Zpravodaj Ceskoslovenského sdruZeni uZivateli TeXu

Timothy Eyre
PDFdiff: A PDF File Comparison Script

Zpravodaj Ceskoslovenského sdrugent ufivatelii TeXu, Vol. 20 (2010), No. 3, 208-214

Persistent URL: http://dml.cz/dmlcz/150122

Terms of use:

© Ceskoslovenské sdruZeni uZivatelt TeXu, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
O and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz


http://dml.cz/dmlcz/150122
http://dml.cz

PDFdiff: skript srovnavajici PDF soubory

‘l TiIMOTHY EYRE I

Abstrakt

Clének predstavuje skript naprogramovany v Pythonu, ktery na vstupu oéekava
dva PDF soubory a automaticky je zpracuje nastroji pdftk, Ghostscript, Image-
Magick a X{IEX tak, ze vznikne novy PDF soubor, ktery ukazuje rozdily mezi
obéma vstupy.

Klicova slova: Srovnani soubort, Python, Ghostscript, pdftk, ImageMagick.
doi: 10.5300/2010-3/208

Introduction

Tools that show the difference between two files are a mainstay of software
development. They are most commonly used to view the difference between
two versions of a source code file; you might even use such a tool when you are
developing TEX code. Less common, but still potentially useful, are tools that
show the difference between two binary files.

This article describes the motivation for and implementation of a tool that
shows the differences between two PDF files.

1. Motivation

Here are three examples where a PDF file difference-finding tool would be useful:

(1)

(2)

You have two versions of a paper in PDF format. You know that the
differences between them are slight but you need to know exactly what the
differences are.

You have created a document using the Kanji Stroke Order Font [1] and
want to create an equivalent version but without the stroke order numbers.
A colleague tells you that the Choumei font (also available from [1]) is
simply the Kanji Stroke Order Font with the stroke numbers removed. You
suspect that the Choumei font may have different metrics to the Kanji
Stroke Order Font and will therefore change the layout of your document.
You need a way to test this.

You have re-written a TEX macro used by a large publication to make it
more maintainable or to add a new feature. You are fairly sure that the
new version of the macro will not change the publication’s layout in any
way but need a way to verify this.



@ o --0a)b - 2bm))

(
(_bl®...®b")T(a1®...®a,")T

Figure 1: Pre-modification version of the PDF file

(@' @ ®@a)(b' @ - b))t

(b1®...®b")T(a1®...®a”)T

Figure 2: Post-modification version of the PDF file

Figures 1 and 2 illustrate the first two of these three scenarios. The change
to the mathematical expression between Figures 1 and 2 is easy to see, but such
changes are harder to spot in a a larger article. It is not obvious whether the
change from the Kanji Stroke Order Font to the Choumei font would change the
spacing of the document.

In both cases, the output of PDFdiff shown in Figure 3 makes the changes
casy to see.

2. Implementation

I implemented PDFdiff using Python to stitch together the steps summarized in
Figure 4.

This section describes each of these steps in turn. I use the words ‘pre’
and ‘post’ to denote the versions of a document before and after some sort of
modification that we invoke PDFdiff to determine. In practice it may not be the
case that there is a well-defined notion of ‘pre’ and ‘post’ version but it is a useful
shorthand for identifying the two documents.

209



~—a-
<t

%
=
2N

Figure 3: Difference between the two PDF files

pdftk Validated pdfinfo Pre and

Individual
pre and

i

differences differences

pages post PDFs post PDFs
Ghostscript
Bitmaps ImageMagick Page XATEX PDF of

Figure 4: PDFdiff workflow

2.1. Validation
To be able to compare the pre and post versions of the document sensibly, the
two versions of the document must have the same dimensions. Therefore the
first thing that PDFdiff does is to call out to the tool pdfinfo [2] to extract the
dimensions of the document under scrutiny.

If the dimensions of the pre and post versions of the document differ then
PDEFdiff reports this and exits.

2.2. Burst

To simplify the process of generating the bitmaps with Ghostscript, PDFdiff first
bursts the input PDF files into multiple PDF files, each containing a single page of
either the pre or post version of the document. PDFdiff does this by calling out
to the tool pdftk [3] as follows:

pdftk pre.pdf burst
pdftk post.pdf burst

210



After each call to pdftk, PDFdiff renames the files. This is necessary because
pdftk chooses its own output filenames and so we need to prevent the output of
the second burst from overwriting the output of the first.

PDFdiff then checks that the pre and post versions of the document have the
same number of pages. If the two documents differ in length then PDFdiff will
inform you of the fact. If you are then determined to compare the two versions
of your document regardless of their differing number of pages then it is a simple
matter to concatenate a few extra pages to the end of the shorter document to
even up the lengths.

At the end of this burst process, we should have 2n new PDF files, where n is
the number of pages in the document under scrutiny.

2.3. Pages to Bitmaps
PDEFdiff is now ready to convert the pages it has extracted into bitmap files. It
does this using Ghostscript [4], as follows:
gswin32 -dNOPAUSE -r600 -dBATCH -sDEVICE=bmp256
-sOutputFile=xxx.bmp xxx.pdf
Here xxx denotes the name of a single-page PDF file that PDFdiff produced
at the burst stage. ~dANOPAUSE tells Ghostscript that it should not wait for user
input. -r600 tells Ghostscript to use a resolution of 600dpi, which I judge to
be a reasonable compromise between quality and resource use. -dBATCH tells
Ghostscript to exit after processing the supplied PDF file rather than leaving the
Ghostscript environment open. -sDEVICE=bmp256 tells PDFdiff to write an 8-bit
colour bitmap file. This allows some degree of colour to be preserved in the final
difference file.

2.4. Subtract Bitmaps

Having called out to Ghostscript 2n times to produce 2n bitmaps, PDFdiff calls
out to the ImageMagick software suite [5] to subtract the bitmaps from one
another, as follows:

composite -compose difference pre_i.bmp post_i.bmp diff_i.bmp

In this command, pre_i.bmp denotes the bitmap generated from page i of
pre.pdf, post_i.bmp denotes the bitmap generated from page i of post.pdf
and diff_i.bmp represents the file generated by the composite command of
Imagemagick that shows the difference between the two input bitmap files. In all
three cases, 1 <i < n.

However, the diff_i.bmp files produced by composite are not ideal. They
are large and the text (if any) will appear as white on a black background.
To solve both these problems, PDFdiff runs the bitmap files through another
ImageMagick command, as follows:

211



convert -negate diff_i.bmp diff_i.png
This produces a much smaller PNG version of the bitmap file and the -negate
option reverses the colours so that we have black on a white background again.
The ImageMagick processing is the most time-consuming part of the work-
flow, typically requiring around two-thirds of the total time taken to create the
difference file.

2.5. Regenerate Document

Now we have n .png files, it is a simple matter to create a new PDF file of n pages
with each page containing a single bitmap file as a graphics inclusion. I chose to
use XH{IEX for this purpose simply because that is the flavour of TEX I use most
of the time rather than because I needed a specific feature of XqTEX.

To achieve this, PDFdiff generates some TEX source of the following form:
\pdfpagewidth=155pt\pdfpageheight=93pt
\hsize=155pt\vsize=93pt\voffset=-1in\hoffset=-1in
\hbox{\XeTeXpicfile "diff_i.png" width 155pt height 93pt}
\vfill\eject
\bye

Naturally, there is an \XeTeXpicfile inclusion for each i € {1,...,n}.

PDEFEdiff then calls out to XgIEX with the auto-generated TEX source file as
the parameter, as follows:
xetex diff.tex

Once XHIEX completes its processing, we have the desired final PDF file that
shows the differences between the pre and post versions of the document.

3. Deficiencies

There are four deficiencies that users may notice with this script: speed, size of
output, resolution and input parameters.

3.1. Speed

To run the script to compare the 8 pages of this paper takes 215 seconds on my
laptop. It would be nice if the script ran faster. Testing shows that most of the
time is taken at the ImageMagick stage, so there is not much scope for increasing
the speed.

3.2. Size of Output
The original version of this document is about 280kB in size. Running PDFdiff
over two versions of this document produced an output file 2 MB in size. In general,

212



the output file produced by PDFdiff is much larger than the input files. This is
simply because the page is described as a raster graphic rather than using the
font mechanism provided by the PDF standard. Given the size of modern disks
this is only likely to be a problem when sending the output of a large difference
over a communications link.

3.3. Resolution
PDFdiff relies on raster graphics to create the difference output. Therefore, by
definition, the resolution of the output must be finite, unlike the smooth lines of
the original vector graphics. Of course, if you are using the old TEX.pk files you
will be using rasters anyway.

It is easy enough to modify PDFdiff to produce output of arbitarily high
resolution (subject to the limitations of Ghostscript and Imagemagick) but this
is inevitably at the expense of longer run times and larger output files.

3.4. Input Parameters

Purely out of laziness, I have written the script to assume that the ‘pre’ version
of the PDF document is called pre.pdf and the ‘post’ version of the document is
called post.pdf. It would be simple to change this but I prefer the discipline of
being sure which file is which and the simplifying effect on the Python code.

Conclusion

Using readily-available tools, it is possible to create a workflow to compare PDF
documents. Comparing PDF documents is relatively resource-hungry but can be
invaluable. Not only is PDFdiff useful for developing TEX documents, TEX and
related tools also make up important parts of the workflow.

213



References

[1] Kanji Stroke Order Font and Choumei Font: http://www.nihilist.org.uk/
[2] pdfinfo: http://www.glyphandcog.com/

[3] pdftk: The PDF Toolkit: http://www.accesspdf .com/pdftk/

[4] Ghostscript: http://pages.cs.wisc.edu/~ghost/

[5] ImageMagick: http://www.imagemagick.org/

Summary: PDFdiff: A PDF File Comparison Script

A Python script can be used to take two PDF files and automatically process
them with pdftk, Ghostscript, ImageMagick and XHTEX to produce a PDF file
that shows the differences between the two input files.

Keywords: PDF, file difference, Python, Ghostscript, pdftk, ImageMagick.

Timothy Eyre, matl@nihilist.org.uk
&TUG c/o FEL CVUT, Technickd 2
Prague, CZ-166 27, Czech Republic

214



