
Zpravodaj Československého sdružení uživatelů TeXu

Gilles Van Assche
Blahtexml and multi-target document generation

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 22 (2012), No. 3, 137–149

Persistent URL: http://dml.cz/dmlcz/150139

Terms of use:
© Československé sdružení uživatelů TeXu, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150139
http://dml.cz

Blahtexml and multi-target document
generation

Gilles Van Assche

Abstract:
Blahtex and Blahtexml are open-source tools for converting mathematical
expressions written in the TEX syntax into MathML. This article focuses on
a particular use case, where the source of a scientific document is written in
XML and can be the input for a variety of output formats, ranging from LATEX
articles to documents in OpenDocument format to web pages. We show that
Blahtexml can play a central role in such a context, where the author wishes to
enter equations in the TEX syntax and yet enable his document for publication
not only with TEX but also in MathML-based formats.
Key words: Blahtex, Blahtexml, MathML, TEX, LATEX, conversion, pub-
lishing of mathematical documents

Typing a mathematical expression using the syntax of TEX is much more
convenient than in the MathML syntax. In fact, the latter was not designed to
be typed by hand, but instead to be entered in a MathML editor or converted
from another format. Yet, MathML is being adopted by an increasing number of
programs and utilities, especially in browsers to display pages with formulas on
the Web. To be able to use MathML while retaining the convenience of the TEX
syntax, Blahtex(ml) provide a way to convert mathematical formulas from the
syntax of TEX (or a large subset of it) to MathML [8].

Blahtexml differs from Blahtex in that it adds the ability to convert all
TEX formulas in an XML file to MathML. The idea behind this new functionality
stems from a specific use case of Blahtexml: the generation of documents in
multiple formats from a single source [14]. This article focuses on a particular use
case, where a document is written in XML and becomes the source for a variety
of output formats, ranging from LATEX articles to documents in OpenDocument
format to web pages. This approach is not new—actually, it is a fairly natural
one—yet this article points out that Blahtexml fits nicely in the picture when
it comes to scientific documents and papers.

The rest of the paper is organized as follows. First, we give an overview of
XML technologies for scientific documents. Then, we describe the functionality of
Blahtex. Finally, we present the single-source approach for scientific documents,
including information on Blahtexml, XSLT and an example.

137doi: 10.5300/2012-3/137

XML technologies

The Extensible Markup Language, or XML, has become a popular way to express
the content and structure of a document [3]. XML defines a generic syntax for
enriching texts (or data) with humanly-readable tags. Alone, XML is hollow—it
does not define the meaning of tags, nor how to process an XML document.
Instead, it can be viewed as a common ground for applications that share a single
syntax and a lot of standard tools to generate, query, transform and edit data
or documents in a unified way. For instance, the Extensible Stylesheet Language
Transformations (XSLT) language is an efficient way to generate XML documents
or to transform one XML file into another [4].

An XML application is a restriction of the XML syntax to a well-defined
set of tags and other conventions. Anyone is free to define his/her own XML
application. As of interest for scientific documents, there are at least three XML
applications that are important to mention: XHTML, the OpenDocument format
and MathML. First, XHTML is an XML version of the famous HyperText Markup
Language (HTML) that describes the content of a web page [5]. Retro-compatible
with HTML, XHTML is a clean version of HTML that follows the XML syntax
and consequently allows to use all the XML tools. Second, the OpenDocument
format uses a container format (as a Zip file) that embeds XML files for the
content and style information of the document [2]. Finally, MathML is an XML
application that describes mathematical expressions [1]. It encodes the structure
of such expressions in a standard way, so that software can display or process
them.

MathML is used for embedded formulas in several applications, including
XHTML and OpenDocument. For instance, MathML formulas can be included in
XHTML web pages. Traditionally, mathematical expressions have been included
as bitmap pictures—this is a solution with many drawbacks (e.g., poor, non-
-scalable display quality, increased load time), but of course one that works for
all browsers. Formulas in MathML, on the contrary, provides a better alternative,
which is supported by an increasing number of software, including many recent
browsers (e.g., Firefox [6], Design Science’s MathPlayer plug-in [7] for Microsoft
Internet Explorer).

Blahtex

While MathML is becoming a universal way to express and exchange mathematical
expressions, its syntax is extremely verbose, preventing the most courageous user
from entering an equation of reasonable size by hand in a text editor. In fact, it
is not the purpose of MathML for one to be able to actually type a formula in
this syntax. Instead, there are interactive editors or converters to do so.

138

Unlike MathML, the syntax of mathematical expressions in TEX is the de-facto
standard in the scientific community and is simple enough to be entered by hand.
This is where Blahtex comes into play: It allows one to enter formulas using
the syntax of TEX and to convert them into MathML.

Blahtex was written by David Harvey, who targeted his program to support
equations in MediaWiki, the engine behind Wikipedia [12]. In this context, writers
enter text in a rather simple syntax called wiki text and MediaWiki generates
the HTML code to be displayed in a browser. To keep the syntax simple, writers
are allowed to enter equations in the TEX syntax. Currently, texvc converts the
mathematical formulas of Wikipedia to either HTML or PNG bitmaps [11]. As an
alternative, a MediaWiki extension using Blahtex is able to convert each of these
into MathML [13]. Like texvc, Blahtex processes each equation individually.

The syntax supported by Blahtex is a subset of the TEX syntax, but the
chosen subset is large enough for most purposes. For instance, it supports a long
list of symbols, commands and environments compatible with TEX, LATEX and
AMS-LATEX, as well as macros via \newcommand. The complete list can be found
in the user manual [8].

Internally, Blahtex processes everything as Unicode, from the Greek letters
to mathematical operators to text in languages other than English. As a convenient
extension to the TEX syntax, Blahtex accepts a number of mathematical symbols
to be directly entered in Unicode as an alias to the TEX command. E.g., Blahtex
makes no difference between the multiplication sign “×” entered as is and the
\times command.

A nice thing about Blahtex is that it makes a good attempt at providing the
same spacing between operators as TEX does. It determines the proper spacing
and provides it in the generated MathML code as lspace and rspace attributes.
Although the rendering of MathML varies from browser to browser, this helps
getting a consistent look, as close as possible to TEX’s appearance.

We now illustrate the use of Blahtex through some examples.
The first way to use Blahtex, with the --mathml option, is to convert

an equation given at standard input into MathML at standard output. For
instance, typing: echo ’\sqrt{x^2+\alpha}’ | blahtex --mathml produces
the output in Figure 1. In this example, the MathML fragment is enclosed in
blahtex/mathml/markup. Note that the MathML fragment produced does not
contain any namespace information; ideally, the MathML namespace should be
added when enclosing this fragment in an actual XML file. In the case of a syntax
error, explicit information is given in a blahtex/error element.

The second way to use Blahtex, with the --png option, is to convert an
equation into a PNG file. Blahtex calls TEX to produce this bitmap picture. The
name of the output file is automatically generated from the MD5 digest of the
TEX code. Hence, if the same formula appears several times, only one PNG file is
produced. To be able to determine the name of the PNG file, the digest is provided

139

<blahtex>
<mathml>
<markup>
<msqrt>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo lspace="0.222em" rspace="0.222em">+</mo>
<mi>α</mi>

</msqrt>
</markup>
</mathml>
</blahtex>

Figure 1: Sample MathML output provided by Blahtex

<blahtex>
<png>
<md5>068bd5f892d1f87b0371fa570af10712</md5>
</png>
</blahtex>

Figure 2: Sample PNG file name output

in the blahtex/png/md5 element of the XML fragment at the standard output.
For instance, typing echo ’\sqrt{x^2+\alpha}’ | blahtex --png produces
the file 068bd5f892d1f87b0371fa570af10712.png displaying

√
x2 + α and the

XML fragment of Figure 2.

Single-source approach for scientific documents

When writing a scientific document, the writer wishes to concentrate on the
content and not worry too much about the technical details of the typesetting
system. The purpose of LATEX, as a layer on top of TEX, is indeed to provide
separation between content and presentation. However, it does not forbid the
writer to enter specific commands to control details of some presentation aspects,
as the need naturally arises in practice. Also, one often has a predetermined
target in mind for a document (e.g., an article for a specific journal, a report,
a thesis) when writing it. Having specific presentation requirements (e.g., the
journal’s layout) is not a problem for a single document. However, if one wishes

140

<?xml version="1.0"?>
<equations xmlns:b="http://gva.noekeon.org/blahtexml">

<equation b:inline="x+y"/>
<equation b:block="\exp(-\gamma x)"/>

</equations>

Figure 3: Sample input file for Blahtexml

to re-use material between various documents, a simple copy & paste may not be
enough: Some presentation-oriented commands need to be adapted as the layout
conventions for different targets may not be identical. For instance, different LATEX
class files may have slightly different syntaxes. To enter the abstract of an article,
one may require to enclose it in a \abstract command, while others require
it in an environment delimited by \begin{abstract} and \end{abstract}. As
another example, the highest heading level of an article is \section, while it is
\chapter for a report. Moving a section to another document or to another level
may require adapting all the heading commands.

Presentation-oriented commands may become even more problematic when
the output format is not LATEX’s original target (i.e., a Postscript or PDF file)
but, say, a web page. It would be excessive for a converter from LATEX to HTML
to support all the presentation-oriented aspects of the document. At least some
of them do not make sense at all, such as the page format, whilst others might
just be very difficult to convert.

While there is no miracle solution to these problems, we think that the best
solution is to generate different output formats from a source file in a common
syntax. The common syntax may or may not be related to one of the output
formats. The point is, however, that the common syntax should focus on the
content and that, if necessary, some common presentation aspects can be added
to it, provided that it does not privilege or exclude one of the output formats
specifically.

Using Blahtexml
The idea of a common syntax naturally extends to the mathematical expressions,
which can then be converted into an appropriate set of formats, depending on
the target output format. This is where Blahtexml comes into play. Assuming
a document written in a syntax based on XML, Blahtexml converts each
equation found in the document into either MathML, nominal TEX syntax, PNG
bitmap image files, or all three formats. The syntax of Blahtex(ml) is indeed
TEX-oriented. Yet, the subset supported by Blahtex(ml) excludes TEX-specific
presentation aspects that could not be converted into MathML.

141

<?xml version="1.0" encoding="UTF-8"?>
<equations xmlns:b="http://gva.noekeon.org/blahtexml">

<equation>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<mi>x</mi>
<mo lspace="0.222em" rspace="0.222em">+</mo>
<mi>y</mi>

</math>
</equation>
<equation>

<math xmlns="http://[...]MathML" display="block">
<mi>exp</mi>
<mo lspace="0" rspace="0" stretchy="false">(</mo>
<mo lspace="0" rspace="0">-</mo>
<mi>γ</mi>
<mspace width="0"></mspace>
<mi>x</mi>
<mo lspace="0" rspace="0" stretchy="false">)</mo>

</math>
</equation>

</equations>

Figure 4: The output file given by Blahtexml for the input file in Figure 3

Blahtexml provides the --xmlin option, which does not exist in Blahtex.
With this option, Blahtexml processes an input file given at standard input.
Such an input file may look like the example of Figure 3. The equations are given
as attributes (inline or block) in the Blahtexml namespace. Whenever Blah-
texml meets such an equation, it expands it into the equivalent MathML code.
The corresponding output is given in Figure 4. Note that by using a namespace,
attributes containing equations can be added to any XML file independently of
the syntax of other applications.

In addition to the MathML representation of the equations, the --annotate-TeX
and --annotate-PNG options cause Blahtexml to produces an annotation ele-
ment with the equation in nominal TEX syntax and another annotation element
with the name of the PNG file containing a bitmap rendering. The generated
MathML code and both new elements are enclosed in a semantics element, to
conform to the MathML syntax. From the same example as above, this would
generate the output of Figure 5.

142

<equations xmlns:b="http://gva.noekeon.org/blahtexml">
<equation>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>

<mrow>[...]</mrow>
<annotation encoding="TeX">x + y</annotation>
<annotation encoding="image-file-PNG">

./f05c46190061a618fd432bf5471cc2ab.png</annotation>
</semantics>

</math>
</equation>
<equation>

<math xmlns="http://[...]MathML" display="block">
<semantics>

<mrow>[...]</mrow>
<annotation encoding="TeX">

\exp (- \gamma x)</annotation>
<annotation encoding="image-file-PNG">

./df6bfcabef19b8a0ccdbd2077ae96e75.png</annotation>
</semantics>

</math>
</equation>

</equations>

Figure 5: The output file given by Blahtexml for the input file in Figure 3 when
additional annotations are requested

Using XSLT
In document generation from a source in a common syntax, the source file of a
document must be parsed before contents in the target format can be generated.
Restricting the common syntax to an XML application, parsing XML can be done
with various tools or can be programmed in different languages with appropriate
libraries. Among the available tools, the XSLT language is particularly well suited
for transforming an XML source file into either another XML file or a text file.
Let us briefly introduce this tool and explain why it is well suited to our particular
use case.

In XSLT, a stylesheet defines a transformation from XML into either XML or
text. In its simplest form, it is a declarative language that specifies the piece of
text or XML data to generate when it encounters a given XML tag in the source
file. To apply a given stylesheet to a source file, one uses an XSLT processor.

143

<xsl:template match="b">
<xsl:text>\textbf{</xsl:text>
<xsl:apply-templates/>
</xsl:text>}</xsl:text>

</xsl:template>

Figure 6: Example of XSLT code to convert the bold b tag of XHTML to the
textbf command in LATEX

XSLT can become a bit complex when the task to perform diverges from
its core abilities. However, in the context of multi-target document generation,
XSLT is simple to program and to read. For instance, no explicit loops need to
be written to go through the entire source file, as such loops are managed by the
XSLT processor automatically. This reduces the work to writing the text or XML
fragment to be generated corresponding to a given input XML element.

As a brief example, let us consider the conversion from XHTML to LATEX using
XSLT. The XHTML tag b indicates bold text. The equivalent LATEX command
would be \textbf. The piece of code in Figure 6 makes this conversion: It
declares a template, which matches b tags. For all such tags, it then tells to
output \textbf{, then to apply recursively other templates, e.g., to convert other
tags or simply to write the text inside the b tag, and finally it concludes by
outputting the closing brace }.

A simple example based on XML
On the Blahtexml web page, we provide an example of document generation
system based on an XML syntax [10]. This is a working example, although with a
reasonably simple functionality. The goal is not to rival with well-known systems,
such as DocBook [9], with its definition of almost 400 different tags. Instead, this
working example proposes a clean and simple syntax, whose only ambition is to
illustrate the use of Blahtexml for multi-target document generation in the
scope of scientific documents and articles.

The proposed example is based only on open-source technologies: The general
process is managed by make and the XSLT processing is performed by any XSLT
processor. In the example, the processor used is xsltproc [15], although any
XSLT processor could be used.

Let us briefly describe the syntax of the source file and then the process from
the source file to a target output. The source file is a document in XML, which
contains the text, the structure of the document and some meta-information. The
input syntax is illustrated in the file Sample.ed, which contains some sample text
and mathematical expressions. The root element of the XML file is document. In
it, two child elements appear: head and body. In the former, information about

144

.ed

Blahtexml and XSLT stylesheet

.ed+mathml

XSLT stylesheets

LaTeX formats HTML formats ODF content

(Xe)LaTeX

.pdf

Zip

.odt.xml

Figure 7: The general flow

the author(s), their affiliation and the title can be provided. The latter provides
the contents and structure of the document.

The structure of the file was inspired from XHTML 2.0. Text paragraphs
can be grouped in sections using the section element. Such sections can be
nested, which mean they actually represent a chapter, a section or a subsection
depending on the nesting depth. Section titles are provided in h elements. Text
paragraphs are enclosed in p elements, and ordered and unordered lists in ol and
ul, respectively, with each list item in li. Inside paragraphs or list items, plain
text can be given. The text can be further formatted using emphasis (italic, em),
a strong font (bold, strong), small capitals (sc), subscript (sub) and superscript
(sup).

As of interest for Blahtexml specifically, inline mathematical expressions
are written in ieq elements, and stand-alone formulas in eq elements. Inside such
elements, the formula is given in Blahtex format.

The general processing flow is illustrate in Figure 7. To determine the sequence
of steps from the source file to the output file, a makefile is provided. Depending
on the target format, the following steps can be taken:

• As a the mathematical expressions are not written as attributes (but more
simply inside ieq and eq elements), a first step consists in putting the
equations in the appropriate attributes for Blahtexml. This preparation
step is performed by the PrepareForBlahtexml.xsl XSLT stylesheet.
• As a result of the previous step, the mathematical expressions are written
as attributes in the Blahtexml namespace. This step now consists in

145

converting these formulas using Blahtexml with the --annotate-TeX
and --annotate-PNG options. As a result, all formulas are in three formats:
MathML, TEX and as PNG files. Depending on the desired output format,
the following steps will extract the format they need.

• Then, the XSLT stylesheets Numbering.xsl and Referencing.xsl process
the resulting file to number sections and to resolve cross-references. This
step is mainly done for XHTML output, as LATEX and OpenDocument
formats have their own syntax to express numbered sections and references.

• The core of the output generation is performed by a format-specific XSLT
stylesheet to produce XHTML, LATEX or OpenDocument code. More details
on the various output formats are given below.

• Optionally, a last step finalizes the production and again depends on the
desired output format. For instance, for a .tex file, LATEX (or X ELATEX) is
invoked to produce a PDF file. If the target format is OpenDocument, then
the resulting XML file is packaged into a Zip file and renamed as .odt.

Let us give some more details about the generation of the possible output
formats. To allow make to determine which sequence of operations to perform,
the different output formats have specific extensions. For instance, to produce
a PDF file from Sample.ed via LATEX using an IEEE class file, one has to type
make Sample.ieee.latex.pdf. We will see the other extensions as we go.

For XHTML, the generation of the various tags is fairly straightforward, since
to an element of our input syntax corresponds an element in XHTML. This
part of the job is done by the ToXHTML-common.xsl stylesheet. Details about the
display styles can be tuned via the document.css cascaded stylesheet. There are
three flavors of XHTML output formats, depending on the way the mathematical
expressions are handled.

• For equations in MathML, the extension is .xhtmlmathml.xml (e.g., make
Sample.xhtmlmathml.xml).

• As a first alternate option for browsers that have no MathML support, the
mathematical expressions can be displayed as bitmap pictures, using the
PNG files produced earlier. For this, the extension is .xhtmlpng.xml.

• As a second alternate option, the mathematical expressions can be displayed
with pure HTML tags, but in a rather approximate form. For instance,
HTML can display text in superscript and subscripts, but if an expression
(like Asup

sub) requires both then the HTML code will not be able to put one
above the other (e.g., the result might look like A sup

sub). Other restrictions
apply, for instance, for two-dimensional constructions such as matrices
or fractions. Nevertheless, this option may be useful and sufficient if the
formulas are simple. Here, the extension is .xhtmlapprox.xml.

146

For TEX and derivatives, there are also several flavors. In the provided example,
the output is either LATEX-oriented or X ELATEX-oriented. The latter has the
advantage of an easy support of True Type and Open Type fonts. Here the XSLT
stylesheet must output a text file that follows TEX’s syntax conventions. The
main part of the job is done by the ToLaTeX-common.xsl stylesheet. Then, a
number of smaller XSLT stylesheets give specific generation rules, most notably
a specific header, for each flavor. The flavors supported in this example are the
following.

• For a simple article in LATEX, the specific stylesheet is ToLaTeX-article.xsl
and the extension is .article.latex.tex (e.g., make Sample.article.la-
tex.tex) for the .tex source file. To get the result directly as a PDF file,
the .tex extension can be replaced by .pdf (e.g., make Sample.arti-
cle.latex.pdf).
• For an article following the APS Physical Review conventions and using
the revtex4-1 class file, the stylesheet is ToLaTeX-revtex.xsl and the
extension is .revtex.latex.tex.
• For an article using the IEEEtran class file for the IEEE Transactions jour-

nals, the stylesheet is ToLaTeX-ieee.xsl and the extension is .ieee.la-
tex.tex.
• For a simple article in X ELATEX, the stylesheet is ToXeLaTeX-article.xsl
and the extension is .article.xelatex.tex.

Adding a new flavor tailored to special needs is rather simple, as it suffices to
add a new rule in the makefile and a new XSLT stylesheet based on one of the
models above. Most of the specific stylesheets just define an alternate LATEX file
header.

Finally, for OpenDocument format, most of the job is done by the ToODT.xsl
stylesheet. It produces a file called content.xml, which is then Zipped, together
with the files provided in ODT-Template/, to make a .odt file. Here the target
extension is simply .odt (e.g., make Sample.odt). Details about the display
styles can be tuned in the ODT-Template/styles.xml file. The .odt file can be
opened by any word processor supporting the standard OpenDocument format1.

1At this time of writing, a bug in OpenOffice.org prevents the mathematical expressions
from being displayed with a correct size after loading the document [16]. A possible workaround
consists in double-clicking on the equations to open them in the integrated equation editor,
which forces OpenOffice.org to resize the mathematical expressions appropriately. We hope this
issue will be solved soon.

147

Conclusions

Blahtex(ml) can be useful for converting mathematical expressions written in
the TEX syntax into MathML. In particular, we have shown that Blahtexml
can perform this task in the scope of a multi-target document generation system
for scientific documents. We have given an example to illustrate this purpose,
where a document is written in a common XML-based syntax and various output
formats can be generated from it, including various flavors of LATEX.

Although fully working, the example given is rather simple from a functionality
point of view. In this respect, future work may include the support for tables,
figures, bibliographic entries and more output formats.

References

[1] World Wide Web Consortium.Mathematical Markup Language (MathML).
http://www.w3.org/standards/webdesign/math.

[2] Organization for the Advancement of Structured Information Stan-
dards.Open Document Format for Office Applications (OpenDocument). http:
//www.oasis-open.org/committees/tc_home.php?wg_abbrev=office.

[3] World Wide Web Consortium.Extensible Markup Language (XML). http:
//www.w3.org/standards/xml/.

[4] World Wide Web Consortium.Extensible Stylesheet Language Transformation
(XSLT). http://www.w3.org/standards/xml/transformation.

[5] World Wide Web Consortium.HTML & CSS. http://www.w3.org/
standards/webdesign/htmlcss.

[6] Mozilla.Firefox. http://www.firefox.com.
[7] Design Science.MathPlayer plug-in. http://www.dessci.com/en/products/

mathplayer/.
[8] Harvey, D., Assche, G. van.Blahtex and blahtexml version 0.8 manual. http:

//gva.noekeon.org/blahtexml/.
[9] Walsh, N.DocBook 5: The Definitive Guide. O’Reilly, 2010.

[10] Assche, G. Van.ExampleDoc. http://gva.noekeon.org/blahtexml/
exampledoc.

[11] Wegrzanowski, T.Texvc. http://en.wikipedia.org/wiki/Texvc.
[12] Wikimedia Foundation.MediaWiki. http://www.mediawiki.org/.
[13] Mediawiki.Extension: Blahtex. http://www.mediawiki.org/wiki/Extension:

Blahtex.
[14] Wikipedia.Single source publishing. http://en.wikipedia.org/wiki/Single_

source_publishing.
[15] Veillard, D.The xsltproc tool. http://xmlsoft.org/XSLT/xsltproc2.html.
[16] OpenOffice.org.Issue 91779. http://www.openoffice.org/issues/show_bug.

cgi?id=91779.

148

Souhrn: Blahtexml and generování dokumentů v různých
formátech

Blahtex and Blahtexml jsou nástroje typu „open-source“ pro koverzi matem-
atických výrazů zapsaných syntaxí jazyka TEX do MathML. Tento článek se
zaměřuje na konkrétní příklad, kde zdroj vědeckého dokumentu je zapsán v XML
a může být vstupním formátem pro konverzi do celé řady formátů výstupních,
od článků psaných v LATEXu přes formát OpenDocument až po webové stránky.
Ukážeme jak Blahtexml může hrát významnou roli, když autor si přeje vkládat
rovnice v syntaxi TEXu, ale současně chce umožnit publikování svého dokumentu
ve formátech odvozených z MathML.

Klíčová slova: Blahtex, Blahtexml, MathML, TEX, LATEX, konverze, pub-
likování matematických dokumentů

149doi: 10.5300/2012-3/149

