and PostScript are equally suited to the accurate
representation of mathematical material, there is no real reason why a
mathematical document should not be displayed from within an HTML

framework by an HTML browser configured with a suitable external ren-
derer. PDF, on the other hand, has no need for external renderers, since
its native mode of operation uses a strict subset of PostScript; indeed,
Adobe Acrobat is intended to be configurable as an external renderer for
HTML browsers such as NETSCAPE! By using Adobe’s ‘multiple mas-
ter’ font technology, Acrobat can generate a reasonable substitute for
any font specified in a PDF document, even if that font is not avail-
able within the system on which the document is being displayed. It
is by no means unlikely that before very long a DVI-to-PDF driver will
emerge, and in the true tradition of TEX it is also extremely likely that
such a driver will be placed in the public domain; DVI-to-HTML is an
unlikely eventuality, however, since by the time a TEX document has
been converted into DVI, too much information has been lost to allow
the high-level structure of the document to be re-created. On the other
hand, we can certainly envision a format being created for TEX which
embeds \specials in the DVI file to convey information about the high-
level structure of the source document: since the user interface would be
completely unaffected by the presence of these specials, such a format
could appear to the user exactly like any of the present formats or for-
mat variants which support appropriate high-level markup (AMS-TEX,
LaTEX, AMS-LaTEX, LAMS-TEX, etc.). Such specials could then be di-
rectly mapped into HTML constructs, and thus a TEX-to-HTML route
is neither impossible nor unlikely; indeed, it is surprising that no such
extended format has yet been announced (at least, to my knowledge).

83

Finally it is worth remembering that HTML is essentially a distributed
markup language; it is primarily intended for documents which need
to reference other documents which may be anywhere on the Internet;
PDF, on the other hand, is essentially Internet-unaware, and whilst it
can transparently reference other documents that are visible through
(say) NFS (or, using ALEX, anonymous FTP), it makes no assumptions
that documents might be anywhere other than the local filestore or on
a Microsoft-compatible network. [This last sentence is somewhat tenta-
tive: in the absence of the definitive PDF specification, it is somewhat
difficult to accurately interpret the claim that Adobe Acrobat allows
one to “Add value, set priorities and maintain a dynamic information
network with links, bookmarks, notes and connections to external ap-
plications and documents’, but I suspect that the ‘dynamic information
network’ does not allow the transparent referencing of arbitrary Internet
resources, although this may well come in time.]

Computer Typesetting or Electronic Publishing: Pros and Cons

Computer typeset material, particularly that typeset using TEX or a
functionally equivalent system, represents the finest in typeset quality
that can be easily accomplished today; where such computer typesetting
software is unavailable, comparable results can only be accomplished by
a skilled professional using either old-fashioned technology (e.g. hot lead)
or a modern but proprietary system. This is not to say that the use of
a system such as TEX guarantees professional quality results: there are
far too many counter-examples in existence which demonstrate that in
completely unskilled hands, TEX and comparable systems are capable
of generating absolutely appalling results. None the less, in reasonably
skilled hands, and/or using a format package which prevents the au-
thor from making design decisions, TEX is capable of generating results
which meet the highest professional standards, particularly in the field of
mathematics where TEX essentially performs as an ‘expert system’. The
disadvantage of such a system is that in its intermediate form (DVI), a
TEX document is not fully portable: a DVI file contains references to,
but no instances of, fonts; at the point where the DVI file is converted
into its final form (usually paper, but on-screen preview is now also ubiq-
uitous), the same fonts which were used to create the document must
be available in order to render it correctly; in their absence, only a poor
approximation of the intended document is possible. [It is worth noting

84

that the creator and the viewer/printer of a TEX document need a com-
mon set of fonts, but each needs a quite different representation of those
fonts: the creator needs only the font metrics , which specify the height,
depth and width of each glyph, and kerning and ligaturing information
for the glyph set; the viewer/printer of the document can normally get
by without the metrics, but instead needs the actual glyph set, either as
bitmaps or as outlines.]

Electronic publishing, on the other hand, and particularly e.p. accom-
plished through the medium of HTML, does not place any emphasis on
the quality of the end product: indeed, HTML voluntarily cedes control
over the appearance of the final document to the browser used to render
it, although there are some placement options which allow the author a
little control over the final appearance (and there are considerably more
such options in HTML 3). Within an HTML document there is no font
information per se (again, this is true only of current HTML: HTML 3
adds the concept of style sheets, which will “[. . .] eventually lead to
smart layout under the author’s control, with rich magazine style lay-
outs for full screen viewing, switching to simpler layouts when the win-
dow is shrunk”); instead the document consists of a set of high-level
markup tags, which are mapped by the browser to a particular font or
font variant. Whereas a DVI file is a monolithic entity, and makes no
reference to any external resources other than fonts, an HTML file is fre-
quently little more than a container for other HTML files, and may make
reference to an extremely wide range of resources (further HTML files,
images, AFS files, Usenet newsgroups, e-mail addresses, FTP-accessible
files, etc.) which may be anywhere on the network, and which may them-
selves contain further references and so ad infinitum.

PDF is essentially a reasonable compromise between the two: the cre-
ator of the document specifies its appearance, and the PDF reader then
displays that document to the best of its ability: if the fonts needed
to display it properly are embedded, or if they are resident on the tar-
get system, then the document will be displayed exactly as the author
intended; if the fonts are not accessible, then Adobe’s proprietary ‘mul-
tiple master’ technology will be used to interpolate a substitute for the
missing font(s) which allows the original line-breaks, leading, etc., to be
retained. A PDF document may reference further PDF documents, but
these are assumed to be available on the local filestore; there is no appar-
ent support for the automated fetching of remote Internet documents,
although the absence of the PDF documentation at the time of writing

85

makes analysis of this feature rather more of an informed guess that a
definitive statement.

All three formats discussed allow searching to be conducted; within a
DVI file there is no intrinsic support for indexing, but it would not be at
all difficult for a DVI viewer to create a dynamic index to the document
being viewed. Both HTML and PDF allow fully indexed documents to
be referenced.

Publication in the Twenty-First Century

It is no longer possible to assume, as countless previous generations
of scientists have done, that “publication” involves printing on sheets
of paper which are ultimately distributed as a part of a journal or as
a book: increasingly both economic and environmental pressures will
dictate that only essential information be committed to paper, and any-
thing even slightly ephemeral will be restricted to electronic distribution.
At least two de facto standards have already emerged for electronic pub-
lication: HTML, which originates in the distributed and anarchic world
of the Internet; and PDF, which originates in the commercial world.
At the time of writing, HTML is the better established, and two free-
ware browsers are widely used (MOSAIC and NETSCAPE), with a third
(ARENA), being developed specifically to support HTML 3; for PDF,
there is only one reader currently available (Acrobat), and that too is
classified as freeware. HTML devolves to the browser most of the deci-
sions concerning the actual appearance of a document; PDF allows the
author to make most of those decisions, but reserves the right to sub-
stitute interpolated fonts if the genuine article are not available at the
point of rendering. HTML is essentially a distributed protocol, and will
allow bibliographies to reference cited texts no matter where they are in
the world (so long as they are on-line), thereby adding truly incalcula-
ble value to the bibliography of a document; PDF, it would appear, is
essentially a local protocol; whilst bibliographies could still cite full-text
sources, those sources would need to be available to the system on which
the bibliography is being read.

Many issues remain to be resolved before the world can truly move
to electronic publishing as the mainstream form: Internet access in ev-
ery home, office, library, vehicle, and restaurant will be just a start.
There remains the very contentious issue of copyright: whilst there are
usually economic costs associated with the photo-copying of a printed

86

document, the costs of copying an electronic document are virtually nil,
and therefore the enforcement of copyright for electronic publications
is a major concern. It is highly likely that some form of encryption
and licensing will emerge to prevent the unauthorised copying and/or
re-distribution of electronic texts. From the psychological and physio-
logical point of view, displays will need to become significantly better
(in many senses: weight, resolution, glare, portability, etc.) before the
electronic book completely replaces the printed equivalent: few of us,
going on holiday today, would choose to take a notebook computer with
a CD ROM containing the complete works of Shakespeare in preference
to a couple of (disposable) paperbacks. . . Although originally developed
as front ends for the generation of printed material, typesetting systems
such as TEX will almost certainly have a major rôle to play as front ends
for electronic publishing, since (for example) the linear representation
of mathematical formulæ is equally convenient and applicable whether
one’s mathematics are eventually to appear on paper or on a computer
screen. Within ten years, HTML and PDF will appear passé: new stan-
dards emerge faster than most of us can keep up, and today’s technology
is tomorrow’s door-prop. But the future of the book (or even the news-
paper) as the normal means of communication is surely as doomed as
that of the petrol-driven car as the normal means of conveyance; the
first to guess exactly what form the replacement will take may become
as rich as today’s newspaper magnates and publishing house principals;
or perhaps the converse will occur, and the Internet will finally cause
the collapse of the publishing empires, as academics and authors sud-
denly realise that they are no longer beholden to the few. Self-publishing
may become the norm, or peer review may take on an entirely different
form; perhaps a two-tier hierarchy of electronic publishing will emerge,
with unrefereed papers being available via each academic’s home page
whilst those that have survived the refereeing process will be available
from prestigious and highly accredited archives. What is certain is that
almost all of the readers of this paper will find out for themselves what
the future holds, at least as regards computer typesetting and electronic
publishing: the future is just around the corner, and approaching at an
ever increasing speed.

Within the last forty-eight hours, I have learned of two new facts
which significantly impinge on the material above: NETSCAPE have
licensed the use ofPDF technology from Adobe, which will allow them
to incorporate a PDF renderer within their HTML browser, and Michel

87

Goossens & Sebastian Rahtz have demonstrated the feasibility of using
Adobe’s ‘multiple master’ fonts from with TEX; further details of the
latter, including very useful information on multiple master fonts, are
given in the Baskerville issue cited in the Bibliography.

I would like to thank Professor Adam Jakubowski and Jerzy Lud-
wichowski for making it possible for me to present this paper, to
Elżbieta Kuczyńska and Bogumi la Rykaczewska-Wiorogórska (Univer-
sity of Warszawa) for kindly providing two alternative translations of
the abstract into Polish, and to Professors Adam Jakubowski and An-
drzej Jonscher for providing reverse translations into English to enable
me to check the accuracy of the initial translation. I would like to thank
Dr Warren Dicks of the Autonomous University of Barcelona for his
analysis of the problem of the number of visually distinguishable config-
urations of an m×n matrix, as used to establish the number of distinct
characters which can be generated by a 7×5 dot matrix printer. I would
like to thank Dr Frank Quinn of Virginia Tech. and the American Math-
ematical Society for granting me permission to reproduce extracts from
their documents on “The New Media” and “Non-traditional forms of
publication”, and finally I would like to thank Barbara Beeton of that
same Society for allowing herself to be persuaded to review the paper
before publication and for her many helpful comments; needless to say,
any errors which remain are solely my responsibility.

Philip Taylor, RHBNC, University of London; July 28th, 1995

I have not given formal references in the text, since I feel that they are
inappropriate in a paper of this nature; however, the following short list
of publications may be of interest to those who wish to pursue further
the topics discussed here.

“Mathematical Typography” by Donald E. Knuth, Bulletin of the
American Mathematical Society (new series) 1 (March 1979),
337–372. [Reprinted as part 1 of TEX and METAFONT: New
Directions in Typesetting (Providence, R.I: American Mathematical
Society, and Bedford, Mass: Digital Press, 1979).]

“Tau Epsilon Chi, a system for technical text” by Donald E. Knuth,
Stanford Computer Science Report 675 (Stanford, California,
September 1978), 198 pp. [Reprinted as part 2 of TEX and
METAFONT , the book cited above.]

88

“The WEB system of structured documentation” by Donald E. Knuth,
Stanford Computer Science Report 980 (Stanford, California,
September 1983), 206 pp.

“Literate programming” by Donald E. Knuth, The Computer
Journal 27 (1984), 97–111.

“Using Adobe Type 1 Multiple Master fonts with TEX” by Michel
Goossens and Sebastian Rahtz, Baskerville Vol. 5, No. 3 (UK TEX
Users’ Group, June 1995, ISSN 1354-5930), 4–8.

HTTP: A Protocol for Networked Information
http://www.w3.org/WWW/Protocols/HTTP/HTTP2.html

A Quick Review of HTML 3.0
http://www.w3.org/hypertext/WWW/Arena/tour/start.html

HyperText Markup Language Specification Version 3.0
http://www.hpl.hp.co.uk/people/dsr/html3/CoverPage/html

Document Type Definition for the HyperText Markup Language
(HTML DTD)
http://www.w3.org/hypertext/WWW/MarkUp/html3-dtd.txt

Adobe Acrobat http://www.adobe.com/Acrobat/Acrobat0.html

Dvě recenze
Miroslav Dont

G. Grätzer: Math into LaTEX;
A Simple Introduction to LaTEX and AMS-LaTEX

Druhé vydání, Birkhäuser, Boston 1995 (asi listopad), asi 350 stran,
ISBN 0-8176-3805-9, cena asi $42,50.

Některé údaje o této knize jsou poněkud neurčité. Je to dáno tím, že
v době, kdy píši tuto recenzi (srpen 1995), kniha ještě nevyšla. Ke knize
jsem se totiž dostal tak, že jsem měl možnost pomoci autorovi s korek-
turami (jako asi dalších 30 dobrovolníků). Měl jsem tedy v ruce preprint
knihy a recenze se vlastně týká tohoto preprintu. Autor píše, že konečná

89

http://www.w3.org/Protocols/HTTP/HTTP2.html
http://www.w3.org/hypertext/WWW/Arena/tour/start.html
http://www.adobe.com/Acrobat/Acrobat0.html

