
Zpravodaj Československého sdružení uživatelů TeXu

Timothy Eyre
Typesetting Japanese with pTeX

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 20 (2010), No. 3, 152–173

Persistent URL: http://dml.cz/dmlcz/150113

Terms of use:
© Československé sdružení uživatelů TeXu, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150113
http://dml.cz


Sazba japonštiny pomocí pTEXu
Timothy Eyre

Contents
Introduction ......................................................................... 153

1. Acquiring and installing pTEX ............................................... 153
2. Entering Japanese text ......................................................... 154

2.1. Encodings..................................................................... 154
2.2. JWPce ......................................................................... 156
2.3. Adobe Reader ............................................................... 156
2.4. Japanese Fonts 日本語の字体............................................ 156

3. Other Japanese-Capable TEX Systems .................................. 156
4. Creating a document (Plain pTEX, pLATEX) .......................... 158
5. Viewing documents ............................................................... 158

5.1. dvipdfmx...................................................................... 159
5.2. dvipsv.......................................................................... 159
5.3. dvipsk.......................................................................... 159

6. PDF bookmark entries .......................................................... 160
7. Installing new kanji fonts ...................................................... 160

7.1. Available fonts ............................................................... 161
7.2. Installing into pTEX ....................................................... 161
7.3. dvipdfmx...................................................................... 162
7.4. dvips ........................................................................... 162

8. Vertical typesetting ............................................................... 163
9. Ruby ..................................................................................... 164

9.1. Ruby in pLATEX ............................................................. 164
9.2. Ruby in Plain pTEX ....................................................... 165
9.3. Ruby in Plain non-pTEX ................................................. 165

10. Circled characters ................................................................. 166
11. dvipdfmx and PSTricks effects .............................................. 166
12. Mixing vertical and horizontal text ....................................... 167
13. Kanji font selection in LATEX ................................................. 169
14. Missing font shapes ............................................................... 171
15. Underlined Japanese text ...................................................... 172
16. Warichu ................................................................................ 172

References ............................................................................ 173
Summary .............................................................................. 173

152



Abstrakt
Nástroj pTEX je sázecí systém bohatě využívající možnosti TEXu. pTEX je speci-
álně navržen pro sazbu japonštiny a je používán především v Japonsku. Článek
popisuje jak získat, nastavit si a používat pTEX v každodenním životě s prak-
tickými úlohami, a to s důrazem na správu písem. Článek nás také seznamuje
se základy sazby japonštiny obecně a s alternativami vůči systému pTEX.
Klíčová slova: pTEX, pLATEX, W32TEX, sazba japonštiny, kandži, hiragana,
kana, katakana, Unicode, ruby, ČJKV.
doi: 10.5300/2010-3/152

Introduction
The program pTEX from ASCII Media Works is an effective tool for typeset-
ting Japanese. Unfortunately I’ve never been able to find much in the way of
English documentation for pTEX. This article gathers together the knowledge
I’ve accumulated on pTEX through web-searching, inspired guesses, hair-pulling,
inspecting code and doing my best to make sense of the Japanese documentation.

In this article I assume you are using Microsoft Windows. If you use Linux
then you will be sufficiently computer-literate to apply what is written here to
your environment. Macintosh users might also find some of the information here
useful. I have tried the Macintosh distribution of pTEX and it works well. I also
assume that you are familiar with using the MS-DOS command-line interface
and basic tools like gzip and tar.

1. Acquiring and installing pTEX
Point your web browser at www.w32tex.org [1]. This is the download site for
W32TEX. There is an English version of the page. A good thing about this
installation is that the maintainer updates it every few days. Download all the
packages from the Basic and Standard Installation sections. If you fancy any of
the packages in the Full Installation section then download those too.

One of the things I like about W32TEX is that the packages are just gzipped
tar files. The installation includes an installer but you can just gunzip all the
files and tar -xvf them yourself. My W32TEX installation takes up about
250MB of disk space.

Once you’ve done this you’ll need to add c:\usr\local\bin to your path
and modify the texmf.cnf file to reflect your system. Of course, the details of
this are outside the scope of this article.

If you are reading this article then you are probably already familiar with
TEX and therefore probably already have a TEX system installed. If you can

153



get pTEX to work on your existing installation then I’m happy for you. I never
managed to do it. For a while I had a TEX Live installation running alongside a
pTEX installation. This worked fine; I just had to change my path when I was
using Japanese so that I picked up the W32TEX binaries instead of the TEX Live
binaries. Eventually I migrated to W32TEX. W32TEX is what most Japanese
people seem to use. The good thing about W32TEX is that it handles Japanese
without needing any extra configuration.

As an aside, pLATEX seems to be more popular in Japan than LATEX is in the
West. In Japan I see a few books on pLATEX in most larger book shops.

Installation on Linux
You need to find the extra packages for your distribution that include pTEX.
You’ll also need Adobe Reader or xpdf with the Japanese support package;
a Japanese font, such as kochi-mincho.ttf; and dvipdfmx. Once all these are
installed you can compile documents that are in Shift-JIS format by running
ptex -kanji=sjis myfile.sjs
This will probably work. However, when you dvipdfmx myfile.dvi you’ll prob-
ably get a failure.

I fixed this by copying the contents of the cmap directory in my W32TEX
installation to my Linux installation. Then I updated texmf.cnf via
/etc/texmf.d/<somefile>
and
update-texmf
(this seems to be a feature of teTEX) to point at the directory in my installa-
tion that contains my TrueType fonts (/usr/share/fonts/truetype/). Finally
I updated x-cid.map to add the line
rml H kochi-mincho
H refers to something called a CMap resource. You’ll find it in the cmap directory
you copied over.

2. Entering Japanese text

2.1. Encodings
In the world of computers all data is stored as numbers. You will already know
that the characters a–z, A–Z, 1–9 and some punctuation marks are represented
by numbers between 0 and 127. The number used to represent each character
is defined by the ASCII standard1. Because we only need the numbers between

1IBM mainframes use a character encoding called EBCDIC, which does not represent con-
secutive letters by consecutive numbers. I’ve never seen EBCDIC used with TEX.

154



0 and 127 to represent plain English we can store each character in an English
text file as a byte. Languages such as French and Czech that include accented
characters can also be represented by text files that use just one byte for each
character. However, to represent the accented characters they also make use
of the numbers between 128 and 255. You may already know that there is no
one standard for the characters represented by the numbers between 128 and
255; the character that is represented by one of these numbers is defined by the
encoding that is being used.

This state of affairs is reflected in the development of TEX. When Knuth
first released TEX each font had 128 character slots. A later version gave each
font 256 character slots, thus enabling people to use the full width of a byte to
represent character.

Japanese has far more than 256 characters. Therefore we need to use bigger
numbers to represent the characters. This is typically achived by using multiple
bytes to represent each character. Using two bytes provides us with 65,536 slots
to put characters in. This is enough even for Japanese. However, the details of
representing complex writing systems in computers is rather more complex than
this. Full details are beyond the scope of this article and can be found in [2].

One might think that using multiple bytes to represent the world’s most
bewildering writing system is complex enough. However, as is usually the case
with software, we have another layer of complexity: there is no one standard
encoding for representing Japanese characters. The most common ones are Shift-
JIS, ISO-2022-JP (‘JIS’), EUC-JP and the various encodings of the Unicode
character set such as UTF-8, UTF-16 and UTF-32.

Unicode and its encodings are the closest we have to an industry-wide stan-
dard for encoding the written word. A disadvantage of the UTF-16 and UTF-32
encodings of Unicode is that if you send Japanese text encoded in one of these
formats to a destination that can read ASCII but not Unicode then the recipi-
ent cannot read any of the text. This would be particularly unfortunate if there
were only a few Japanese characters in the message. This is the advantage of
the UTF-8 encoding; it keeps all the ASCII characters as single bytes of ASCII.
The disadvantage of UTF-8 is that it uses significantly more bytes than UTF-16
to encode the same number of non-ASCII characters. UTF-32 is inefficient in
its use of space and is rarely used.

The JIS encoding was devised in Japan; it stands for Japanese Industrial
Standard. This system has the same disadvantage as Unicode in that Western
characters will not survive if the JIS text is displayed on a JIS-incapable device.
Thus Shift-JIS (sometimes written S-JIS or SJIS) was devised. Confusingly, it
was devised by a Japanese company called ASCII Media Works in collaboration
with Microsoft. Microsoft adopted this encoding (in a slightly modified form) so
it is widely used. ASCII Media Works also produced pTEX so, not surprisingly,

155



the native encoding of pTEX is Shift-JIS. I always use Shift-JIS unless I have a
good reason to do otherwise.

I don’t know anything about the EUC-JP encoding except that it tends to
be used on UNIX systems. For information on the EUC-JP encoding and com-
prehensive information on handling Chinese, Japanese, Korean and Vietnamese
on computers see [2].

2.2. JWPce
Western versions of Microsoft Windows XP and above include a Japanese text
entry system; you just need to fiddle with the settings in the Control Panel to
get it working. It works with Notepad and if you’re lucky it might work with
your favourite text editor. Powerful though this input method is, it is more
aimed at native Japanese speakers than students of the language.

Much better for people like me is JWPce [3]. It’s a free download and comes
with plenty of help and documentation. Features that are useful for students
include the built-in dictionary and the built-in kanji information look-up. It also
has three Japanese fonts built into it.

Download JWPce from [3] and install it. When you save your TEX source
use the Shift-JIS encoding (.sjs).

2.3. Adobe Reader
You will probably want to view your pTEX creations as pdf files. If you don’t
already have Adobe Reader installed, install the latest version. Also install the
Japanese language pack. The fonts included in this language pack are enough
to get you going with pTEX. You don’t even need the Windows Japanese fonts.

In Japan people seem to use a dvi previewer called DVIout. It is also possible
to run a Japanese-enabled version of dvips (see below) and view the results using
GhostView.

2.4. Japanese Fonts 日本語の字体
If you want to view your pTEX output as PostScript then you will need to install
the Windows Japanese fonts. You can do this from the Control Panel. The fonts
are called msmincho.ttc and msgothic.ttc. Yes, it is counter-intuitive to need
TrueType fonts to view a PostScript document.

3. Other Japanese-Capable TEX Systems
There is a LATEX package called CJK that provides another way to typeset
Japanese text in TEX. It allows you to typeset Korean and Chinese as well
as Japanese. It has documentation in English.

156



The future of polyglot TEX typesetting appears to lie with X ETEX. This
system has now been ported from the Macintosh OS X platform to both Linux
and Windows. The Windows installation is done as a bolt-on to W32TEX;
the W32TEX download site includes a binary package and English installation
instructions. I have got both these systems up and running. The Windows in-
stallation took a matter of minutes. X ETEX is now also available with TEX Live.

There is a Japanese version of a program called Omega, a version of TEX that
can handle 16-bit encodings. There seems to be little activity or documentation
on this project.

jTEX is an early (c.1987) Japanese-enabled TEX variant created by NTT. It
is still available for download but has been largely superseded by pTEX. An
article on the development of this package has been published in TUGboat [4].

The UMS package allows you to put Japanese text in a file that is to be
compiled by pdfTEX or pdfLATEX. You use it by producing a Shift-JIS source
file, running this file through a program called topdftex and the sending the
result to pdfLATEX with the UMS package included. One reason for doing this
rather than using pTEX and dvipdfmx is that you might want to use some feature
that is specific to pdfTEX.

A sample input file is as follows:
\documentclass[12pt]{article}
\usepackage{ums}
\begin{document}
私は魚に興味があります。
\end{document}

The commands you need to run to obtain a pdf document from a Shift-JIS
format file using pdfLATEX are as follows.
topdftex source.sjs tmp.sjs
pdflatex tmp.sjs
When you run topdftex, the resulting file tmp.sjs should look like this:
\documentclass[12pt]{article}
\usepackage{ums}
\begin{document}
\UMS{79C1}\UMS{306F}\UMS{9B5A}\UMS{306B}\UMS{8208}...
\end{document}
To set up the UMS package you need to run the batch jobs in the following two
directories
C:\usr\local\share\texmf\fonts\type1\public\omegaj\msmin
C:\usr\local\share\texmf\fonts\type1\public\omegaj\msgoth
to create all the .pfb files. This in turn requires you to install the W32TEX
Omega packages.

157



pTEX is the most popular solution in Japan and, as such, has plenty of
Japanese-specific macros available. Judging from the questions on the TEX
newsgroup, comp.text.tex the CJK package is the most popular solution out-
side Japan. X ETEX describes itself as experimental software whereas pTEX has
had many years of field hardening. Both the CJK package and the X ETEX sys-
tem support writing systems other than Japanese whereas pTEX only supports
Japanese in addition to those supported by ordinary TEX.

4. Creating a document

Plain pTEX
A remarkable feature of pTEX is that you can enter Japanese text in-line with
Western text without any extra markup. pTEX handles all the font switching
internally. Here is a simple document in Plain pTEX. Save the file in Shift-JIS
(.sjs) format.
The Japanese symbol for fish is 魚.
\bye

pLATEX
Using pLATEX is no more complex; again pLATEX handles everything for you. The
only difference is that if your document is intended to be read as being mainly
Japanese you should use
\documentclass{jarticle}
instead of
\documentclass{article}
This makes the output caption figures with図 instead of Figure and so on. Here
is a simple example:
\documentclass{jarticle}
\begin{document}
鯨は魚ではありません。
\end{document}

5. Viewing documents

Once you have written your pTEX or pLATEX source file you compile it in the
obvious way:
c:\work>ptex my_document.sjs
or

158



c:\work>platex my_platex_document.sjs
The resulting file is called my_document.dvi. However, the file format is not

standard dvi so the standard versions of dvips and dvipdfm will not be able to
convert it into a viewable format. Because of this pTEX is not strictly speaking
a version of TEX at all. pTEX does not pass the trip.tex test either [6]; this
disqualifies it from being a true TEX. However, you are unlikely to notice any
problems in practice.

5.1. dvipdfmx
To convert your .dvi file into pdf format, run it through dvipdfmx. This pro-
gram comes with the W32TEX installation and does not need any configuration.
Run the following two commands and, assuming you have bound .pdf files to
Adobe Reader, your document should appear on the screen.
c:\work>dvipdfmx my_platex_document
c:\work>start my_platex_document.pdf

5.2. dvipsv
The dvipsv program is a version of dvips enhanced to handle the pTEX .dvi
format and embed the TrueType fonts in the document. If you want PostScript
output then this is probably the one to use. It produces large output files because
of the embedding. Obviously, you need GhostScript and GhostView installed to
view the output.
c:\work>dvipsv my_platex_document
c:\work>start my_platex_document.ps

5.3. dvipsk
There is a bit of naming convention confusion here. Radical Eye now call dvips:
dvipsk. However W32TEX calls the executable for the standard, non-pTEX
version of dvipsk: dvips.exe. The executable for the version of dvipsk that
can handle pTEX output is called dvipsk.exe.

The advantage dvipsk.exe has over dvipsv.exe is that it produces smaller
output files and runs more quickly. The disadvantage is that it does not embed
the fonts in the output so you need to have the fonts installed on the system
where you are going to view the PostScript file. Furthermore, if you install a
new Japanese font on your system then you need to modify your GhostScript
configuration files before you can view your new document. This is covered in
detail in a later section.

W32TEX also includes a program called udvips. It appears to produce out-
put identical to dvipsk.

159



6. PDF bookmark entries

You have to do a bit of extra work to get pdf bookmarks to work in Japanese
script. The pdf special tounicode is the key. For Plain pTEX the source would
look like this:
\def\bookmark#1{\special{pdf: out 1 << /Title (#1) /Dest

[ @thispage /FitH @ypos ] >>}}%
\special{pdf:tounicode 90ms-RKSJ-UCS2}
\bookmark{日本語 1}
\bye
and in pLATEX
\documentclass{jarticle}
\def\bookmark#1{\special{pdf: out 1 << /Title (#1) /Dest

[ @thispage /FitH @ypos ] >>}}%
\AtBeginDvi{\special{pdf:tounicode 90ms-RKSJ-UCS2}}
\begin{document}
\bookmark{日本語 1}
Hello
\end{document}

This technique works for annotations (sticky notes) in dvipdfm too. For
Plain pTEX source it would look like this
\special{pdf:tounicode 90ms-RKSJ-UCS2}
いろはにほへと
\special{pdf: ann width 3.0in height 36pt
<< /Type /Annot /Subtype /Text
/Contents (日本語) >>}
Sphinx of black quartz, judge my vow.
\bye
Determining whether tounicode works for other dvipdfmx contructs too is left
as an exercise for the reader. The following standard hyperref package code
placed in the preamble to a document will produce pdf bookmark entries:
\special{pdf:tounicode 90ms-RKSJ-UCS2}
\usepackage[dvipdfm,bookmarks=true,%
bookmarksnumbered=true,bookmarkstype=toc,%
colorlinks,linkcolor=blue,urlcolor=blue]{hyperref}

7. Installing new kanji fonts

The default installation of W32TEX appears to use Microsoft Mincho and Gothic
as its only fonts. However, if you use dvipdfmx you actually see the Adobe

160



Reader fonts; dvipdfmx writes the pdf file specifying the Adobe Reader fonts as
substitutes. To get the real Microsoft Mincho and Gothic fonts you need to run
dvipdfmx -f msembed.map file.dvi
This results in a larger pdf file because the font is now embedded within it.

When I first started using pTEX I was grateful to be able to typeset Japanese
at all; it seemed greedy to want to use other fonts. However, after using pTEX
for a while you might want to use a completely different font. It is possible to
install new Japanese TrueType fonts into W32TEX. This section explains how.

7.1. Available fonts
There are dozens of free Kanji fonts out there. Do a web search to find them.
Epson in particular have a bundle of several Japanese fonts that they give away.
Try searching for epkyouka.ttf. One of the most famous free TrueType fonts
comes from Netscape and is called Cyberbit. I have created two Kanji fonts: the
Kanji Stroke Order Font [6] and the (unmaintained) Choumei font [6], which is
simply the Kanji Stroke Order Font with the stroke numbers removed.

If you are learning kanji then it’s worth looking at the kyoukasho 　
きょうかしょ

教科書　
fonts. These are the Japanese equivalent of the Western ‘Schoolbook’ fonts and
are designed explicitly for teaching Japanese. A Japanese calligraphy teacher
recommended the commercial Iwata Gakusen Kyoukasho (Ｇーイワタ中太教科
書体) font to me. This font costs about ￥12,000 (appr. 2700 CZK; 105 EUR).

7.2. Installing into pTEX
First install the font in Microsoft Windows. Let’s call it epkyouka.ttf. You
should have a file called c:\windows\fonts\epkyouka.ttf on your system. In
your local texmf tree (such as c:\work\texmf} copy
fonts\tfm\dvips\rml.tfm to fonts\tfm\dvips\epk.tfm
copy
fonts\tfm\ptex\min10.tfm to fonts\tfm\ptex\schoolbook.tfm
and copy
fonts\vf\ptex\min10.vf to fonts\vf\ptex\schoolbook.vf.

Open fonts\vf\ptex\schoolbook.vf in a text editor and change the three
letters rml to epk. What we’ve done here is to create the .tfm files that pTEX
uses for a new font and to create a virtual font so we can view it.

Run mktexlsr (or equivalent) so that kpse knows about your new files. You
should now be able to run a file like the following through pTEX.
\font\schlbk=schoolbook at 12pt
\tenmin 鮭は魚です。
\schlbk 鮭は魚です。
\bye

161



7.3. dvipdfmx
These metric files are not much use unless you can view the output. To do this
you must tell dvipdfmx about the new font. The best way to do this is to modify
msembed.map. Copy it into your local texmf tree and add the following line
epk H :0:epkyouka

Run mktexlsr again and then do
dvipdfmx -f msembed.map test.dvi
You should get the pdf file. When you open it with Adobe Reader, the document
properties should tell you that the Microsoft Mincho and Epson Kyoukasho fonts
are both present in the document.

There are some advanced options you can put in the msembed.map file. For
example
epk H :0:epkyouka,Bold
gives you a bold version of the font. BoldItalic and Italic are also valid keywords
here. My experiments indicate that this doesn’t work very well; the fonts appear
in the modified form in Adobe Reader but do not come out on the printer. This
is no great loss; ransom-note typography is best left alone. Some TrueType
fonts contain multiple versions of themselves in the same file. You can access
the different versions by changing the number between the colons:
xyz H :1:complexfont

The H refers to whether the font is for horizontal or vertical typesetting.
I haven’t tried installing a vertical version of a font.

7.4. dvips
It is also possible to use TrueType kanji fonts with dvipsv and dvipsk.

For dvipsv, locate psfontsv.map, take a copy into your local texmf tree
and add the following line.
ekn r-epson-kyoukasho <‘r-epson-kyoukasho

Next locate vfontcap in the main texmf tree, save off a backup and modify
it where it is (kpse doesn’t seem to find it if I put it in my local texmf tree) to
add the following lines.
r-epson-kyoukasho:\
:ft=freetype:\
:ff=c\:/windows/fonts/epkyouka.ttf:

Run mktexlsr and then dvipsv test.dvi and you should get a PostScript
version of your document.

If you want a PostScript file that does not embed the kanji font then you can
also configure dvipsk to use a new TrueType font. First update psfonts.map
to include the line

162



ekn epson-kyoukasho-H
Then update the file cidfmap in your GhostScript installation (try looking for
c:\gs\gs8.51\lib\cidfmap) to include the following line (split into two lines
here so it will fit on the page)
/epson-kyoukasho << /FileType /TrueType /SubfontID 0 /CSI

[(Japan1) 3] /Path (C:/WINDOWS/fonts/epkyouka.ttf) >> ;
I find that documents created this way take a long time to open in GhostView.

Furthermore, one document with dozens of different fonts in it that I tried
crashed GhostScript. Therefore I can’t recommend this method.

8. Vertical typesetting

Traditionally Japanese is written from top to bottom and from right to left. One
of the strengths of pTEX is that it has native support for this format.

To typeset a document vertically in Plain pTEX use \tate at the start of
the document and declare the font you want to use (\tentmin is the only one
I know works):
\tate\tentmin
私はイギリス人です。
\bye
Then convert the .dvi file to a landscape pdf as follows
dvipdfmx -l sample

In Japanese tate 　
たて

縦　 means vertical.
As you would expect from Plain TEX, the rest of the document formatting

needs work before you can use this method for a real document. However, using
pLATEX you get everything done for you. All you have to do is change the
\documentclass{jarticle}
in the preamble to
\documentclass{tarticle}
For example
\documentclass{tarticle}
\begin{document}
鯨は魚ではありません。
\end{document}
gives you something like Figure 1.
Again you need to convert the .dvi file to a landscape pdf as follows
dvipdfmx -l sample
That’s right, you can take your horizontally-orientated document and convert it
to vertical format by changing just one character.

163



鯨
は
魚
で
は
あ

り
ま
せ
ん
。

Figure 1: Vertical Japanese.

9. Ruby

Ruby is the typographical name for furigana. These are small kana characters
written near a kanji to clarify its reading, like this: 　

さかな

魚　.

9.1. Ruby in pLATEX
To use ruby in your pLATEX document include
\usepackage{sfkanbun}
\usepackage{furikana}
in your pLATEX document’s preamble. There are two macros and a variety of
options. The following code yields the example in Figure 2.
\documentclass[12pt]{tarticle}
\usepackage{sfkanbun}\usepackage{furikana}
\begin{document}
\kana{私新聞魚犬}{わたししんぶんさかないぬ}\par
\kana[0]{私}{わたし}\kana[0]{新聞}{しんぶん}\kana[0]{魚}{さかな}%
\kana[0]{犬}{いぬ}\par
\kana[1]{私}{わたし}\kana[1]{新聞}{しんぶん}\kana[1]{魚}{さかな}%
\kana[1]{犬}{いぬ}\par
\kana[2]{私}{わたし}\kana[2]{新聞}{しんぶん}\kana[2]{魚}{さかな}%
\kana[2]{犬}{いぬ}\par
\kana[3]{私}{わたし}\kana[3]{新聞}{しんぶん}\kana[3]{魚}{さかな}%
\kana[3]{犬}{いぬ}\par
\kana[4]{私}{わたし}\kana[4]{新聞}{しんぶん}\kana[4]{魚}{さかな}%
\kana[4]{犬}{いぬ}\par
\Kana{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\Kana[0]{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\Kana[1]{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\Kana[2]{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\Kana[3]{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\Kana[4]{私,新,聞,魚,犬}{わたし,しんぶん,さかな,いぬ}\par
\end{document}

164



　
わ
た
し
し
ん
ぶ
ん
さ
か
な
い
ぬ

私
新
聞
魚
犬
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん

新
聞
　
　
さ
か
な
魚
　
　
い
ぬ犬
　

　わ
た
し
私
　
　
し
ん
ぶ
ん

新
聞
　
　さ
か
な
魚
　
　
い
ぬ犬
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん

新
聞
　
　
さ
か
な
魚
　
　
い
ぬ犬
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん

新
聞
　
　
さ
か
な
魚
　
　
い
ぬ犬
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん

新
聞
　
　
さ
か
な
魚
　
　
い
ぬ犬
　

　わ
た
し
私
　
　し
ん
ぶ
ん
新
　
　さ
か
な
聞
　
　
い
ぬ魚
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん
新　
　
さ
か
な
聞
　
　
い
ぬ魚
　

　わ
た
し
私
　
　し
ん
ぶ
ん
新
　
　さ
か
な
聞
　
　
い
ぬ魚
　

　
わ
た
し
私
　
　し
ん
ぶ
ん
新
　
　
さ
か
な
聞
　
　
い
ぬ魚
　

　
わ
た
し
私
　
　
し
ん
ぶ
ん
新　
　
さ
か
な
聞
　
　
い
ぬ魚
　

　
わ
た
し
私
　
　し
ん
ぶ
ん
新
　
　
さ
か
な
聞
　
　
い
ぬ魚
　

Figure 2: Demonstration of ruby macro syntax.

9.2. Ruby in Plain pTEX
It is possible to modify the file furikana.sty to allow you use its ruby macros
in Plain pTEX. Here is a summary of what you need to do (I don’t recommend
this for beginners):
– Copy furikana.sty to plain_furikana.tex. Do the edits that follow on the
latter file;
– Remove the lines that start \typeout;
– Remove the paragraph before the line that reads \let\rubykatuji=\tiny;
– Change \@s@sf to \asasf throughout;
– Remove the \kana macro;
– Change the \k@na@ macro so that it always takes five parameters and rename
it to \kana. Parameter #1 is the ruby style, parameters #4 and #5 define the
font and size used for the ruby. Add
\font\tiny=#4 at #5pt\def\@rubykatuji{\tiny}\def\rubykatuji{\tiny}
to the macro after the line \xkanjiskip=0pt; and
– Remove \endinput at the end of the file.
You can then use ruby in a Plain pTEX document by adding
\input plain_furikana.tex
near the start of the document and entering things like
\kana{1}{私}{わたし}{epkyo}{6}
This works in both horizontal and vertical modes. You may want to define your
own two-parameter macro that sets the other parameters automatically. \Kana
remains a pLATEX-only macro.

9.3. Ruby in Plain non-pTEX
The Plain pTEX version of the furikana.sty macro described in the previous
section requires that you use pTEX. The following macro allows users to use
ruby in any version of TEX. An obvious application is to typeset ruby when
using X ETEX. The furikana.sty macro does not work in pLATEX \section{}
headings, so this macro could also be useful when typesetting with pLATEX.

165



However, this macro results in corrupted pdf bookmarks when combined with
the hyperref package. This macro could even be used with jTEX or Plain TEX
(fonts permitting).
\font\tinyjapanese=min10 at 6pt%
\def\furigana#1#2{\leavevmode%
\setbox0=\hbox{#1}\setbox1=\hbox{\tinyjapanese#2}%
\ifdim\wd0>\wd1\dimen0=\wd0\else\dimen0=\wd1\fi%
\hbox{\vbox{\hbox to\dimen0{\tinyjapanese\hfil#2\hfil}%
\nointerlineskip\hbox to\dimen0{\hfil#1\hfil}}}}
The furikana.sty macros produce more elegant output and provide more for-
matting flexibility than this macro:

No ruby: 日本で働いた
furikana.sty: 　

にほん

日本　で　
はたら

働　いた

\furigana{}{}:
にほん

日本で
はたら

働いた

You are likely to want to tweak the macro described in this section to suit your
particular application.

10. Circled characters

Japanese text (especially reference works) sometimes makes use of characters
with circles around them. The macros \psCirclebox and \pscirclebox pro-
vided by the PSTricks macro package work well for producing Japanese char-
acters with circles around them. The disadvantage is that you then have to
produce your document as a PostScript file rather than a pdf file. The best way
to handle this is to use GhostScript to convert your document to pdf like this:

gswin32c -sDEVICE=pdfwrite -sOutputFile=circle.pdf
-dNOPAUSE -dBATCH -q circle.ps

The output looks bad in Adobe Reader but looks fine when you print it.

11. dvipdfmx and PSTricks effects

The fancy text colouring and rotation dvipdfm(x) and PSTricks provide work
just as well with Japanese text as they do with Western text. The following
sample code produces the garish example in Figure 3.

166



Figure 3: Using PSTricks on Kanji.

\documentclass[11pt]{article}
\usepackage{pstricks}
\usepackage{pst-grad, pst-plot, pst-text, pst-char}
\begin{document}
\begin{pspicture}(0,-1)(8,2)
\pscharpath[linecolor=Yellow,fillstyle=gradient,%
gradbegin=Yellow,gradend=Red,gradmidpoint=1,gradangle=5]%
{\font\tmp=goth10 at 1.5cm\tmp 建前}
\end{pspicture}
\end{document}

12. Mixing vertical and horizontal text

This might seem like an exotic requirement and I have to admit I’m unlikely to
use it myself. However, Japanese newspapers often mix vertical and horizontal
text. You can do this in pTEX using minipage:

167



私は魚が好きです。私は魚が好きです。私は
魚が好きです。私は魚が好きです。私は魚が
好きです。私は魚が好きです。

鯨
は
魚
で
は
あ
り
ま
せ
ん
。
鯨
は
魚
で
は

あ
り
ま
せ
ん
。
鯨
は
魚
で
は
あ
り
ま
せ
ん
。

鯨
は
魚
で
は
あ
り
ま
せ
ん
。

私は魚が好きです。私は魚が好きです。私は
魚が好きです。私は魚が好きです。私は魚が
好きです。私は魚が好きです。

Figure 4: Vertical Japanese within horizontal.

\documentclass{jarticle}
\usepackage{plext}
\begin{document}
私は魚が好きです。私は魚が好きです。私は魚が好きです。
私は魚が好きです。私は魚が好きです。私は魚が好きです。

\begin{minipage}<t>{16zw}
鯨は魚ではありません。鯨は魚ではありません。
鯨は魚ではありません。鯨は魚ではありません。
\end{minipage}

私は魚が好きです。私は魚が好きです。私は魚が好きです。
私は魚が好きです。私は魚が好きです。私は魚が好きです。
\end{document}

Which yields something like Figure 4. The full syntax for minipage is de-
scribed in the platex.tex format file as follows:

168



\begin{minipage}<dir>[pos]{width}...\end{minipage}
dir: t ... force tate mode.

y ... force yoko mode.
z ... rotate 90 degree (ignored at yoko mode).

Yoko means horizontal mode. This syntax encourages the following test:
\documentclass{tarticle}
\usepackage{plext}
\begin{document}
私は魚が好きです。私は魚が好きです。私は魚が好きです。
私は魚が好きです。私は魚が好きです。私は魚が好きです。

\begin{minipage}<y>{16zw}
鯨は魚ではありません。鯨は魚ではありません。
鯨は魚ではありません。鯨は魚ではありません。
\end{minipage}

私は魚が好きです。私は魚が好きです。私は魚が好きです。
私は魚が好きです。私は魚が好きです。私は魚が好きです。

\begin{minipage}<z>{16zw}
鯨は魚ではありません。鯨は魚ではありません。
鯨は魚ではありません。鯨は魚ではありません。
\end{minipage}

私は魚が好きです。私は魚が好きです。私は魚が好きです。
私は魚が好きです。私は魚が好きです。私は魚が好きです。
\end{document}
Which yields something like Figure 5. Note that a zw is a new unit of width
introduced by pTEX.

13. Kanji font selection in LATEX

One way to make the default kanji text font in a LATEX document be a new
one is brute force: \font\normal=epkyo at 13pt \normal. However, LATEX
has a system for defining font sizes consistently and it is more architectural to
use that. I think what follows is pretty much the same as you’d do for a new
Western font except that \rmdefault is replaced by \mcdefault.

What you need to do is copy jy1mc.fd and jt1mc.fd from your installation
pTEX tree to your local texmf tree (I put mine in ptex\platex\base) and
rename them as jy1ep.fd and jt1ep.fd, where ep represents your new font.

169



私
は
魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は

魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は
魚
が

好
き
で
す
。
私
は
魚
が
好
き
で
す
。

鯨は魚ではありません。鯨は魚では
ありません。鯨は魚ではありません。
鯨は魚ではありません。

私
は
魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は

魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は
魚
が

好
き
で
す
。
私
は
魚
が
好
き
で
す
。

鯨
は
魚
で
は
あ
り
ま
せ
ん
。
鯨
は
魚
で
は

あ
り
ま
せ
ん
。
鯨
は
魚
で
は
あ
り
ま
せ
ん
。

鯨
は
魚
で
は
あ
り
ま
せ
ん
。

私
は
魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は

魚
が
好
き
で
す
。
私
は
魚
が
好
き
で
す
。
私
は
魚
が

好
き
で
す
。
私
は
魚
が
好
き
で
す
。

Figure 5: Horizontal Japanese within vertical.

Change all the instances of mc in the files to ep. Then you need to change the
following code
\DeclareFontShape{JY1}{mc}{m}{n}{<5> <6> ... <10> sgen*min

<10.95><12><14.4><17.28><20.74><24.88> min10
<-> min10
}{}

to
\DeclareFontShape{JY1}{ep}{m}{n}{<-> s*[1.3] epkyo}{}
Obviously you should replace ep here with your own font’s name. The [1.3] is
the magnification over the design size of the font (deliberately set high here at
130% because the Epson Kyoukasho font is rather small). The s* means, ‘I don’t
care what size this ends up being so LATEX should not warn me when it sees sizes
it does not recognize’. The epkyo is the name of your font, which should exist
as a .tfm file. All those numbers in pointy brackets and the sgen*min in the
original are to do with fized sizes of the font and appear to be unneccesary in
modern installations.

Once you’ve done this, create a file called myfont.sty in your local texmf
tree and put something like the following code in it.
\ProvidesPackage{epkyo}
\renewcommand{\mcdefault}{ep}
\endinput

170



Then run mktexlsr, put \usepackage{epkyo} in the preamble to your docu-
ment and you should get your new font. If you want to change your gothic font
rather than your mincho font then the above should work substituing gt for mc
throughout. I haven’t tried it.

14. Missing font shapes

You may find that pLATEX complains about missing font shapes when compiling
documents. The messages are benign because the pLATEX font code sensibly
substitutes other fonts in their place. You can prevent these warnings by adding
the missing shapes to the files jt1ep.fd and jy1ep.fd described in Section 13
so that they look like this:
\DeclareFontShape{JT1}{ep}{m}{n}{<->s*[1.3] epkyo}{}
\DeclareFontShape{JT1}{ep}{m}{sc}{<->ssub*ep/m/n}{}
\DeclareFontShape{JT1}{ep}{bx}{n}{<->ssub*gt/m/n}{}
and this:
\DeclareFontShape{JY1}{ep}{m}{n}{<-> s*[1.3] epkyo}{}
\DeclareFontShape{JY1}{ep}{m}{sc}{<-> ssub*ep/m/n}{}
\DeclareFontShape{JY1}{ep}{bx}{n}{<-> ssub*gt/m/n}{}
It’s the middle line in each of these that is new. pLATEX also complains about
the gothic kanji font shapes that one might have thought it would have defined
itself (the file that does this seems to be plfonts.dtx). The myfont.sty file
is a convenient (albeit unarchitectural) place to fix this up. You can do so by
adding the following two lines so it looks something like this:
\ProvidesPackage{epkyo}
\renewcommand{\mcdefault}{ep}
\DeclareFontShape{JT1}{gt}{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1}{gt}{m}{it}{<->ssub*gt/m/n}{}
\endinput

If you are not setting up your own fonts and just want to suppress warnings
in a document compiled using the default fonts then another approach (the one
used in this document) is to define a new style file that declares the font shapes
that pLATEX is complaining about. Mine is called noswarn.sty:
\ProvidesPackage{noswarn}
\DeclareFontShape{JT1}{gt}{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1}{gt}{m}{it}{<->ssub*gt/m/n}{}
\DeclareFontShape{JT1}{mc}{m}{sc}{<->ssub*gt/m/n}{}
\DeclareFontShape{JY1}{mc}{m}{sc}{<->ssub*gt/m/n}{}
\endinput

171



Put \usepackage{noswarn} in your document’s preamble and run mktexlsr.
Next time you compile your documents the warnings should have stopped. If you
still get some warnings then try adding the shapes that pLATEX is complaining
about to the style file.

15. Underlined Japanese text

Though underlining text is considered bad typography, it is easy to do in pTEX
if you are in horizontal mode. Just use
{$\underline{\hbox{鯨を食べないで下さい}}$}
to get 鯨を食べないで下さい.

I have seen pLATEX packages that do underlining but all the documentation
was in Japanese. I think they handle vertical format text.

16. Warichu

Warichu or 　
わりちゅう

割り注　 is a form of inserted notes within Japanese text. The char-
acters are half the height of the main text. This facility is available in pLATEX
using the warichu.sty package. Figure 6 shows an example of text that includes
warichu. I generated the first block of text in Figure 6 from the code:
田中先生は\warichu{本}{教科書だけです。小説がきらいです。}が好きです。
In general, the syntax is
\warichu{X}{Y}Z
where X denotes the last ordinary character before the notes, Y denotes the notes
themselves and Z denotes the characters that come after the notes.

This typographical device is more commonly used in vertical format. In tate
mode one uses the macro \twarichu rather than \warichu. I generated the
second block of text in Figure 6 using the above code with \twarichu substituted
for \warichu.

The warichu.sty macros \warigaki and \twarigaki are similar to the
macros \warichu and \twarichu except that they only take one parameter and
they omit parentheses from the result. The third and fourth blocks of text in
Figure 6 give examples. I generated the third block of text in Figure 6 from the
following code:
田中先生は本\warigaki{教科書だけです。小説がきらいです。}が好きです。

There are two limitations to the warichu.sty package. First, it does not
support line-breaking for warichu; all your notes have to be on a single line.
Only painstaking manual tweaking could produce multi-line warichu. Second,
by default the font used for the warichu text is simply a scaled-down version of

172



the main text font. Ideally the weight of the strokes in the warichu text would
match that in the main text. A good knowledge of LATEX and pLATEX font
management would probably allow an expert user to get around this problem.
This could be done by switching to a weightier version of the main text font for
the warichu text. がんばって。

田中先生は本
( 教科書だけです。小説がきらいです。)が
好きです。

田
中
先
生
は
本

（
教
科
書
だ
け
で
す
。

小
説
が
き
ら
い
で
す
。

）
が

好
き
で
す
。

田中先生は本
教科書だけです。
小説がきらいです。が好
きです。

田
中
先
生
は
本

教
科
書
だ
け
で
す
。

小
説
が
き
ら
い
で
す
。

が
好

き
で
す
。

Figure 6: Examples of the use of the warichu macros. From left to right:
\warichu, \twarichu, \warigaki, \twarigaki.

References
[1] W32TEX download page in English: http://www.w32tex.org/
[2] Lunde, Ken. CJKV Information Processing. Second Edition, O’Reilly Media,

2009. ISBN 978-0-596-51447-1.
[3] http://www.physics.ucla.edu/~grosenth/jwpce.html
[4] Saito, Yasuki. Report on jTEX: A Japanese TEX. In TUGboat, Volume 8,

Number 2, pp. 103–116, July 1987. ISSN 0896-3207. Available at http://
tug.org/TUGboat/Articles/tb08-2/tb18saito.pdf

[5] http://oku.edu.mie-u.ac.jp/~okumura/texfaq/japanese/ptex.html
[6] http://nihilist.org.uk/

Summary: Typesetting Japanese with pTEX
pTEX is a TEX-like typesetting system that is specifically designed for typesetting
Japanese and is widely used in Japan. This article describes how to acquire, set
up and use a pTEX system in practice, with an emphasis on font management.
It also provides basic background information on Japanese text processing and
alternatives to pTEX.
Keywords: pTEX, Japanese, kanji, kana, Unicode, ruby, CJKV.

Timothy Eyre, mail@nihilist.org.uk
CSTUG c/o FEL ČVUT, Technická 2

Prague, CZ-166 27, Czech Republic

173


